Minimum Description Length (MDL)

Lyle Ungar

AIC – Akaike Information Criterion
BIC – Bayesian Information Criterion
RIC – Risk Inflation Criterion
MDL

- Sender and receiver both know X
- Want to send y using minimum number of bits
- Send y in two parts
 - Code (the model)
 - Residual (training error = “in-sample error”)
- Decision tree
 - Code = the tree
 - Residual = the misclassifications
- Linear regression
 - Code = the weights
 - Residual = prediction errors

The MDL model is of optimal complexity
Trades off bias and variance
Complexity of a decision tree

- Need to code the structure of the tree and the values on the leaves

Homework?
Complexity of Classification Error

- Have two sequences y, \hat{y}
 - Code the difference between them
 - $y' = (0, 1, 1, 0, 1, 1, 1, 0, 0)$
 - $\hat{y}' = (0, 0, 1, 1, 1, 1, 1, 0, 0)$
 - $y' - \hat{y}' = (0, 1, 0, -1, 0, 0, 0, 0, 0)$

- How to code the differences?
- How many bits would the best possible code take?
MDL for linear regression

- Need to code the model
 - For example
 - $y = 3.1 \times_1 + 97.2 \times_{321} - 17.4 \times_{5204}$
 - Two part code for model
 - Which features are in the model
 - Coefficients for those features
- Need to code the residual
 - $\sum (y_i - \hat{y}_i)^2$
- How to code a real number?
Complexity of a real number

- A real number could require infinite number of bits
- So we need to decide what accuracy to code it to
 - Code Sum of Square Error (SSE) to the accuracy given by the irreducible variance (bits $\sim 1/\sigma^2$)
 - Code each w_i to its accuracy (bits $\sim n^{1/2}$)
- We know that y and w_i are both normally distributed
 - $y \sim N(x \cdot w, \sigma^2)$
 - $w_j^{\text{est}} \sim N(w_j, \sigma^2/n)$
- Code a real value by dividing it into regions of equal probability mass
 - Optimal coding length is given by entropy: $\int p(y) \log(p(y))dy$
MDL regression penalty

Code the residual / data log-likelihood

\[- \log(\text{likelihood}) = - \log(\prod_i p(y_i|x_i)) = \]
\[- \log[\prod (1/\sqrt{2\pi}\sigma) \exp(- |y-\hat{y}|^2/2\sigma^2)] = \]
\[n \ln(\sqrt{2\pi}\sigma) + \text{Err}_q/2\sigma^2 \]

Code the model

For each feature: is it in the model?
If it is included, what is its coefficient?
Code the residual

Code the residual / data log-likelihood

- \(\log(\text{likelihood}) = \log(\prod_i p(y_i|x_i)) = \)
 \(n \ln(\sqrt{2\pi} \sigma) + \frac{\text{Err}_q}{2\sigma^2} \)

But we don’t know \(\sigma^2 \).

\(\sigma^2 = E[(y-\hat{y})^2)] = \frac{1}{n} \text{Err} \)

Option 1 – use estimate from previous iteration

\(\sigma^2 = \text{Err}_{q-1} \quad \text{pay} \quad \frac{\text{Err}_q}{2 \text{Err}_{q-1}} \)

Option 2 – use estimate from current iteration

\(\sigma^2 = \text{Err}_q \quad \text{pay} \quad n \ln(\sqrt{2\pi} \frac{\text{Err}_q}{n}) \)
For each feature: is it in the model?

If you expect q features in the model, each will come in with probability (q/p)

The total cost is then

$$p \left[-(q/p) \log(q/p) - ((p-q)/p) \log ((p-q)/p) \right]$$

If $q/p = \frac{1}{2}$, total cost is p

cost/selected feature = 2 bits

If $q = 1$, total cost is roughly $\log(p)$

cost/selected feature = $\log(p)$ bits
Code each coefficient

Code each \textit{coefficient} with accuracy proportional to $n^{1/2}$

$(1/2) \log(n)$ bits/feature
MDL regression penalty

Minimize \(\frac{\text{Err}_q}{2\sigma^2} + \lambda |w|_0 \)

- **Penalty** \(\lambda = -\log(\pi) + (1/2) \log(n) \)
- Code each **feature presence** using \(-\log(\pi)\) bits/feature
 - \(\pi = q/p \) assume \(q < < p \), so \(\log(1-\pi) \) is near 0
 - if \(q=1 \), then \(-\log(\pi) = \log(p)\)
- Code each **coefficient** with accuracy proportional to \(n^{1/2} \)
 - \((1/2) \log(n) \) bits/feature
- \(n \) observations \(q = |w|_0 \) actual features
- \(p \) potential features

\(L_0 \) penalty on coefficients

SSE with the \(|w|_0 = q \) features
MDL regression penalty - aside

Entropy of features being present or absent:

\[\sum (-\pi \log(\pi) - (1-\pi) \log(1-\pi)) = \]
\[(-\pi \log(\pi) - (1-\pi) \log(1-\pi)) p = \]
\[-q \log(\pi) - (p-q) \log (1-\pi) \]

