Online Learning: LMS and Perceptrons

Partially adapted from slides by Ryan Gabbard and Mitch Marcus (and lots original slides by Lyle Ungar)

Note: supplemental material for today is supplemental; not required!
Why do online learning?

- Batch learning can be expensive for big datasets
 - How expensive is it to compute \((X^TX)^{-1}\) for \(X\)?

\[
\begin{align*}
A) & \quad n^3 \\
B) & \quad p^3 \\
C) & \quad np^2 \\
D) & \quad n^2p
\end{align*}
\]
Why do online learning?

- **Batch learning can be expensive for big datasets**
 - How hard is it to compute \((X^TX)^{-1}\)?
 - \(np^2\) to form \(X^TX\)
 - \(p^3\) to invert
 - Tricky to parallelize inversion

- **Online methods are easy in a map-reduce environment**
 - They are often clever versions of stochastic gradient descent

Have you seen map-reduce/hadoop?

A) Yes
B) No
Online linear regression

- Minimize $\text{Err} = \sum_i (y_i - w^T x_i)^2$ using stochastic gradient descent
 - Look at each observation (x_i, y_i) sequentially and decrease its error $\text{Err}_i = (y_i - w^T x_i)^2$

- LMS (Least Mean Squares) algorithm
 - $w_{i+1} = w_i - \eta/2 \frac{d\text{Err}_i}{dw_i}$
 - $\frac{d\text{Err}_i}{dw_i} = -2 (y_i - w_i^T x_i) x_i = -2 r_i x_i$
 - $w_{i+1} = w_i + \eta r_i x_i$

How do you pick the “learning rate” η?

Note that i is the index for both the iteration and the observation, since there is one update per observation.
Online linear regression

- **LMS (Least Mean Squares) algorithm**
 \[w_{i+1} = w_i + \eta r_i x_i \]

- **Converges for** \(0 < \eta < \lambda_{\text{max}} \)
 - Where \(\lambda_{\text{max}} \) is the largest eigenvalue of the covariance matrix \(X^T X \)

- **Convergence rate is inversely proportional to** \(\frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} \) (ratio of extreme eigenvalues of \(X^T X \))
Online learning methods

- **Least mean squares (LMS)**
 - Online regression -- L_2 error

- **Perceptron**
 - Online SVM -- Hinge loss
Perceptron Learning Algorithm

Input: A list \(T \) of training examples \(\langle \vec{x}_0, y_0 \rangle \ldots \langle \vec{x}_n, y_n \rangle \) where
\[
\forall i : y_i \in \{+1, -1\}
\]
Output: A classifying hyperplane \(\vec{w} \)
Randomly initialize \(\vec{w} \);
while model \(\vec{w} \) makes errors on the training data do
 for \(\langle \vec{x}_i, y_i \rangle \) in \(T \) do
 Let \(\hat{y} = \text{sign}(\vec{w} \cdot \vec{x}_i); \)
 if \(\hat{y} \neq y_i \) then
 \[
 \vec{w} = \vec{w} + y_i \vec{x}_i;
 \]
 end
end

If you were wrong, make \(\vec{w} \) look more like \(\vec{x} \)

What do we do if error is zero?

Of course, this only converges for linearly separable data
Perceptron Learning Algorithm

For each observation \((y_i, x_i)\)

\[
w_{i+1} = w_i + \eta \, r_i \, x_i
\]

Where \(r_i = y_i - \text{sign}(w_i^T x_i)\)

and \(\eta = \frac{1}{2}\)

i.e., if we get it right: *no change*

if we got it wrong: \(w_{i+1} = w_i + y_i \, x_i\)
Perceptron Update

If the prediction at \mathbf{x}_1 is wrong, what is the true label y_1?

How do you update \mathbf{w}?
Perceptron Update Example II

\[w = w + (-1) x \]
Properties of the Simple Perceptron

You can prove that

- If it’s possible to separate the data with a hyperplane (i.e. if it’s linearly separable), then the algorithm will converge to that hyperplane.

