Minimum Description Length (MDL)

Lyle Ungar

AIC – Akaike Information Criterion
BIC – Bayesian Information Criterion
RIC – Risk Inflation Criterion
MDL

- Sender and receiver both know X
- Want to send y using minimum number of bits
- Send y in two parts
 - Code (the model)
 - Residual (training error = “in-sample error”)
- Decision tree
 - Code = the tree
 - Residual = the misclassifications
- Linear regression
 - Code = the weights
 - Residual = prediction errors

The MDL model is of optimal complexity
Trades off bias and variance
Complexity of a decision tree

- Need to code the structure of the tree and the values on the leaves

Homework!
Complexity of Classification Error

- Have two sequences y, \hat{y}
 - Code the difference between them
 - $y' = (0, 1, 1, 0, 1, 1, 1, 0, 0)$
 - $\hat{y}' = (0, 0, 1, 1, 1, 1, 1, 0, 0)$
 - $y' - \hat{y}' = (0, 1, 0, -1, 0, 0, 0, 0, 0)$

- How to code the differences?
- How many bits would the best possible code take?
MDL for linear regression

- Need to code the model
 - For example
 - $y = 3.1 x_1 + 97.2 x_{321} - 17.4 x_{5204}$
 - Two part code for model
 - Which features are in the model
 - Coefficients for those features

- Need to code the residual
 - $\sum_i (y_i - \hat{y}_i)^2$

- How to code a real number?

How to code which features are in the model?

How to code the feature values?

Class exercise
Complexity of a real number

◆ A real number could require infinite number of bits
◆ So we need to decide what accuracy to code it to
 ● Code sum of square error (SSE) to the accuracy given by the irreducible variance (bits ~ $1/\sigma^2$)
 ● Code each w_i to its accuracy (bits ~ $n^{1/2}$)
◆ We know that y and w_i are both normally distributed
 ● $y \sim N(x \cdot w, \sigma^2)$
 ● $w_j^{est} \sim N(w_j, \sigma^2/n)$
◆ Code a real value by dividing it into regions of equal probability mass
 ● Optimal coding length is given by entropy
 $\int p(y) \log(p(y)) dy$
MDL regression penalty

Code the residual / data log-likelihood

\[- \log(\text{likelihood}) = - \log(\Pi_i p(y_i|x_i)) = \]
\[- \log[\Pi(1/\sqrt{2\pi}\sigma) \exp(- |y-\hat{y}|_2^2/2\sigma^2)] = \]
\[n \ln(\sqrt{2\pi}\sigma) + \text{Err}_q/2\sigma^2\]

Code the model

For each feature: is it in the model?
If it is included, what is its coefficient?
Code the residual

Code the residual / data log-likelihood

\[- \log(\text{likelihood}) = - \log(\prod_i p(y_i|x_i)) = \]
\[n \ln(\sqrt{2\pi} \sigma) + \frac{\text{Err}}{2\sigma^2} \]

But we don’t know σ^2.

\[\sigma^2 = E[(y-\hat{y})^2)] = (1/n) \text{Err} \]

Option 1 – use estimate from previous iteration

\[\sigma^2 = \text{Err}_{q-1} \quad \text{pay} \quad \frac{\text{Err}_q}{2\text{Err}_{c-1}} \]

Option 2 – use estimate from current iteration

\[\sigma^2 = \text{Err}_q \quad \text{pay} \quad n \ln(\sqrt{2\pi} \frac{\text{Err}_q}{n}) \]
For each feature: is it in the model?

If you expect q features in the model, each will come in with probability (q/p)

The total cost is then

$$p \left(-\frac{q}{p} \log\left(\frac{q}{p}\right) - \frac{(p-q)}{p} \log\left(\frac{(p-q)}{p}\right) \right)$$

If $q/p = \frac{1}{2}$, total cost is p

cost/feature = 2 bits

If $q = 1$, total cost is roughly $\log(p)$

cost/feature = 1 bit
Code each coefficient

Code each coefficient with accuracy proportional to $n^{1/2}$
$(1/2) \log(n)$ bits/feature
MDL regression penalty

Minimize

\[\text{Err}_q / 2\sigma^2 + \lambda |w|_0 \]

Penalty

\[\lambda = -\log(\pi) + (1/2) \log(n) \]

Code each feature presence using \(-\log(\pi)\) bits/feature

\[\pi = q/p \] assume \(q<<p\), so \(\log(1-\pi)\) is near 0

if \(q=1\), then \(-\log(\pi) = \log(p)\)

Code each coefficient with accuracy proportional to \(n^{1/2}\)

\((1/2) \log(n) \) bits/feature

\(n \) observations \(q = |w|_0 \) actual features

\(p \) potential features

\(L_0 \) penalty on coefficients

SSE with the \(|w|_0 = q \) features
Entropy of features being present or absent:
\[\sum (-\pi \log(\pi) - (1-\pi) \log(1-\pi)) = \]
\[(-\pi \log(\pi) - (1-\pi) \log(1-\pi))p = \]
\[-q \log(\pi) - (p-q) \log(1-\pi) \]
If \(\pi <<1 \) then \(\log (1-\pi) \) is roughly 0
- \(q \log(\pi) \) - is the cost of coding the \(q \) features
So each feature costs \(\log(\pi) \) bits

\[\pi = q/p \] probability of a feature being selected
\[n \text{ observations} \] \(q = |w|_0 \) actual features
\[p \text{ potential features} \]
Regression penalty methods

