Kernels and Kernel Regression

Lyle Ungar

Learning objectives
Kernel definition and examples
RBF algorithm (again)
Kernel regression
What is a kernel?

- $k(x, y)$
 - Measures the *similarity* between a pair of points x and y
 - Symmetric and positive definite

- **Example: Gaussian kernel**
 - $k(x, y) = \exp\left(-\frac{||x - y||^2}{\sigma^2}\right) = \exp\left(-\frac{d(x, y)^2}{\sigma^2}\right)$

- **Uses of kernels**
 - “soft” K-NN
 - RBF
 - Kernel regression, SVMs
Kernel definition

A symmetric function \(k (x_i, x_j) : X \times X \to \mathbb{R} \) is a positive definite kernel on \(X \) if

\[
\sum_{i,j} c_i c_j k(x_i, x_j) \geq 0
\]

for all \(c_i c_j x_i, x_j \) summed over any set of i,j pairs

We won’t actually use this
What is a kernel?

- $k(x, y)$
 - Measures the *similarity* between a pair of points x and y
 - Symmetric and positive semi-definite (PSD)
 - Often tested using a *Kernel Matrix*,
 - a PSD matrix K with elements $K_{ij} = k(x_i, x_j)$ from all pairs of rows of a matrix X
 - A *PSD matrix* has only non-negative eigenvalues
How are kernels selected?

- **Linear kernel**
 - $k(x,y) = x^T y$

- **Gaussian kernel**
 - $k(x,y) = \exp(-||x - y||^2/\sigma^2)$

- **Quadratic kernel**
 - $k(x,y) = (x^T y)^2$ or $(x^T y + 1)^2$

- **Combinations and transformations of kernels**
Radial Basis Functions (RBFs)

1) Pick k basis function centers μ_j using k-means clustering

2) Let $h(x) = w_1 \phi_1(x) + w_2 \phi_2(x) + \ldots w_k \phi_k(x)$

where
$\phi_j(x) = k(x, \mu_j) = \exp(-\|x - \mu_j\|_2^2 / C)$

3) Estimate w using linear regression
RBFs can do ...

- **Use $k < p$ basis vectors**
 - Dimensionality reduction
 - Good for high dimensional feature spaces

- **Use $k > p$ basis vectors**
 - Increases the dimensionality
 - Can make a formerly nonlinear problem linear

- **Use $k=n$ basis vectors**
 - Switches to a *dual* representation
Kernel Regression

\[\hat{y}(x) = \frac{\sum_{i=1}^{n} K(x, x_i) y_i}{\sum_{i=1}^{n} K(x, x_i)} \]

Kernel classification

\[\hat{y}(x) = \text{sign}(\sum_{i=1}^{n} K(x, x_i) y_i) \quad y_i = -1,1 \]
KNN vs Kernel regression

- When is k-NN better than kernel regression?
- When is kernel regression better than k-NN
What questions do you have on today's class?
How was my speed

A Slow
B Good
C Fast

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
Gather.town

- https://gather.town/aQMGI0l1R8DP0Ovv/penn-cis