- And it will converge such that the number of mistakes M it makes is bounded by

 $M < R^2/\gamma^2$

 where (assume the true w has been normalized: $||w^*||_2=1$)

 $R = \max_i ||x_i||_2$
 size of biggest x

 $\gamma <= y_i w^T x_i > 0$ if separable
Properties of the Simple Perceptron

But what if it isn’t separable?

- Then perceptron is unstable and bounces around
Voted Perceptron

- Works just like a regular perceptron, except you keep track of all the intermediate models you created.
- When you want to classify something, you let each of the many models vote on the answer and take the majority.

Often implemented after a “burn-in” period.
Properties of Voted Perceptron

- Simple!
- Much better generalization performance than regular perceptron
 - Almost as good as SVMs
 - Can use the ‘kernel trick’
- Training is as fast as regular perceptron
- But run-time is slower
 - Since we need \(n \) models
Averaged Perceptron

- Return as your final model the **average** of all your intermediate models
- Approximation to voted perceptron
- Again extremely simple!
 - And can use kernels
- Nearly as fast to train and exactly as fast to run as regular perceptron
Many possible Perceptrons

◆ If point \(x_i \) is misclassified

 - \(w_{i+1} = w_i + \eta y_i x_i \)

◆ Different ways of picking learning rate \(\eta \)

◆ Standard perceptron: \(\eta = 1 \)

 - Guaranteed to converge to the correct answer in a finite time if the points are separable (but oscillates otherwise)

 - Can get bounds on error even for non-separable case

◆ Alternate: pick \(\eta \) to maximize the margin \((w_i^T x_i)\) in some fashion
Can we do a better job of picking η?

- Perceptron:

 For each observation (y_i, x_i)

 $$w_{i+1} = w_i + \eta \ r_i \ x_i$$

 where $r_i = y_i - \text{sign}(w_i^T x_i)$

 and $\eta = \frac{1}{2}$

Let’s use the fact that we are actually trying to minimize a loss function
Passive Aggressive Perceptron

- Minimize the hinge loss at each observation
 - $L(w_i; x_i, y_i) = 0$ if $y_i \cdot w_i^T x_i \geq 1$ (loss 0 if correct with margin > 1)
 - $1 - y_i \cdot w_i^T x_i$ else

- Pick w_{i+1} to be as close as possible to w_i while still setting the hinge loss to zero
 - If point x_i is correctly classified with a margin of at least 1
 - no change
 - Otherwise
 - $w_{i+1} = w_i + \eta \cdot y_i \cdot x_i$
 - where $\eta = \frac{L(w_i; x_i, y_i)}{||x_i||^2}$

- Can prove bounds on the total hinge loss
Passive-Aggressive = MIRA

\[w_{i+1} = w_i + \frac{y_i - w_i \cdot x_i}{\|x_i\|^2} x_i \]

easy to show:
\[y_i (w_{i+1} \cdot x_i) = y_i (w_i + \frac{y_i - w_i \cdot x_i}{\|x_i\|^2} x_i) \cdot x_i = 1 \]
Margin-Infused Relaxed Algorithm (MIRA)

- **Multiclass**: each class has a prototype vector
 - Note that the prototype w is like a feature vector x
- Classify an instance by choosing the class whose prototype vector is *most similar* to the instance
 - *Has the greatest dot product with the instance*
- During training, make the ‘smallest’ change to the prototype vectors which guarantees correct classification by a specified margin
 - “passive aggressive”
What you should know

- **LMS**
 - Online regression

- **Perceptrons**
 - Online SVM
 - Large margin / hinge loss
 - Has nice mistake bounds (for separable case): see wiki
 - In practice, use averaged perceptrons
 - Passive Aggressive perceptrons and MIRA
 - Change w just enough to set its hinge loss to zero.

What we didn’t cover: feature selection