CIS 520 Machine Learning

Lyle Ungar

Install Poll Everywhere from app store or go to https://pollev.com/lyleungar251

Poll Everywhere
Poll Everywhere, Inc. Communication
Everyone
This app is compatible with all of your devices.

What's your favorite word?

happy
Learning Objectives
Is CIS520 for you?
What you need to know for 520
Types of machine learning
Should I be here?

◆ You should know probability and linear algebra
 ● See prequiz on canvas

◆ If you’re waiting to get into this course
 ● Only via https://forms.cis.upenn.edu/waitlist/
 ● The course will be offered again in the spring (not by me)

◆ Alternate courses
 ● CIS 419/519 Applied Machine Learning less math
 ● STAT 471/571/701 Modern Data Mining in R
 ● CIS 545: Big Data Analytics more data handling
 ● ESE 545: Data Mining more math?
Introductions

- Who am I?
- Who are you?
 - Why are you here?

Breakout room
Introductions

Why are you taking this course? What do you want from it?
What will this course look like?

◆ Lectures (MWF) - synchronous and recorded on canvas
 ● Slides, poll-everywhere, wiki

◆ Office hours: see “people” on the wiki

◆ Worksheets

◆ Homework
 ● Conceptual (math in latex - overleaf) and
 ● Coding (python/numpy/sklearn/tensorflow/jupyter - colab)
 ● Canvas (out) and Gradescope (in)

◆ Exams
 ● Midterm and final

◆ Quiz, Feedback – each week on canvas

◆ Evolving over the semester, so lots of feedback to me!!!
Course goals

◆ Be familiar with all major ML methods
 ● Regression (linear, logistic), regularization, feature selection
 ● K-NN, Decision trees, random forests, SVM
 ● PCA, K-means, GMM
 ● Naive Bayes, Bayes Nets, Markov Nets, HMMs
 ● Online learning: boosting, perceptrons, LMS
 ● Deep learning

◆ Know their strengths and weaknesses
 ● know jargon, concepts, theory
 ● be able to modify and code algorithms
 ● be able to read current literature
Administrivia

- **Canvas**
 - Homework, Lecture recordings, quizzes
- **Gradescope**
- **Course wiki**
 - Lecture notes, slides
 - Resources
 - Grading scheme, academic integrity,
 - Office hours, …
 - Readings -- including the Bishop ‘textbook’ – free online
 - Mostly for reading after lectures
 - ”supplemental” really means that
- **Piazza**
 - *look here first for answers!*
Textbooks

Google search for "machine learning books"

Books / Machine learning
Learning in the time of COVID

- This course is in *beta*
 - Mix of synchronous and asynchronous.
 - Give me lots of feedback!!!!

- Let me know if you experience challenges

I care!!!
Do you have Poll Everywhere?

A) Yes
B) No

Install Poll Everywhere from app store or go to https://pollev.com/lyleungar251

Also remember the zoom chat window
Working Together

Homework is mostly “pair programming” and “pair problem solving”

If it is determined that code submitted by two students might have been copied

A) Both will receive half credit
B) The person who copied will be referred to the Office of Student Conduct (OSC)
C) Both students will be referred to the Office of Student Conduct (OSC)
D) None of the above
Asking Questions

Questions about homework should be

- A) Asked during office hours
- B) Emailed to the instructor or a TA
- C) Asked on piazza
- D) A or C
- E) None of the above
Python

- Python is a better ML language than matlab
 A) True
 B) False
Where is Machine Learning used?

https://alliance.seas.upenn.edu/~cis520/wiki/
EMC, Teradata, Oracle, SAP, Vmware, Splunk, MemSQL, Palantir, Trifacta, Datameer, Neo, Infobright, Fractal Analytics

http://www.datamation.com/applications/30-big-data-companies-leading-the-way-1.html
ML unicorns: business

- 4Paradigm: Anti-fraud for insurance & banking, China
- Dataminr: Business intelligence, US
- Afiniti: Behavior analytics, US
- InsideSales.com: Platform for sales teams, US
- Avant: Credit scores, US
- ZipRecruiter: Recruitment platform, US
- SoundHound: Voice-enabled AI assistants, US
- Momenta: AV perception software, China
- Bytedance: Personalized news curation, China

https://www.cbinsights.com/research/ai-unicorn-club/
ML: cybersecurity, surveillance

