Midterm: Wed 10/18 in class

- Question answering session Tues 10/17 5:00 pm
 - Annenberg 110

- The midterm will allow one two-sided "cheat sheet"
 - Otherwise closed book, closed notes, no laptop or phone.
Homework

◆ For team homework, please only submit one copy
 ● If you resubmit, it should be from the same person
 ● Otherwise we have two submissions from you
Regression penalty methods

Ridge regression (“Tikhonov regularization”) minimizes

\[Err + \lambda \|w\|_2^2 \]

Is \(Err \) here

A) \(\Sigma_i (y_i - \hat{y}_i)^2 \)
B) \((1/n) \Sigma_i (y_i - \hat{y}_i)^2 \)
C) \(\sqrt{(1/n) \Sigma_i (y_i - \hat{y}_i)^2} \)
D) \(\sqrt{\Sigma_i (y_i - \hat{y}_i)^2} \)
Regression penalty methods

Elastic net regularization minimizes

\[Err + \lambda_1 |w|_1 + \lambda_2 |w|_2^2 \]

Will this sometimes zero out some features?

A) yes
B) no

When might this be better than pure L₁?
Regression penalty methods

AIC, BIC and RIC Minimize

\[\text{Err} \div 2\sigma^2 + \lambda |w|_0 \]

When we don’t know \(\sigma^2 \), \(\text{Err} \div 2\sigma^2 \) is proportional to

A) \(\log(\sum_i (y_i - \hat{y}_i)^2) \)
B) \(n \log(\sum_i (y_i - \hat{y}_i)^2) \)
C) \(n \log((1/n) \sum_i (y_i - \hat{y}_i)^2) \)
D) none of the above
Regression penalty methods

AIC, BIC and RIC Minimize

\[\text{Err/ } 2\sigma^2 + \lambda |w|_0 \]

As \(n \) becomes large, there is

A) more shrinkage
B) less shrinkage
C) no change
Entropy review

- You need to transmit a sequence of n binary observations (e.g. y values), which will be
 - "1" with probability $p_1 = 1/8$
 - "0" with probability $p_0 = 7/8$
- What is the minimum number of bits to code the sequence (for large n)?
You are doing feature selection where there are far more possible features than observations and expect that roughly 1/8 of the p features should be selected.

What would be a better alternative to RIC?

$$\text{Err}/2\sigma^2 + q \log (p)$$
How would you code a decision tree

- Assume \(p = 16 \) binary variables \(x \)
- Binary \(y \) \(n=64 \) \(|y|_0 = 32 \) \(|y-\hat{y}|_0 = 2 \)

\[
\begin{array}{c c c}
& T/ & \neg F \\
x_1 & y=1 & x_{14} \\
& T/ & \neg F \\
y=0 & y=1 \\
\end{array}
\]

How many bits to code the residual?
How many bits to code the decision tree?
Regression penalty methods

Which estimator is consistent?

A) AIC
B) BIC
C) RIC
D) none of them
Does LOOCV systematically _____ test error

- A) Overestimate
- B) Underestimate
- C) Neither

Why use Train, Validation and Test sets?