Generalized Linear Models (GLM) and Radial Basis Functions (RBF)

Lyle Ungar
Computer and information Science

Learning Objectives
Extend linear regression with link functions, basis functions
Know RBF algorithm and its uses
Generalized linear models (GLM)

- Linear Model: \(\hat{y}(x) = \sum_{j=1}^{p} w_j x_j \)

- GLM with link fn \(f() \): \(\hat{y}(x) = f(\sum_{j=1}^{p} w_j x_j) \)

- Basis transformation: \(\hat{y}(x) = \sum_{j=1}^{d} w_j \phi_j(x) \)

Based on slide by Geoff Hinton
Link functions

- Link function $\hat{y} = f(w^T x)$
 - $f(x) = e^x$
 - $f(x) = \log(x)$
- Equivalent to $f^{-1}(\hat{y}(x)) = w^T x$
Linear Basis Function Models

- Generally,
 \[\hat{y}(x) = \sum_{j=1}^{d} w_j \phi_j(x) \]

- Typically, \(\phi_0(x) = 1 \) so that \(\theta_0 w_0 \) acts as a bias
- In the simplest case, we use linear basis functions
 \(\phi_j(x) = x_j \)
- Could use polynomials or Gaussians

Based on slide by Christopher Bishop (PRML)
Linear Basis Function Models

- **Polynomial basis functions**
 \[\phi_j(x) = x^j \]
 — Global — mostly crappy

- **Gaussian basis functions:**
 \[\phi_j(x) = \exp \left\{ -\frac{(x - \mu_j)^2}{2s^2} \right\} \]
 — Local — good!

Based on slide by Christopher Bishop (PRML)
Fitting a Polynomial Curve with a Linear Model

\[
y = \theta_0 + \theta_1 x + \theta_2 x^2 + \ldots + \theta_p x^p = \sum_{j=0}^{p} \theta_j x^j
\]
Radial Basis Functions

Originally by Andrew Moore; now heavily edited by Lyle Ungar

http://www.it.uu.se/research/project/rbf/rbf.png
Radial Basis Functions (RBFs)

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

$x = \begin{bmatrix} 3 & 2 \\ 1 & 1 \\ \vdots & \vdots \end{bmatrix}$

$y = \begin{bmatrix} 7 \\ 3 \end{bmatrix}$

$z = \text{(list of radial basis function evaluations)}$

$w = (Z^T Z)^{-1} (Z^T y)$

$\hat{y} = w_0 + w_1 x_1 + \ldots$
1-D RBFs

\[\hat{y} = w_1 \phi_1(x) + w_2 \phi_2(x) + w_3 \phi_3(x) \]

where

\[\phi_i(x) = k(\|x - \mu_j\| / C) \]

For RBF:

\[k(\|x - \mu_j\| / C) = \exp\{-\|x - \mu_j\|_2^2 / C\} \]

C = “Kernel Width”

k = kernel function
Example

\[\hat{y} = 2\phi_1(x) + 0.05\phi_2(x) + 0.5\phi_3(x) \]

where

\[\phi_j(x) = k(\|x - \mu_j\| / C) \]
Radial Basis Functions in 2-d

Two inputs.
Outputs (heights sticking out of page) not shown.
Too small! Even before seeing the data, you should understand that this is a disaster!
Too big!!!

Center

Sphere of significant influence of center

x_1

x_2
So what do we do?

Search to find the optimal size “width” for the Gaussians (on a test set, of course!)
RBFs can do ...

- Use $d < p$ basis vectors
 - Dimensionality reduction
 - Good for high dimensional feature spaces

- Use $d > p$ basis vectors
 - Increases the dimensionality
 - Can make a formerly nonlinear problem linear

- Use $d = n$ basis vectors
 - We can use this to switch to a *dual* representation
How to find the kernel centers?

- Pick random points
 - Generally a bad idea
- **Standard RBF: do k-means clustering and use the centers of the clusters**
 - Works great!
- Use all n of the training data points as kernel centers
 - Requires regularization
- **Estimate them: nonlinear regression**
 - A good initialization helps
What you should know

- Link functions give a nonlinear regression
- Basis functions allow one to fit a nonlinear function using linear regression
- RBF
 - Cluster points
 - Put a Gaussian basic function at each cluster center
 - Pick the Gaussian width
 - Fit a linear regression
How is my speed?

Slow

Good

Fast