If \(\pi \ll 1 \) then \(\log (1-\pi) \) is roughly 0

- \(q \log(\pi) \) - is the cost of coding the \(q \) features

So each feature costs \(\log(\pi) \) bits

\[\pi = q/\rho \text{ probability of a feature being selected} \]
\[n \text{ observations} \quad q = |w|_0 \text{ actual features} \]
\[\rho \text{ potential features} \]
Regression penalty methods

Minimize \[\frac{\text{Err}_q}{2\sigma^2} + \lambda |w|_0 \]

- **L_0 penalty on coefficients**
- **SSE with the |w|_0 = q features**

<table>
<thead>
<tr>
<th>Method</th>
<th>penalty ((\lambda))</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>1</td>
<td>code coefficient using 1 bit</td>
</tr>
<tr>
<td>BIC</td>
<td>(1/2) (\log(n))</td>
<td>code coefficient using (n^{1/2}) bits</td>
</tr>
<tr>
<td>RIC</td>
<td>(\log(p))</td>
<td>code feature presence/absence</td>
</tr>
</tbody>
</table>

prior: one feature will come in

How do you estimate \(\sigma^2\)?
Regression penalty methods

Which penalty should you use if

- You expect 10 out of 100,000 features, n = 100
- You expect 200 out of 1,000 features, n = 1,000,000
- You expect 500 out of 1,000 features, n = 1,000

Minimize

$$\text{Err}_q/2\sigma^2 + \lambda |w|_0$$

Method penalty (λ)

A) AIC 1 code coefficient using 1 bit
B) BIC $(1/2) \log(n)$ code coefficient using $n^{1/2}$ bits
C) RIC $\log(p)$ code feature presence/absence
Mallows’ C_p, AIC as MDL

$$\text{Err/ } 2\sigma^2 + q$$

- Mallows’ C_p
 - $C_p = \frac{\text{Err}_q}{\sigma^2} + 2q - n$

- AIC
 - $\text{AIC} = -2 \log(\text{likelihood}) + 2q$
 $$= -2 \log\left[\prod\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\text{Err}_q}{2\sigma^2}\right)\right] + 2q$$

But the best estimate we have is $\sigma^2 = \frac{\text{Err}_q}{n}$

$$\text{AIC} \sim 2n \log \left(\frac{\text{Err}_q}{n}\right)^{1/2} - 2 \log \exp\left(-\frac{\text{Err}_q}{2\text{Err}_q/n}\right) + 2q$$

$$\sim n \log(\text{Err}_q/n) + 2q$$

$q = |w|_0$ features in the model

n doesn’t effect maximization
BIC is MDL (as n goes to infinity)

\[
\text{Err} / 2 \sigma^2 + (1/2) \log(n) q
\]

\[BIC\]

- \[2 \log(\text{likelihood}) + 2 \log(\sqrt{n}) q\]

 \[= n \log(\text{Err}_q/n) + \log(n) q\]

using the exact same derivation as before.

\[q = |w|_0\] features in the model
Why does MDL work?

- We want to tune model complexity
 - How many bits should we use to code the model?

- Minimize

 \[
 \text{Test error} = \text{training error} + \text{penalty} = \text{bias} + \text{variance}
 \]

 - Training error = bias = bits to code residual
 - \[\sum (y_i - \hat{y}_i)^2 / 2\sigma^2 = -p(y|X) \log p(y|X) \]
 - Penalty = variance = bits to code the model

Ignoring irreducible uncertainty
What you should know

◆ How to code (in the info-theory sense)
 ● decision trees, regression models,
 ● classification and prediction errors

◆ AIC, BIC and RIC
 ● Assumptions behind them
 ● Why they are useful
You think maybe 10 out of 100,000 features will be significant. Use

A) L_2 with CV
B) L_1 with CV
C) L_0 with AIC
D) L_0 with BIC
E) L_0 with RIC
You think maybe 500 out of 1,000 features will be significant. Do not use
A) L_2 with CV
B) L_1 with CV
C) L_0 with AIC
D) L_0 with BIC
E) L_0 with RIC
Regression penalty methods

Minimize
\[\text{Err} / 2\sigma^2 + \lambda \| w \|_0 \]

\text{Err} \ is

A) \(\sum_i (y_i - \hat{y}_i)^2 \)
B) \((1/n) \sum_i (y_i - \hat{y}_i)^2 \)
C) \(\sqrt{(1/n) \sum_i (y_i - \hat{y}_i)^2} \)
D) something else

Where does the \(2\sigma^2 \) come from?
Bonus: p-values

◆ **P-value**: the probability of getting a false positive

If I check 1,000 univariate correlations between x_j and some y, and accept those with $p < 0.01$

I should expect roughly __ false positives

A) 0
B) 1
C) 10
D) 100
E) 1,000

How would you ‘fix’ this?
Bonus: p-values

◆ **Bonferroni**
 - require a p-value to be p times smaller
 - p-value < $0.01(1/p)$

◆ **Simes: sequential feature selection** (a.k.a. Benjamini-Hochberg)
 - Sort features by their p-values
 - For the first feature to be accepted use Bonferroni
 - p-value < $0.01(1/p)$ -- if nothing passes, then stop
 - If it is accepted the p-value for the second feature is:
 - p-value < $0.01(2/p)$ -- if nothing passes, then stop
 - If it is accepted the p-value for the third feature is:
 - p-value < $0.01(3/p)$

$p = \text{number of features}$

$1/p = \text{prior probability}$