Lagrange Multipliers

Constrained optimization
Constrained optimization

- What constraints might we want for ML?
 - Probabilities sum to 1
 - Regression weights non-negative
 - Regression weights less than a constant

- More generally
 - Fixed amount of money or time or energy available
To maximize $f(x, y)$ subject to $g(x, y) = k$

find:

- The largest value of c such that the level curve $f(x, y) = c$ intersects $g(x, y) = k$.
- This happens when the lines are parallel

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$$
Lagrange Multiplier – the idea

Find

\[\min_x f(x) \] \hspace{1cm} -- x was (x,y) on the last slide

s.t.

\[c_i(x) = 0 \quad j=1\ldots m \] \hspace{1cm} -- c_1(x) was g(x)-k on the last slide

Set

\[L(x, \lambda) = f(x) + \lambda^T c(x) \]

At the minimum of \(L(x, \lambda) \)

\[\frac{dL}{dx} = \frac{df}{dx} + \lambda^T \frac{dc}{dx} = 0 \]

\[\frac{dL}{d\lambda} = c(x) = 0 \]

This makes the curves be parallel
As on the last slide
Lagrange Multiplier – generalization

Find

\[\min \limits_x f(x) \]

s.t.

\[c_i(x) \leq 0 \quad j=1\ldots m \]

Set

\[L(x,\lambda) = f(x) + \lambda^T c(x) \]

At the minimum of \(L(x,\lambda) \)

\[\frac{dL}{dx} = \frac{df}{dx} + \lambda^T \frac{dc}{dx} = 0 \]

\[\lambda_i c_i(x) = 0 \quad j=1\ldots m \]

\[\lambda_i \geq 0 \quad j=1\ldots m \]

KKT = Karush Kuhn Tucker conditions

For each \(\lambda_j \), either

\[\lambda_j = 0 \] (the constraint is not active)

or

\[\lambda_j > 0 \] (the constraint is active)

and thus

\[c_i(x) = 0 \]
Lagrange Multiplier Steps

1. Start with the primal
 \[
 \text{minimize } f_0(x), \\
 \text{subject to } f_i(x) \leq 0, \quad i = 1, \ldots, m \\
 h_i(x) = 0, \quad i = 1, \ldots, p
 \]

2. Formulate \(L \)
 \[
 L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x).
 \]

3. Find \(g(\lambda) = \min_x (L) \)
 solve \(dL/dx = 0 \)

4. Find \(\max g(\lambda, \nu) \) s.t. \(\lambda_i \geq 0 \quad \nu_i \geq 0 \)

5. See if the constraints are binding

6. Find \(x^* \)
 \[
 g(\lambda^*) = f(x^*).
 \]
Lagrange Multiplier Steps

1. Start with the primal

\[
\text{minimize } \frac{1}{2}cx^2 \quad \text{subject to } \quad ax - b \leq 0
\]

2. Formulate \(L \)

\[
L(x, \lambda) = \frac{1}{2}cx^2 + \lambda(ax - b).
\]

3. Find \(g(\lambda) = \min_x (L) \)

solve \(\frac{dL}{dx} = 0 \)

\[
\begin{align*}
\text{plug back into } L \\
\end{align*}
\]

\[
\begin{align*}
\frac{dL}{dx} &= dx + \lambda a \\
&= 0 \\
x &= -\lambda \frac{a}{c}. \\
g(\lambda) &= \frac{1}{2}c \left(-\lambda \frac{a}{c}\right)^2 + \lambda a \left(-\lambda \frac{a}{c}\right) - \lambda b \\
&= -\frac{a^2}{2c} \lambda^2 - \lambda b.
\end{align*}
\]

4. Find \(\max g(\lambda, \nu) \) s.t. \(\lambda_i \geq 0 \)

try maximizing without constraints

\[
\frac{-a^2}{c} \lambda - b = 0 \quad \Rightarrow \quad \lambda^* = \frac{-bc}{a^2}.
\]

5. See if the constraints are binding

it depends on the sign of \(-bc\)

6. Find \(x^* \)

plug \(\lambda^* \) into relation

\[
x = -\lambda \frac{a}{c} \quad = \frac{b}{a}
\]
Lagrange Multipliers Visually

\[\text{min } \frac{1}{2} x^2 \]
\[\text{s.t. } 2x + 5 > 0 \]

feasible

infeasible

\[a=2, \ b=-5, \ c=1 \]
Solve

maximize

\[f(x,y) = x + y \]

subject to

\[x^2 + y^2 - 1 = 0 \]

Answer: \(x^* = (x,y) = ?? \)

1. Formulate \(L = f_0(x) + \lambda f_1(x) \)
2. Find \(\min_x (L) = g(\lambda) \)
3. Find \(\max g(\lambda) \)
4. See if constraints are binding
5. Find \(x^* \)

Note that we formulate the problem in terms of minimization!!!
The answer
Formulate and solve

Find values of a set of k probabilities $(p_1, p_2, \ldots p_k)$ that maximize their entropy

minimize

$f(p) = ??$

subject to

??

Answer: $p_i = ??$

1. Formulate L
2. Find $\min_x (L) = g(\lambda)$
3. Find $\max g(\lambda)$
4. See if constraints are binding
5. Find x^*
Formulate

Find values of a vector of p non-negative weights w that minimize $\sum_i (y_i - x_i w)^2$

minimize

$f(w) = ??$

subject to

??