Learning Objectives
PSD
Kernel and kernel matrix
Scale invariance
A kernel $k(x,y)$

- Measures the similarity between a pair of points x and y
- Symmetric and positive semi-definite
- Often tested using a *Kernel Matrix*,
 - a PSD matrix K with elements $K_{ij} = k(x_i,x_j)$ from all pairs of rows of a matrix X of predictors
 - A PSD matrix has only non-negative eigenvalues
Positive Semi-Definite (PSD)?

- Is positive semi-definite?
 \[
 \begin{pmatrix}
 1 & 2 \\
 2 & 1
 \end{pmatrix}
 \]

- A'\A is guaranteed positive semi-definite?

- A positive semi-definite matrix can have negative entries in it?

- The covariance matrix is PSD?

True or False?
Example kernels

- **Linear kernel**
 - $k(x,y) = x^Ty$

- **Gaussian kernel**
 - $k(x,y) = \exp(-\|x - y\|^2/\sigma^2)$

- **Quadratic kernel**
 - $k(x,y) = (x^Ty)^2$ or $(x^Ty + 1)^2$

- **Combinations and transformations of kernels**
Kernel matrix example

- Pick a matrix X

 \[
 \begin{pmatrix}
 1 & 2 \\
 3 & 4 \\
 5 & 6 \\
 \end{pmatrix}
 \]

- Compute $K_{ij} = k(x_i, x_j)$

- Test the eigenvalues

- What is K for X using the linear kernel?
True or False

- Kernels in effect transform observations x to a higher dimension space $\phi(x)$
- Since kernels measure similarity,
 - $k(x,y) < k(x,x)$ for $x \neq y$
- If there exists a pair of points x and y such that $k(x,y) < 0$, then $k()$ is not a kernel
Kernels: True or false

- A quadratic kernel \((\mathbf{x}^T \mathbf{y})^2\), when used in linear regression, gives results very similar to including quadratic interaction terms in the regression.

- Any distance metric \(d(x,y)\) can be used to generate a kernel using \(k(x,y) = \exp(-d(x,y))\).
Where are kernels used?

◆ Nearest neighbors
 ● Measure similarity in the kernel space

◆ Linear and logistic regression
 ● Map points to new, transformed feature space

◆ SVMs and Perceptrons

◆ PCA
 ● $\text{SVD}[X^TX]$
Is it Scale invariant?

- KNN
- Decision Trees
- Linear regression (OLS)
- Ridge regression
- Elastic net
- Logistic regression
- Kernel regression
What questions do you have on today's class?
True or false

- Kernels in effect transform observations x to a higher dimension space $\phi(x)$
 - **False**: It can be either higher or lower dimension.
- Since kernels measure similarity,
 - $k(x,y) < k(x,x)$ for $x \neq y$
 - **False**: If the kernel is derived from a distance metric (e.g. a Gaussian kernel), then that’s true, but it is not true for e.g. the linear kernel.
- If there exists a pair of points x and y such that $k(x,y) < 0$, then $k()$ is not a kernel.
 - **False**: kernels need to yield a positive semi-definite matrix, but individual entries in the matrix can be negative.
True or false

- A quadratic kernel, when used in linear regression, gives results very similar to including quadratic interaction terms in the regression
 - **False:** when one includes quadratic interaction terms, that adds around $p^2/2$ new weights; the quadratic kernel does not introduce any new parameters.
- Any function $\phi(x)$ can be used to generate a kernel using $k(x,y) = \phi(x)^T \phi(y)$
 - **True**
- Any distance metric $d(x,y)$ can be used to generate a kernel using $k(x,y) = \exp(-d(x,y))$
 - **True**
Kernels form a dual representation

- Start with an $n*p$ matrix X of predictors
- Generate an $n*n$ kernel matrix K
 - with elements $K_{ij} = k(x_i, x_j)$

We will cover and use this later!

Why is it not bad to generate a potentially much larger feature space?
The “kernel trick” avoids computing $\phi(x)$

- $k(x,y) = \phi(x)^T\phi(y)$
- So we can compute $k(x,y)$ and never compute the expanded features $\phi(x)$

We will cover and use this later!
Gather.town

- https://gather.town/aQMGj0l1R8DP0Ovv/penn-cis