Learning Objectives
Representation, loss function, search
Selection of loss functions in practice
Generalized linear models and RBF
K-NN

When doing k-nn with \(y \) a real number, what is the loss function \(L(y, \hat{y}) \) being minimized?
Decision Trees

- When doing decision trees with y a Boolean, what is the loss function being minimized?
Which model to use?

\[y = x^T w \]

Predict income based on age, sex, and state or country you were born in

What exactly are \(x \) and \(y \)?
Which loss function to use?

\[\|y - \mathbf{Xw}\|_p \]

a) \(p=0 \)
b) \(p=1 \)
c) \(p=2 \)
Which loss function to use?

You are building a model to estimate the cost, y, of a software project that you are bidding on as a contractor (as a function of lots of features of the project, including estimates of lines of code, hours of meetings, complexity of specifications).
Which loss function to use?

You are writing a search algorithm that returns web pages as a function of the search query, the words on the web page the person is searching from, and the search history of that user.
Which regression penalty to use?

$$\text{Error} + \lambda_2 \|w\|_2^2 + \lambda_1 \|w\|_1 + \lambda_0 \|w\|_0$$

- If you want the model to be scale invariant?
- If you want to have a small model?
- If you want a convex optimization problem?
Your training error for ridge regression is substantially lower than your testing error.

You should

a) increase λ

b) decrease λ

c) no change in λ
◆ Your training error for ridge regression is the same as your testing error.
◆ You should
 a) increase λ
 b) decrease λ
 c) no change in λ
Generalized linear models

◆ **Basic Linear Model:**

$$h_{\theta}(\mathbf{x}) = \sum_{j=0}^{d} \theta_j x_j$$

◆ **Generalized Linear Model:**

$$h_{\theta}(\mathbf{x}) = \sum_{j=0}^{d} \theta_j \phi_j(\mathbf{x})$$

◆ **Or add a link function:**

$$h_{\phi}(\mathbf{x}) = f(\mathbf{w}^T \mathbf{x})$$

Based on slide by Geoff Hinton
Linear Basis Function Models

- Generally,
 \[h_\theta(x) = \sum_{j=0}^{d} \theta_j \phi_j(x) \]
 basis function

- Typically, \(\phi_0(x) = 1 \) so that \(\theta_0 \) acts as a bias

- In the simplest case, we use linear basis functions
 \[\phi_j(x) = x_j \]

- Could use polynomials or Gaussians

Based on slide by Christopher Bishop (PRML)
Linear Basis Function Models

- Polynomial basis functions
 \[\phi_j(x) = x^j \]
 - Global – mostly crappy

- Gaussian basis functions:
 \[\phi_j(x) = \exp\left\{ -\frac{(x - \mu_j)^2}{2\sigma^2} \right\} \]
 - Local – good!

Based on slide by Christopher Bishop (PRML)
Fitting a Polynomial Curve with a Linear Model

\[y = \theta_0 + \theta_1 x + \theta_2 x^2 + \ldots + \theta_p x^p = \sum_{j=0}^{p} \theta_j x^j \]
Radial Basis Functions

Originally by Andrew Moore; now heavily edited by Lyle Ungar

http://www.it.uu.se/research/project/rbf/rbf.png
Radial Basis Functions (RBFs)

$X = \begin{bmatrix} 3 & 2 \\ 1 & 1 \\ \vdots & \vdots \end{bmatrix}$

$y = \begin{bmatrix} 7 \\ 3 \\ \vdots \end{bmatrix}$

$Z = \text{(list of radial basis function evaluations)}$

$z = (Z^TZ)^{-1}(Z^Ty)$

$y_{\text{est}} = w_0 + w_1 x_1 + \ldots$
1-d RBFs

\[y^{\text{est}} = w_1 \phi_1(x) + w_2 \phi_2(x) + w_3 \phi_3(x) \]

where

\[\phi_i(x) = \text{KernelFunction}(||x - \mu_j|| / C) \]

For RBF:

\[\text{KernelFunction}(|| x - \mu_j || / C) = \exp\{-||x - \mu_j||^2 / C\} \]

C = “Kernel Width”
Example

\[y^{est} = 2\phi_1(x) + 0.05\phi_2(x) + 0.5\phi_3(x) \]

where

\[\phi_j(x) = \text{KernelFunction} \left(|x - \mu_j| / C \right) \]
RBFs can do ...

- Use $k < p$ basis vectors
 - Dimensionality reduction
 - Good for high dimensional feature spaces

- Use $k > p$ basis vectors
 - Increases the dimensionality
 - Can make a formerly nonlinear problem linear

- Use $k=n$ basis vectors
 - We will use this to switch to a *dual* representation
How to find the kernel centers?

- **Pick random points**
 - Generally a bad idea

- **Standard RBF: do k-means clustering and use the centers of the clusters**
 - Works great!

- **Use all n of the training data points as kernel centers**
 - Requires regularization

- **Estimate them: nonlinear regression**
 - A good initialization helps
Link functions

- Link function $f(x)$: $h_\theta(x) = f(w^T x)$
 - $f(x) = e^x$
 - $f(x) = \log(x)$
- Equivalent to $f^{-1}(h_\theta(x)) = w^T x$
What you should know

- Loss functions depend on the problem
- Basis functions allow one to fit a nonlinear function using linear regression
- Link functions give a nonlinear regression