- CrowdStrike Cybersecurity US
- Darktrace Cybersecurity UK
- Tanium Cybersecurity US
- Face++ Facial recognition China
- SenseTime Facial recognition China
- Cloudwalk Facial recognition China
- YITU Technology Facial recognition China
 medical imaging & diagnostics

https://www.cbinsights.com/research/ai-unicorn-club/
ML: healthcare, drugs

- iCarbonX: Personalized healthcare, China
- Tempus Labs: Drug R&D, US
- BenevolentAI: Drug R&D, UK
- Butterfly Network: Portable ultrasound, US
- OrCam Technologies: Wearables for visually impaired, Israel

https://www.cbinsights.com/research/ai-unicorn-club/
ML: manufacturing

- Preferred Networks Mfg, medical imaging & diagnostics, auto Japan
- Automation Anywhere Robotic process automation US
- UiPath Robotic process automation US
- C3 IIoT platform US
- Uptake Technologies IIoT platform US

https://www.cbinsights.com/research/ai-unicorn-club/
ML: Autonomous vehicles

- Pony.ai Autonomous vehicles US
- Zoox Autonomous vehicles US

Bestmile raises $16.5 million to optimize autonomous vehicle fleets

https://www.cbinsights.com/research/ai-unicorn-club/
Components of ML

- **Representation**
 - feature set
 - model form
- **Loss function**
- **Optimization method**
 - For parameter estimation
 - For model selection and hyperparameter tuning
Components of ML

- **Representation**
 - $\hat{y} = f(x; w) = w^T x$

- **Loss function**
 - $L(y, \hat{y}) = \|y - \hat{y}\|_2$

- **Optimization method**
 - $\arg\min_w L(y, \hat{y}(w))$
 - gradient descent
Google ads as machine learning

What features?
What model?
What loss function?
Types of Learning

- **supervised** \(X, y \)
 - Given an observation \(x \), what is the best label \(y \)?

- **unsupervised** \(X \)
 - Given a set of \(x \)'s, cluster or summarize them

- **reinforcement**
 - Given a sequence of states \(x \) and possible actions \(a \), learn which actions maximize reward.
Types of Learning as Probabilities

- **supervised**
 - $p(y|x)$ - conditional probability estimation
 - $\min || \hat{y}(x) - y ||$ - optimization

- **unsupervised**
 - $p(x)$ - “generative” model
Types of models

- Generative
 - $p(x)$

- Discriminative
 - $p(y|x)$

X: features, predictors, design matrix, input

y: response, label, output
Types of models

◆ Parametric
 ● $\hat{y} = w \cdot x$
 ● $\hat{y} = f(x; \theta)$
 ● w and θ are parameters

◆ Non-parametric
 ● k-nn, decision trees

◆ “Semi-parametric”
 ● Deep learning
Consider the Netflix problem

- Given a list of people and the ratings they have given movies, predict their ratings on other movies

- What type of learning is this?
 A) supervised
 B) unsupervised
 C) something else

- How might you go about solving it?
ML vs. Statistics vs. Data Science

◆ **Statistics**
 - more modeling, especially of the noise
 - more hypothesis testing

◆ **ML**
 - more predictive accuracy
 - more flexible model forms

◆ **Data Science**
 - Includes data collection and cleaning
 - More interpretation, less math
A few words from a former student

◆ Pooja Consul
TODO

◆ Visit canvas
 ● https://canvas.upenn.edu/
 ● Do HW 0 (trivial latex; be able to run numpy in jupyter)

◆ Join piazza
 ● Linked to from canvas and the course wiki
 ● https://alliance.seas.upenn.edu/~cis520/wiki

◆ Take the self-test in canvas
 ● Make sure you know enough linear algebra and probability

◆ Get up to speed on python, numpy (for Friday!)
What you should know

- Turning a real-world problem into a well-posed ML problem is often hard
 - pick features/predictors \((x, y)\) and loss function
- Unsupervised vs. supervised vs. reinforcement
 - generative \(p(x)\) vs. conditional \(p(y|x)\) models
- Parametric, non-parametric, semi-parametric
 - Parameters vs. hyper-parameters
- Canvas, piazza, wiki
What questions do you have on today's class?
What could we have done better? (including technology)

Top
THIS IS YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POOR THE DATA INTO THIS BIG PILE OF LINEAR ALGEBRA, THEN COLLECT THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG?

JUST STIR THE PILE UNTIL THEY START LOOKING RIGHT.