I remember PollEverywhere
A) True
B) False
Big Data

“Big data will become a key basis of competition, underpinning new waves of productivity growth, innovation, and consumer surplus.”

– McKinsey
Volume, velocity, variety, veracity

Volume
- 40 Zettabytes (43 trillion gigabytes) of data will be created by 2020, an increase of 300 times from 2005
- World population: 7 billion
- 6 billion people now use cell phones

Velocity
- The New York Stock Exchange captures 1 TB of trade information during each trading session
- Modern cars have close to 100 sensors that monitor items such as fuel level and tire pressure

Variety
- As of 2011, the global size of data in healthcare was estimated to be 150 exabytes (1.6 billion gigabytes)
- 30 billion pieces of content are shared on Facebook every month
- 400 million tweets are sent per day by about 200 million monthly active users

Veracity
- By 2015, 4.4 million jobs will be created globally to support big data, with 1.9 million in the United States
- 27% of respondents in one survey were unsure of how much of their data was accurate

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, NIST, Gartner
2012 IPO: $3.3 billion

2017: $8.5 billion
Splunk

Real-Time Machine Data

Operational Intelligence Platform

External Lookups/Enrichment

- Asset Info
- Maintenance Info
- Data Stores
Big Data

- Big n vs. big p
- How is big data different?
 - use available large-scale data rather than annotating data
 - heterogeneous ("variety")
- Semi-parametric or non-parametric methods
Different methods work best at scale

- Confusion set disambiguation
 - Choose the correct word in the set given the context
 - \{principle, principal\}
 - \{then, than\}
 - \{to, two, too\}
 - \{weather, whether\}

Figure 1. Learning Curves for Confusion Set Disambiguation
The unreasonable effectiveness of data

- Scene completion using millions of photographs
How to handle big data?

- Dimensionality reduction
- Sampling
- Streaming
- Hadoop/MapReduce
Big Data: different approach

Different data handling:
- Mostly unstructured data objects (Schema-less NoSQL)
- Many attributes and data sources
- Data sources added and/or updated frequently
- Quality is unknown

Different programming philosophy:
- Distributed, fault tolerant programming
What is the slowest part of big data analysis?

A) Multiplying X’X
B) Inverting a matrix (X’X)^-1?
C) Reading X from disk to memory?
D) Other?
Model Parallelism

Synchronous Variant

update

add

gradient

model computation

parameters

model computation

model computation

gradient

gradient

gradient
Data Parallelism

\[p'' = p' + \Delta p \]

References
http://developer.yahoo.com/hadoop/
http://code.google.com/edu/parallel/mapreduce-tutorial.html
Map-Reduce Dataflow

Data is divided across multiple machines ("mappers")

Each mapper does the same thing to different data

Results are combined ("reduced")

How easy is it to do in map-reduce?

- Linear regression
- Linear regression with feature selection
- SVM
- k-NN
- K-means / EM

A) Easy
B) Hard
C) Impossible
Good tools

- LDA
 - Mallet
 - Factorie
- Deep Nets
 - Theano
 - Caffe, Torch
 - Tensorflow

- scikit-learn
 Machine Learning in Python

- Hadoop

- Spark
Hadoop

MapReduce: Hadoop’s Original Data Processing Engine

Key Advances by MapReduce:

- **Data Locality:** Automatic split computation and launch of mappers appropriately
- **Fault-Tolerance:** Write out of intermediate results and restartable mappers meant ability to run on commodity hardware
- **Linear Scalability:** Combination of locality + programming model that forces developers to write generally scalable solutions to problems

Slide from cloudera
In Hadoop

- **Hive**
 - data warehouse: data summarization, query, and analysis.

- **Pig, Crunch**
 - high-level platform for creating MapReduce programs

- **Mahout**
 - scalable machine learning and data mining

- **Solr**
 - enterprise search platform built on Apache Lucene

- **Hue**
 - visualization
Spark

- Combines SQL, streaming, and complex analytics
- Often runs on Hadoop
 - or Mesos, or standalone, or in the cloud
- Bindings to
 - Java, Scala, Python, R, NLTK …
- MLlib Machine Learning Library
 - Faster than Mahout

Seems to be replacing Hadoop
Increasingly use a “deep stack”

BDAS Stack

- Cancer Genomics, Energy Debugging, Smart Buildings
- BlinkDB
- Sample Clean
- MLBase
- SparkR
- Spark Streaming
- SparkSQL
- GraphX
- MLlib
- Apache Spark
- Velox Model Serving
- Tachyon
- HDFS, S3,
- Apache Mesos
- Yarn
Increasing in the cloud

◆ X as a Service
 ● SaaS (software)
 ● PaaS (platform)
 ● IaaS (infrastructure)

◆ It’s easy to spin these up on AWS or MS Azure …
Tools are changing rapidly

Currently hot:

- **SMACK**: Spark, Mesos, Akka, Cassandra and Kafka
 - **Spark** – fast engine for distributed large-scale data processing
 - **Mesos** - distributed systems kernel
 - **Akka** - toolkit and runtime for building highly concurrent, distributed, and resilient message-driven applications
 - **Cassandra** – distributed database
 - **Kafka** - distributed publish-subscribe messaging system

- **Tensorflow**

But the fundamentals we learned in this class are not changing!
Visualization matters

◆ Histograms
 ● to characterize the data

◆ Variable importance of features and feature classes
 ● To aid in model development
 ● To explain results to users
Shiry Ginosaur et al.
Speeding up your ML code

Lyle Ungar

Photo credit http://allinguide.com/best-tips-how-to-speed-up-your-wordpress-website-or-blog/
Your ML code runs too slow; What can you do?
How to speed up your ML?

- **Speed up the code**
 - Use a faster language
 - Use a cluster/multicore machine /GPU
 - Vectorize

- **Use a streaming algorithm**
 - In features or observations

- **Develop on a subset of the data**
 - Or a subset of the features (univariate preprocessing)

- **Do dimensionality reduction**
How to speed up your ML?

- Pick a faster algorithm
 - Logistic regression
 - Kernelized SVM
 - Stepwise regression
 - K-NN
Pick a faster algorithm

- Logistic regression ➔ linear regression
- Kernelized SVM ➔ linear SVM
- Stepwise regression ➔ stagewise regression
- K-NN ➔ K-means
How to speed up your ML: True/False

- Sparse code runs faster?
- Vector-based code runs faster?
- Models based on principle components are usually faster than one in the original features?
Take-aways

◆ Data variety complicates machine learning
 ● Data wrangling, complex regularization

◆ Many ways to speed up code
 ● Vectorize, run on GPU
 ● Use online algorithms
 ● Use data-parallel methods (map-reduce)

◆ Lots of good software
 ● SKLearn, spark, tensorflow