Gradient boosting
Gradient Boosting

◆ Model

\[\hat{F}(x) = \sum_{i=1}^{M} \gamma_i h_i(x) + \text{const.} \]

◆ Pick loss function \(L(y, F(x)) \)
 - \(L_2 \) or logistic or …

◆ Pick base learners \(h_i(x) \)
 - e.g. decision tree of specified depth

◆ Optionally subsample features
 - “stochastic gradient boosting”

◆ Do stagewise estimation on \(F(x) \)
1. Initialize model with a constant value:

\[F_0(x) = \arg\min_{\gamma} \sum_{i=1}^{n} L(y_i, \gamma). \]

2. For \(m = 1 \) to \(M \):

 1. Compute so-called pseudo-residuals:

 \[r_{im} = - \left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)} \right]_{F(x)=F_{m-1}(x)} \text{ for } i = 1, \ldots, n. \]

 2. Fit a base learner (e.g. tree) \(h_m(x) \) to pseudo-residuals, i.e. train it using the training set \(\{(x_i, r_{im})\}_{i=1}^{n} \).

 3. Compute multiplier \(\gamma_m \) by solving the following one-dimensional optimization problem:

 \[\gamma_m = \arg\min_{\gamma} \sum_{i=1}^{n} L(y_i, F_{m-1}(x_i) + \gamma h_m(x_i)). \]

 4. Update the model:

 \[F_m(x) = F_{m-1}(x) + \gamma_m h_m(x). \]

3. Output \(F_M(x) \).

https://en.wikipedia.org/wiki/Gradient_boosting
Gradient Tree Boosting for Regression

- **Loss function**: L_2
- **Base learners** $h_i(x)$
 - Fixed depth regression tree fit on pseudo-residual
 - Gives a constant prediction for each leaf of the tree
- **Stagewise**: find weights on each $h_i(x)$
 - Fancy version: fit different weights for each leaf of tree
Regularization