Minimize\[\text{Err}_q / 2\sigma^2 + \lambda |w|_0 \]

σ^2 penalty\(\Rightarrow\) SSE with the $|w|_0 = q$ features

<table>
<thead>
<tr>
<th>Method</th>
<th>penalty (λ)</th>
<th>prior: one feature will come in</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>1</td>
<td>code coefficient using 1 bit</td>
</tr>
<tr>
<td>BIC</td>
<td>$(1/2) \log(n)$</td>
<td>code coefficient using $n^{1/2}$ bits</td>
</tr>
<tr>
<td>RIC</td>
<td>$\log(p)$</td>
<td>code feature presence/absence</td>
</tr>
</tbody>
</table>

How do you estimate σ^2?
Regression penalty methods

 Idol penalty should you use if

- You expect 10 out of 100,000 features, \(n = 100 \)
- You expect 200 out of 1,000 features, \(n = 1,000,000 \)
- You expect 500 out of 1,000 features, \(n = 1,000 \)

Minimize

\[
\text{Err}_q / 2\sigma^2 + \lambda |w|_0
\]

<table>
<thead>
<tr>
<th>Method</th>
<th>penalty ((\lambda))</th>
<th>code coefficient using 1 bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) AIC</td>
<td>1</td>
<td>code coefficient using 1 bit</td>
</tr>
<tr>
<td>B) BIC</td>
<td>((1/2) \log(n))</td>
<td>code coefficient using (n^{1/2}) bits</td>
</tr>
<tr>
<td>C) RIC</td>
<td>(\log(p))</td>
<td>code feature presence/absence</td>
</tr>
</tbody>
</table>
Mallows’ C_p, AIC as MDL

Err/ $2\sigma^2 + q$

- Mallows’ C_p
 - $C_p = \frac{Err_q}{\sigma^2} + 2q - n$

- AIC
 - AIC = $-2 \log(\text{likelihood}) + 2q$
 - $= -2 \log[\prod(1/\sqrt{2\pi}\sigma) \exp(-\frac{Err_q}{2\sigma^2})] + 2q$

But the best estimate we have is $\sigma^2 = \frac{Err_q}{n}$

AIC $\sim 2n \log (\frac{Err_q}{n})^{1/2} - 2 \log \exp(-\frac{Err_q}{2\frac{Err_q}{n}}) + 2q$
 - $\sim n \log(\frac{Err_q}{n}) + 2q$

$q = |w|_0$ features in the model

n doesn’t effect maximization
BIC is MDL (as n goes to infinity)

\[
\frac{\text{Err}}{2\sigma^2} + \frac{1}{2} \log(n) q
\]

\begin{itemize}
 \item \textbf{BIC}
 \begin{align*}
 & - 2 \log(\text{likelihood}) + 2 \log(\sqrt{n}) q \\
 & = n \log(\text{Err}_q/n) + \log(n) q
 \end{align*}
\end{itemize}

using the exact same derivation as before.

$q = |w|_0$ features in the model
Why does MDL work?

- **We want to tune model complexity**
 - How many bits should we use to code the model?

- **Minimize**

 \[
 \text{Test error} = \text{training error} + \text{penalty} = \text{bias} + \text{variance}
 \]

 - Training error = bias = bits to code residual
 \[
 \sum_i (y_i - \hat{y}_i)^2 / 2\sigma^2 = - p(y | X) \log p(y | X)
 \]

 - Penalty = variance = bits to code the model

Ignoring irreducible uncertainty
What you should know

- **How to code (in the info-theory sense)**
 - decision trees, regression models,
 - classification and prediction errors

- **AIC, BIC and RIC**
 - Assumptions behind them
 - Why they are useful
You think maybe 10 out of 100,000 features will be significant. Use
A) L_2 with CV
B) L_1 with CV
C) L_0 with AIC
D) L_0 with BIC
E) L_0 with RIC
You think maybe 500 out of 1,000 features will be significant. Do not use
A) L_2 with CV
B) L_1 with CV
C) L_0 with AIC
D) L_0 with BIC
E) L_0 with RIC
Regression penalty methods

Minimize
\[\text{Err/ } 2\sigma^2 + \lambda |w|_0 \]

\text{Err is}
A) \(\sum_i (y_i - \hat{y}_i)^2 \)
B) \((1/n) \sum_i (y_i - \hat{y}_i)^2 \)
C) \(\sqrt{(1/n) \sum_i (y_i - \hat{y}_i)^2} \)
D) something else

Where does the \(2\sigma^2 \) come from?
Bonus: p-values

- **P-value**: the probability of getting a false positive

If I check 1,000 univariate correlations between x_j and some y, and accept those with $p < 0.01$

I should expect roughly ___ false positives

A) 0
B) 1
C) 10
D) 100
E) 1,000

How would you ‘fix’ this?
Bonus: p-values

◆ **Bonferroni**
 - require a p-value to be p times smaller
 - p-value < 0.01($1/p$)

◆ **Simes: sequential feature selection**
 - Sort features by their p-values
 - For the first feature to be accepted use Bonferroni
 - p-value < 0.01($1/p$) -- if nothing passes, then stop
 - If it is accepted the p-value for the second feature is:
 - p-value < 0.01($2/p$) -- if nothing passes, then stop
 - If it is accepted the p-value for the third feature is
 - p-value < 0.01($3/p$)

$p = \text{number of features}$

$1/p = \text{prior probability}$