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An example of a scale parameter would be the standard deviation cr of a Gaussian 
distribution, after we have taken account of the location parameter J.L, because 

(2.240) 

where x = x - J.L. As discussed earlier, it is often more convenient to work in terms 
of the precision A = 1 I cr2 rather than cr itself. Using the transformation rule for 
densities, we see that a distribution p( cr) ex: 1 I cr corresponds to a distribution over A 
of the formp(A) ex: 11 A. We have seen that the conjugate prior for A was the gamma 
distribution Gam(Aia0 , b0 ) given by (2.146). The noninformative prior is obtained 
as the special case a0 = b0 = 0. Again, if we examine the results (2.150) and (2.151: 
for the posterior distribution of A, we see that for a0 = b0 = 0, the posterior depend~ 
only on terms arising from the data and not from the prior. 

2.5. Nonparametric Methods -------
Throughout this chapter, we have focussed on the use of probability distribution~ 
having specific functional forms governed by a small number of parameters whos( 
values are to be determined from a data set. This is called the parametric approacl 
to density modelling. An important limitation of this approach is that the choser 
density might be a poor model of the distribution that generates the data, which car 
result in poor predictive performance. For instance, if the process that generates th< 
data is multimodal, then this aspect of the distribution can never be captured by • 
Gaussian, which is necessarily unimodal. 

In this final section, we consider some nonparametric approaches to density es 
timation that make few assumptions about the form of the distribution. Here we shal 
focus mainly on simple frequentist methods. The reader should be aware, however 
that nonparametric Bayesian methods are attracting increasing interest (Walker et al. 
1999; Neal, 2000; Muller and Quintana, 2004; Teh et al., 2006). 

Let us start with a discussion of histogram methods for density estimation, whicl 
we have already encountered in the context of marginal and conditional distribution 
in Figure 1.11 and in the context of the central limit theorem in Figure 2.6. Here w 
explore the properties of histogram density models in more detail, focussing on th 
case of a single continuous variable x. Standard histograms simply partition x int' 
distinct bins of width ~i and then count the number ni of observations of x fallin. 
in bin i. In order to tum this count into a normalized probability density, we simpl 
divide by the total number N of observations and by the width ~i of the bins t, 
obtain probability values for each bin given by 

(2.241 

for which it is easily seen that J p(x) dx = 1. This gives a model for the densit 
p( x) that is constant over the width of each bin, and often the bins are chosen to hav 
the same width ~i = ~-
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An illustration of the histogram approach 

'I to density estimation, in which a data set Ll = 0.04 
of 50 data points is generated fmm the 
distribution shown by the green curve. ~ 
Histogram density estimates, based on 0 

0 0.5 (2.241), with a common bin width Ll are 

:I shown for various values of Ll. Ll = 0.08 

~ 
0 0.5 

:I 
Ll = 0.25 

c::i?7? 
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In Figure 2.24, we show an example of histogram density estimation. Here 
the data is drawn from the distribution, corresponding to the green curve, which is 
formed from a mixture of two Gaussians. Also shown are three examples of his­
togram density estimates corresponding to three different choices for the bin width 
.0.. We see that when .0. is very small (top figure), the resulting density model is very 
spiky, with a lot of structure that is not present in the underlying distribution that 
generated the data set. Conversely, if .0. is too large (bottom figure) then the result is 
a model that is too smooth and that consequently fails to capture the bimodal prop­
erty of the green curve. The best results are obtained for some intermediate value 
of .0. (middle figure). In principle, a histogram density model is also dependent on 
the choice of edge location for the bins, though this is typically much less significant 
than the value of .0.. 

Note that the histogram method has the property (unlike the methods to be dis­
cussed shortly) that, once the histogram has been computed, the data set itself can 
be discarded, which can be advantageous if the data set is large. Also, the histogram 
approach is easily applied if the data points are arriving sequentially. 

In practice, the histogram technique can be useful for obtaining a quick visual­
ization of data in one or two dimensions but is unsuited to most density estimation 
applications. One obvious problem is that the estimated density has discontinuities 
that are due to the bin edges rather than any property of the underlying distribution 
that generated the data. Another major limitation of the histogram approach is its 
scaling with dimensionality. If we divide each variable in a D-dimensional space 
into M bins, then the total number of bins will be MD. This exponential scaling 
with Dis an example of the curse of dimensionality. In a space of high dimensional­
ity, the quantity of data needed to provide meaningful estimates of local probability 
density would be prohibitive. 

