Gradient Descent

Lyle Ungar
University of Pennsylvania

Learning objectives
Know standard, coordinate, stochastic gradient, and minibatch gradient descent

Adagrad: core idea

In part from slides written jointly with Zack Ives
Gradient Descent

- We almost always want to minimize some loss function
- Example: Sum of Squared Error (SSE):

\[
SSE(\theta) = \frac{1}{n} \sum_{i=1}^{n} r_i(\theta)^2
\]

\[
r_i(\theta) = h_\theta(x^{(i)}) - y^{(i)}
\]
Mean Squared Error

\[SSE(\theta) = \frac{1}{n} \sum_{i=1}^{n} r_i(\theta)^2 \]

In one dimension, looks like a parabola centered around the optimal value \(\theta^* \)

(Generalizes to \(d \) dimensions)

http://www.math.uah.edu/stat/expect/Variance.html
Getting Closer

What if we use the slope of the tangent to decide where to “go next”?

\[
\theta: = \theta - \eta \nabla SSE(\theta)
\]

the gradient

\[
\frac{\partial^2}{\partial \theta} \left(\frac{1}{n} \sum_{i=1}^{n} r_i(\theta)^2 \right)
\]

\[
= \lim_{d \to 0} \frac{h_\theta(\theta + d) - h_\theta(\theta)}{d}
\]

http://www.math.uah.edu/stat/expect/Variance.html
We can compute the gradient numerically ...
... But sometimes better to use analytics (calculus)!

\[
\nabla SSE(\theta) = \frac{1}{n} \sum_{i=1}^{n} \frac{d}{d\theta} r_i(\theta)^2
\]

\[
SSE(\theta) = \frac{1}{n} \sum_{i=1}^{n} r_i(\theta)^2
\]
Getting Closer

We can compute the gradient numerically… But sometimes better to use analytics (calculus)!

$$SSE(\theta) = \frac{1}{n} \sum_{i=1}^{n} r_i(\theta)^2$$

$$\nabla SSE(\theta) = \frac{1}{n} \sum_{i=1}^{n} 2 \cdot \left(r_i(\theta) \cdot \frac{\partial r_i(\theta)}{\partial \theta} \right)$$

$$\frac{\partial r_i}{\partial \theta_j} = x_j^{(i)}$$
Getting Closer

We can compute the gradient numerically ... But sometimes better to use analytics (calculus)!

\[SSE(\theta) = \frac{1}{n} \sum_{i=1}^{n} r_i(\theta)^2 \]

\[\nabla SSE(\theta) = \frac{1}{n} \sum_{i=1}^{n} 2 \cdot (r_i(\theta) \cdot x_j^{(i)}) \]

\[\frac{\partial r_i}{\partial \theta_j} = x_j^{(i)} \]

\[\theta := \theta - \eta \nabla SSE(\theta) \]

http://www.math.uah.edu/stat/expect/Variance.html
Key questions

◆ How big a step η to take?
 - Too small and it takes a long time
 - Too big and it will be unstable

◆ “Optimal:” scale $\eta \sim 1/\sqrt{\text{iteration}}$

◆ Adaptive (a simple version)
 - E.g. each time, increase step size by 10%
 - If error ever increases, cut set size in half

\[\theta: = \theta - \eta \nabla SSE(\theta) \]
For $\|w\|_1$ or $\|y-h_\theta\|_1$ use coordinate descent

Repeat:
For $j=1:p$

$\theta_j := \theta_j - \eta \frac{d\text{Err}}{d\theta_j}$

https://en.wikipedia.org/wiki/Coordinate_descent
Elastic net parameter search

Size of coefficients

Regularization penalty (inverse)
Stochastic Gradient Descent

- If we have a very large data set, update the model after observing each single observation
 - “online” or “streaming” learning

\[
SSE(\theta) = \frac{1}{n} \sum_{i=1}^{n} r_i(\theta)^2 \quad \nabla SSE_i(\theta) = \frac{d}{d\theta} r_i(\theta)^2
\]

\[
\theta := \theta - \eta \nabla SSE_i(\theta)
\]
Mini-batch

- Update the model every k observations
 - Batch size k (e.g. 50)
- More efficient than pure stochastic gradient or full gradient descent

\[SSE(\theta) = \frac{1}{n} \sum_{i=1}^{n} r_i(\theta)^2 \]

\[\nabla SSE_k(\theta) = \frac{1}{k} \sum_{i=j}^{j+k} \frac{d}{d\theta} r_i(\theta)^2 \]

\[\theta := \theta - \eta \nabla SSE_k(\theta) \]
Adagrad

- Define a \textit{per-feature learning rate} for feature j as:

$$
\eta_{t,j} = \frac{\eta}{\sqrt{G_{t,j}}}
$$

$$
G_{t,j} = \sum_{k=1}^{t} g_{k,j}^2 \frac{\partial}{\partial \theta_j} \text{cost}_\theta(x_k, y_k)
$$

- $G_{t,j}$ is the sum of squares of gradients of feature j over time t

- Frequently occurring features in the gradients get small learning rates; rare features get higher ones

- Key idea: “learn slowly” from frequent features but “pay attention” to rare but informative feature
Adagrad

\[\eta_{t,j} = \frac{\eta}{\sqrt{G_{t,j}}} \]

\[G_{t,j} = \sum_{k=1}^{t} g_{k,j}^2 \]

\[\theta_j \leftarrow \theta_j - \frac{\eta}{\sqrt{G_{t,j}} + \zeta} g_{t,j} \]

In practice, add a small constant \(\zeta > 0 \) to prevent dividing by zero.
Recap: Gradient Descent

- “Follow the slope” towards a minimum
 - Analytical or numerical derivative
 - Need to pick step size
 - larger = faster convergence but instability
- Lots of variations
 - Coordinate descent
 - Stochastic gradient descent or mini-batch
- Can get caught in local minima
 - Alternative, simulated annealing, uses randomness