Midterm Review
2018
MDL
Bias–Variance Trade-off

Higher complexity = larger or smaller?

\[\text{bias}^2 \quad \text{variance} \quad k \text{ of \, k-nn} \quad \lambda \text{ of \, } L_p \quad \text{kernel width (RBF)} \quad \text{? \ of \ decision \ trees} \]

\[\mathbb{E}_x[(\bar{h}(x) - \bar{y}(x))^2] \quad \mathbb{E}_{x,D}[(h(x; D) - \bar{h}(x))^2] \]
Two part code: what are the two parts?

- Residual
- Model

 - Two part code: what are the two parts
 - Which features are in the model?
 - Code the features.
MDL

◆ **Sender and Receiver**
 * What do they know?
 * What do they send?

◆ **Two part code: What are the two parts?**
 * Residual
 * Model
 * Two part code: What are the two parts?
 * Which features are in the model?
 * Code the features.
MDL: Code residual & model

- Residual = bias or variance?
- Model = bias or variance?
Cost to code residual?

- How accurately do we code the SSE?
 - σ^2
If a feature has a probability of q/p of coming into a model, the expected number of bits to code the presence or absence of the feature is

$$-(q/p)\log(q/p) - (1-q/p)\log(1-q/p)$$

The expected cost of coding all p features is

$$-(q)\log(q/p) - (p-q)\log(1-q/p)$$

If $q=1$, the cost is $\log(p)$ and the penalty is called RIC.
Cost to code which features in model?

- If a feature has a probability of q/p of coming into a model, the expected number of bits to code the presence or absence of the feature is:
 - $-(q/p)\log(q/p) - (1-q/p)\log(1-q/p)$

- If $q=p/2$, the cost per feature is:
 - $-(1/2)\log(1/2)-(1/2)\log(1/2) = \log(2) = 1$
 - or 2 bits per included feature
 - and the method is called
 - AIC
Cost of coding each feature $\sim n^{1/2}$

Which penalty assumes this term dominates?

A) AIC
B) BIC
C) RIC
D) None of the above
Stepwise regression is used to minimize
A) Training set error (MLE)
B) L_0 penalized training set error
C) any penalized training set error
D) None of the above

Why?
Stepwise regression

Given \(p \) features of which \(q \) end up being selected

Stepwise regression will estimate …

A) \(q \) regressions
B) \(p \) regressions
C) \(q \ p \) regressions
D) more regressions…
Streamwise regression

- Given p features of which q end up being selected
- Streamwise regression will estimate …

 A) q regressions
 B) p regressions
 C) $q \times p$ regressions
 D) more regressions…
Stagewise regression

Given p features of which q end up being selected

Stagewise regression will estimate ...

A) q regressions
B) p regressions
C) q p regressions
D) more regressions...
Stepwise regression

Given p features of which q end up being selected

The largest matrix that needs to be inverted is

A) 1×1
B) $q \times q$
C) $p \times p$
D) bigger
Stagewise regression

- Given p features of which q end up being selected
- The largest matrix that needs to be inverted is
 A) $1x1$
 B) qxq
 C) pxp
 D) bigger
RBF

Transform X to Z using

- \(z_{ij} = \phi_j(x_i) = k(x_i, \mu_j) \)
- How many \(\mu_j \) do we use?
 - A) \(k < p \)
 - B) \(k = p \)
 - C) \(k > p \)
 - D) any of the above
- How do we pick \(k \)?
- What other complexity tuner do we have?

Linearly regress \(y \) on \(Z \)

\[
y_i = \sum_j a_j \phi_j(x_i)
\]
Kernel question

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>(1,1)</td>
<td>+1</td>
</tr>
<tr>
<td>(1,0)</td>
<td>-1</td>
</tr>
<tr>
<td>(0,1)</td>
<td>-1</td>
</tr>
<tr>
<td>(-1,1)</td>
<td>+1</td>
</tr>
</tbody>
</table>

Is this linearly separable?

Can you make this linearly separable with 4 Gaussian kernels?

Can you make this linearly separable with 2 Gaussian kernels?

