Overall lecture speed
A) Too Slow
B) Good
C) Too fast
D) I’m not awake yet
Online Learning: LMS and Perceptrons

Partially adapted from slides by Ryan Gabbard and Mitch Marcus (and lots original slides by Lyle Ungar)

Note: supplemental material for today is supplemental; not required!
Why do online learning?

- **Batch learning can be expensive for big datasets**
 - How expensive is it to compute $(X^TX)^{-1}$ for X?

 A) n^3
 B) p^3
 C) np^2
 D) n^2p
Why do online learning?

- **Batch learning can be expensive for big datasets**
 - How hard is it to compute $(X^TX)^{-1}$?
 - np^2 to form X^TX
 - p^3 to invert
 - Tricky to parallelize inversion

- **Online methods are easy in a map-reduce environment**
 - They are often clever versions of stochastic gradient descent

Have you seen map-reduce/hadoop?

A) Yes
B) No
Online linear regression

◆ Minimize $\text{Err} = \sum_i (y_i - w^T x_i)^2$ using stochastic gradient descent

 ● Look at each observation (x_i,y_i) sequentially and decrease its error $\text{Err}_i = (y_i - w^T x_i)^2$

◆ LMS (Least Mean Squares) algorithm

 ● $w_{i+1} = w_i - \eta / 2 \frac{d\text{Err}_i}{dw_i}$
 ● $\frac{d\text{Err}_i}{dw_i} = -2 (y_i - w_i^T x_i) x_i = -2 r_i x_i$

 $w_{i+1} = w_i + \eta r_i x_i$ How do you pick the “learning rate” η?

Note that i is the index for both the iteration and the observation, since there is one update per observation
Online linear regression

- **LMS (Least Mean Squares) algorithm**
 \[w_{i+1} = w_i + \eta r_i x_i \]

- **Converges for** \(0 < \eta < \lambda_{\text{max}} \)
 - Where \(\lambda_{\text{max}} \) is the largest eigenvalue of the covariance matrix \(X^T X \)

- **Convergence rate is inversely proportional to**
 \[\lambda_{\text{max}}/\lambda_{\text{min}} \text{ (ratio of extreme eigenvalues of } X^T X) \]
Online learning methods

- **Least mean squares (LMS)**
 - Online regression -- L_2 error

- **Perceptron**
 - Online SVM -- Hinge loss
Perceptron Learning Algorithm

Input: A list T of training examples $\langle \vec{x}_0, y_0 \rangle \ldots \langle \vec{x}_n, y_n \rangle$ where $\forall i: y_i \in \{+1, -1\}$
Output: A classifying hyperplane \vec{w}
Randomly initialize \vec{w};
while model \vec{w} makes errors on the training data do
 for $\langle \vec{x}_i, y_i \rangle$ in T do
 Let $\hat{y} = \text{sign}(\vec{w} \cdot \vec{x}_i)$;
 if $\hat{y} \neq y_i$ then
 $\vec{w} = \vec{w} + y_i \vec{x}_i$;
 end
 end
end

If you were wrong, make \vec{w} look more like \vec{x}

What do we do if error is zero?

Of course, this only converges for linearly separable data
Perceptron Learning Algorithm

For each observation \((y_i, x_i)\)

\[
w_{i+1} = w_i + \eta \ r_i \ x_i
\]

Where \(r_i = y_i - \text{sign}(w_i^T x_i)\)

and \(\eta = \frac{1}{2}\)

i.e., if we get it right: no change

if we got it wrong: \(w_{i+1} = w_i + y_i \ x_i\)
Perceptron Update

If the prediction at \mathbf{x}_1 is wrong, what is the true label y_1?

How do you update \mathbf{w}?
Perceptron Update Example II

\[w = w + (-1) x \]
Properties of the Simple Perceptron

You can prove that

- If it’s possible to separate the data with a hyperplane (i.e. if it’s linearly separable), then the algorithm will converge to that hyperplane.
- And it will converge such that the number of mistakes M it makes is bounded by

$$M < \frac{R^2}{\gamma}$$

where

$$R = \max_i |x_i|_2$$

size of biggest x

$$\gamma > y_i w^T x_i$$

> 0 if separable
Properties of the Simple Perceptron

But what if it isn’t separable?
- Then perceptron is unstable and bounces around
Voted Perceptron

- Works just like a regular perceptron, except you keep track of all the intermediate models you created.
- When you want to classify something, you let each of the many models vote on the answer and take the majority.

Often implemented after a “burn-in” period.
Properties of Voted Perceptron

- Simple!
- Much better generalization performance than regular perceptron
 - Almost as good as SVMs
 - Can use the ‘kernel trick’
- Training is as fast as regular perceptron
- But run-time is slower
 - Since we need n models
Averaged Perceptron

- Return as your final model the *average* of all your intermediate models
- Approximation to voted perceptron
- Again extremely simple!
 - And can use kernels
- Nearly as fast to train and exactly as fast to run as regular perceptron
Many possible Perceptrons

- If point x_i is misclassified
 - $w_{i+1} = w_i + \eta y_i x_i$
- Different ways of picking learning rate η
- Standard perceptron: $\eta = 1$
 - Guaranteed to converge to the correct answer in a finite time if the points are separable (but oscillates otherwise)
 - Can get bounds on error even for non-separable case
- Alternate: pick η to maximize the margin ($w_i^T x_i$) in some fashion
Can we do a better job of picking η?

- **Perceptron:**

 For each observation (y_i, x_i)

 $$w_{i+1} = w_i + \eta \ r_i \ x_i$$

 where $r_i = y_i - \text{sign}(w_i^T x_i)$

 and $\eta = \frac{1}{2}$

Let’s use the fact that we are actually trying to minimize a loss function
Passive Aggressive Perceptron

- Minimize the hinge loss at each observation
 - \(L(w_i; x_i, y_i) = 0 \) if \(y_i w_i^T x_i \geq 1 \) (loss 0 if correct with margin \(\geq 1 \))

 \[1 - y_i w_i^T x_i \] else

- Pick \(w_{i+1} \) to be as close as possible to \(w_i \) while still setting the hinge loss to zero
 - If point \(x_i \) is correctly classified with a margin of at least 1
 - no change
 - Otherwise
 - \(w_{i+1} = w_i + \eta y_i x_i \)
 - where \(\eta = \frac{L(w_i; x_i, y_i)}{||x_i||^2} \)

- Can prove bounds on the total hinge loss
Passive-Aggressive = MIRA

\[
 w_{i+1} = w_i + \frac{y_i - w_i \cdot x_i}{\|x_i\|^2} x_i
\]

easy to show:

\[
y_i(w_{i+1} \cdot x_i) = y_i (w_i + \frac{y_i - w_i \cdot x_i}{\|x_i\|^2} x_i) \cdot x_i = 1
\]
Margin-Infused Relaxed Algorithm (MIRA)

- **Multiclass**: each class has a prototype vector
 - Note that the prototype w is like a feature vector x
- Classify an instance by choosing the class whose prototype vector is *most similar* to the instance
 - Has the greatest dot product with the instance
- During training, make the ‘smallest’ change to the prototype vectors which guarantees correct classification by a specified margin
 - “passive aggressive”
What you should know

- **LMS**
 - Online regression

- **Perceptrons**
 - Online SVM
 - Large margin / hinge loss
 - Has nice mistake bounds (for separable case): see wiki
 - In practice, use averaged perceptrons
 - Passive Aggressive perceptrons and MIRA
 - Change w just enough to set its hinge loss to zero.

What we didn’t cover: feature selection