Recurrent Neural Networks

Time Series
Recurrent Neural Nets

- Generalize HMMs or Linear Dynamical Systems
 - Hidden state dynamical models, but *nonlinear*
- Needed if you have inputs of varying length
 - E.g. sequence of observations
 - speech
 - text
 - robots
 - chemical plants, data centers?
Standard HMM

◆ HMM learning problem: Estimate T and O

- Optimization done via EM
 - Or spectral methods
- History is forgotten with an exponential decay
Simple Recurrent Neural Net

\[s_t = \tanh(U x_t + W s_{t-1}) \]
\[o_t = \text{softmax}(V s_t) \]

\(x_t = \text{input} \) (e.g. a word)
\(s_t = \text{hidden state} \)
\(o_t = \text{output} \) (e.g. probability of the next word)
\(y_t = \text{true value} \) (e.g. \(x_{t+1} \))

Softmax \(\sigma(z) \) transforms the K-dimensional real valued output \(z \) to a distribution – like logistic regression

\[\sigma(z)_j = \frac{e^{z_j}}{\sum_{k=1}^{K} e^{z_k}} \quad \text{for } j = 1, \ldots, K. \]
Like HMMs, unroll RNNs in time

\(x_t = \text{input (e.g. a word)} \)

\(s_t = \text{hidden state} \)

\(o_t = \text{output (e.g. probability of the next word)} \)

http://www.nature.com/nature/journal/v521/n7553/full/nature14539.html
Neural nets can take actions

emission

action (A)
Recurrent Neural Nets (RNNs)

\[s_t = \tanh(U x_t + W s_{t-1}) \]
\[o_t = \text{softmax}(V s_t) \]

Can use multiple layers
Gated RNNs

- Standard RNNs, like HMMs, tend to forget things exponentially fast
- Solution: Gated RNN
 - Stores hidden state
 \[z = \sigma(U^z x_t + W^z s_{t-1}) \]
 \[r = \sigma(U^r x_t + W^r s_{t-1}) \]
 \[h = \tanh(U^h x_t + W^h (s_{t-1} \circ r)) \]
 \[s_t = (1-z) \circ h + z \circ s_{t-1} \]
 - \(z \): update gate
 - \(r \): reset gate
 - \(o_t \): prediction
 - \(x_t \): input
 - \(s_t \): hidden state

- \(r=0 \) resets \(h \)
- \(z=1 \) keeps state
- \(z=0 \) updates it to \(h \)
- \(r=1 \)'s, \(z=0 \)'s gives simple RNN

\(\circ \) is pointwise multiplication

http://deeplearning.net/tutorial/lstm.html
Recurrent Nets can be stacked
Long Short Term Memory (LSTM)

- LSTM is a kind of gated RNN
 - All of these gates have weights which are sigmoidal functions of weighted inputs

\[
\begin{align*}
 x_t & \quad \text{observation} \\
 s_t & \quad \text{hidden state} \\
 o & = \text{output gate (not output!)}
\end{align*}
\]

\[
\begin{align*}
 i &= \sigma(U^i x_t + W^i s_{t-1}) \\
 f &= \sigma(U^f x_t + W^f s_{t-1}) \\
 o &= \sigma(U^o x_t + W^o s_{t-1}) \\
 h &= \tanh(U^h x_t + W^h s_{t-1}) \\
 c_t &= f \circ c_{t-1} + i \circ h \\
 s_t &= o \circ \tanh(c_{t-1})
\end{align*}
\]

http://deeplearning.net/tutorial/lstm.html
Recurrent Neural Nets

- Predict the next observation given past observations
- Or map one sequence to another sequence
 - An encoder
 - sentence (sequence of words) to vector
 - A decoder
 - vector to sentence (sequence of words)
LSTM encodes a sentence

The lazy brown fox jumped over the ...

Jeff Dean, google
https://www.youtube.com/watch?v=90-S1M7Ny_o&spfreload=1
Encode and Decode = translate

The quick brown fox jumped over the ...

Le renard brun rapide saute par dessus ...

Jeff Dean, google
... or a chatbot
It works (sort of)

User> hello, i have a problem with my machine
BrainStop> hi
BrainStop> this is shiva.
BrainStop> how are you doing today?
User> hi shiva, how are you?
BrainStop> i'm fine, thank you!
BrainStop> how may i assist you today?
User> i want to access using vpn
BrainStop> currently the computer is connected to corp network?
User> no
BrainStop> check this solution:
BrainStop> https://INTERNAL_HOSTNAME_REDACTED/articles/connecting-to-disconnecting-from-ssl-vpn#heading-4
User> thanks, bye!
BrainStop> thank you.
Can map images to words

Connect sequence and image models, you get a captioning system

“A close up of a child holding a stuffed animal”
It works (sort of)

A man holding a tennis racquet on a tennis court.

Two pizzas sitting on top of a stove top oven.

A group of young people playing a game of Frisbee.

A man flying through the air while riding a snowboard.
Language inputs to RNN

- Words ("one-hot")
- Characters ("one-hot")
- Word embeddings
 - Typically 300 dimensional
Alternative RNN models

- External memory
- Attentional models

![Diagram of Metamind model]

Metamind “Ask Me Anything:”
Attention via gating

\[G(\text{candidate fact } c = s_j, \text{ previous state } m, \text{ question } q) \]

\[g_t^i = G(c_t, m_{i-1}, q) \]

\[e_t^i = g_t^i \text{ GRNN}(c_t, e_{t-1}^i) + (1-g_t^i) e_{t-1}^i \]
Dynamic Network Summary

- **Gated Neural Nets generalize HMMs, Kalman filters**
 - But are far more powerful!
- **They have replaced HMMs for speech to text and machine translation**
- **Lots of black magic “engineering”**
 - Unclear what matters about the network structure
 - Number and size of layers, regularization
 - Forms of gating (LSTM …), attention …
 - Gradient descent is tricky
- **Good software: tensorflow, theano …**