Can you make this linearly separable with 1 Gaussian kernel?
Logistic Regression

\[P(Y = 1|\mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp\{-\sum_j w_j x_j\}} = \frac{1}{1 + \exp\{-\mathbf{w}^T \mathbf{x}\}} = \frac{1}{1 + \exp\{-y\mathbf{w}^T \mathbf{x}\}} \]

\[P(Y = -1|\mathbf{x}, \mathbf{w}) = 1 - P(Y = 1|\mathbf{x}, \mathbf{w}) = \frac{\exp\{-\mathbf{w}^T \mathbf{x}\}}{1 + \exp\{-\mathbf{w}^T \mathbf{x}\}} = \frac{1}{1 + \exp\{-y\mathbf{w}^T \mathbf{x}\}} \]

\[\log\left(\frac{P(Y=1|\mathbf{x},\mathbf{w})}{P(Y=-1|\mathbf{x},\mathbf{w})} \right) = \mathbf{w}^T \mathbf{x} \]
Log likelihood of data

\[\log(P(D_Y|D_X, w)) = \log \left(\prod_i \frac{1}{1 + \exp\{-y_i w^\top x_i\}} \right) \]

\[= - \sum_i \log(1 + \exp\{-y_i w^\top x_i\}) \]
Decision Boundary

\[
P(Y = 1|x, w) = P(Y = -1|x, w)
\]

\[
\frac{1}{1 + \exp\{-w^T x\}} = \frac{\exp\{-w^T x\}}{1 + \exp\{-w^T x\}}
\]

\[
w^T x = 0
\]

Prediction: \(y = \text{sign}(w^T x) \)
k-class logistic regression

\[
P(Y = k|x, w) = \frac{\exp\{w_k^T x\}}{\sum_{k'=1}^{K} \exp\{w_{k'}^T x\}}, \quad \text{for} \quad k = 1, \ldots, K
\]

Prediction: \(y = \arg\max_k (w_k^T x) \)
Naïve Bayes

◆ **Bayes rule**
 - $P(Y=y|X=x) = P(X=x|Y=y) \ p(Y=y) / P(X=x)$
 - Prior, likelihood and posterior

◆ **What assumptions do we make?**
 - $P(Y=y|X=x) \sim P(X=x|Y=y) \ p(Y=y)$
 - $P(Y=y|X=x) \sim P(X_1=x_1|Y=y) \ P(X_2=x_2|Y=y) \cdots P(X_p=x_p|Y=y) \ p(Y=y)$

◆ **MLE or MAP estimation?**

◆ **What extra assumption is made for language?**
Naïve Bayes Example

Data
Y=good X = “I”, “love”, “math”
Y=good X = “I”, “love”, “CIS520”
Y=bad X = “I”, “hate”, “exams”

Estimate \(P(Y=\text{good}|X = \text{“I”, “love”, “exams”}) \)

\[
P(Y=\text{good}|X) \sim P(X|Y=\text{good}) \cdot P(Y=\text{good})
\]
\[
P(Y=\text{bad}|X) \sim P(X|Y=\text{bad}) \cdot P(Y=\text{bad})
\]
Naïve Bayes Example

Data
Y=good X = “I”, “love”, “math”
Y=good X = “I”, “love”, “CIS520”
Y=bad X = “I”, “hate”, “exams”

Estimate Prior
P(Y=good) = _______
Naïve Bayes Example

Data
Y=good X = “I”, “love”, “math”
Y=good X = “I”, “love”, “CIS520”
Y=bad X = “I”, “hate”, “exams”

Estimate likelihood (MLE)
P(X = “I”, “love”, “exams” | Y=good) = ______
P(X=“I” | Y=good) P(X=“love” | Y=good) P(X= “exams” | Y=good)
1 1 0
Naïve Bayes Example

Data
Y=good X = “I”, “love”, “math”
Y=good X = “I”, “love”, “CIS520”
Y=bad X = “I”, “hate”, “exams”

Estimate likelihood (Laplace smoothing = MAP)
P(X = “I”, “love”, “exams” | Y=good) =
P(X=“I” | Y=good) P(X=“love” | Y=good) P(X= “exams” | Y=good)
1 1 1/3
Naïve Bayes Example

Data

Y=good X = “I”, “love”, “math”
Y=good X = “I”, “love”, “CIS520”
Y=bad X = “I”, “hate”, “exams”

Estimate $\arg\max_Y P(Y|X = \text{“I”, “love”, “exams”})$

$P(Y=\text{good}|X) \sim P(X|Y=\text{good}) \ P(Y=\text{good}) = (1 * 1 * 1/3)(2/3)$

$P(Y=\text{bad}|X) \sim P(X|Y=\text{bad}) \ P(Y=\text{bad}) = (1 * 1/3 * 1)(1/3)$
Scale invariance

- Decision tree?
- k-nn?
- OLS?
- Elastic net?
- L_0 penalized regression?
- SVM?
Kernel functions $k(x_1, x_2)$

- Measure similarity or distance?
- How to check if something is a kernel function?
 - Compute a Kernel matrix with elements $k(x_i, x_j)$
 - Make sure its eigenvalues are non-negative
- Example: $k(x_i, x_j) = x_{i1} + x_{i2} + x_{j1} + x_{j2}$
 - Try the single point $x = (1, -2)$
 - $K(x, x) = 1-2+1-2 = [-3]$ which is a matrix with eigenvalue -3