The histogram approach to density estimation does, however, teach us two im­
portant lessons. First, to estimate the probability density at a particular location, 
we should consider the data points that lie within some local neighbourhood of that 
point. Note that the concept of locality requires that we assume some form of dis­
tance measure, and here we have been assuming Euclidean distance. For histograms, 
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this neighbourhood property was defined by the bins, and there is a natural 'smooth­
ing' parameter describing the spatial extent of the local region, in this case the bin 
width. Second, the value of the smoothing parameter should be neither too large nor 
too small in order to obtain good results. This is reminiscent of the choice of model 
complexity in polynomial curve fitting discussed in Chapter 1 where the degree M 
of the polynomial, or alternatively the value a of the regularization parameter, was 
optimal for some intermediate value, neither too large nor too small. Armed with 
these insights, we tum now to a discussion of two widely used nonparametric tech­
niques for density estimation, kernel estimators and nearest neighbours, which have 
better scaling with dimensionality than the simple histogram model. 

2.5.1 Kernel density estimators 
Let us suppose that observations are being drawn from some unknown probabil­

ity density p(x) in some D-dimensional space, which we shall take to be Euclidean, 
and we wish to estimate the value of p(x). From our earlier discussion of locality, 
let us consider some small region R containing x. The probability mass associated 
with this region is given by 

P = lp(x)dx. (2.242) 

Now suppose that we have collected a data set comprising N observations drawn 
from p( x). Because each data point has a probability P of falling within R, the total 
number K of points that lie inside R will be distributed according to the binomial 
distribution 

. ( I ) N! pK( P)l-K 
Bm K N,P = K!(N-K)! 1- . 

(2.243) 

Using (2.11), we see that the mean fraction of points falling inside the region is 
IE[K/N] = P, and similarly using (2.12) we see that the variance around this mean 
is var[K/N] = P(l- P)jN. For large N, this distribution will be sharply peaked 
around the mean and so 

K~NP. (2.244) 

If, however, we also assume that the region R is sufficiently small that the probability 
density p(x) is roughly constant over the region, then we have 

P ~p(x)V (2.245) 

where V is the volume of R. Combining (2.244) and (2.245), we obtain our density 
estimate in the form 

K 
p(x) =NV. (2.246) 

Note that the validity of (2.246) depends on two contradictory assumptions, namely 
that the region R be sufficiently small that the density is approximately constant over 
the region and yet sufficiently large (in relation to the value of that density) that the 
number K of points falling inside the region is sufficient for the binomial distribution 
to be sharply peaked. 
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We can exploit the result (2.246) in two different ways. Either we can fix K and 
determine the value of V from the data, which gives rise to the K -nearest-neighbour 
technique discussed shortly, or we can fix V and determine K from the data, giv­
ing rise to the kernel approach. It can be shown that both the K-nearest-neighbour 
density estimator and the kernel density estimator converge to the true probability 
density in the limit N -+ oo provided V shrinks suitably with N, and K grows with 
N (Duda and Hart, 1973). 

We begin by discussing the kernel method in detail, and to start with we take 
the region R to be a small hypercube centred on the point x at which we wish to 
determine the probability density. In order to count the number K of points falling 
within this region, it is convenient to define the following function 

k(u) = { 1, /ui/ ~ ~/2, 
0, otherwise 

i = 1, ... ,D, 
(2.247) 

which represents a unit cube centred on the origin. The function k(u) is an example 
of a kernel function, and in this context is also called a Parzen window. From (2.247), 
the quantity k( (x- Xn) /h) will be one if the data point Xn lies inside a cube of side 
h centred on x, and zero otherwise. The total number of data points lying inside this 
cube will therefore be 

(2.248) 

Substituting this expression into (2.246) then gives the following result for the esti­
mated density at x 

N 

1 '"""' 1 (X- Xn) p(x) = N L....J hDk h (2.249) 
n=l 

where we have used V = hD for the volume of a hypercube of side h in D di­
mensions. Using the symmetry of the function k(u), we can now re-interpret this 
equation, not as a single cube centred on x but as the sum over N cubes centred on 
the N data points Xn. 

As it stands, the kernel density estimator (2.249) will suffer from one of the same 
problems that the histogram method suffered from, namely the presence of artificial 
discontinuities, in this case at the boundaries of the cubes. We can obtain a smoother 
density model if we choose a smoother kernel function, and a common choice is the 
Gaussian, which gives rise to the following kernel density model 

1 1 1/x- Xn/1
2 

N { 
p(x) = N ~ (27rh2)1/2 exp - 2h2 } (2.250) 

where h represents the standard deviation of the Gaussian components. Thus our 
density model is obtained by placing a Gaussian over each data point and then adding 
up the contributions over the whole data set, and then dividing by N so that the den­
sity is correctly normalized. In Figure 2.25, we apply the model (2.250) to the data 
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Figure 2.25 Illustration of the kernel density model 
(2.250) applied to the same data set used 
to demonstrate the histogram approach in 
Figure 2.24. We see that h acts as a 
smoothing parameter and that if it is set 
too small (top panel), the result is a very 
noisy density model, whereas if it is set 
too large (bottom panel), then the bimodal 
nature of the underlying distribution from 
which the data is generated (shown by the 
green curve) is washed out. The best den­
sity model is obtained for some intermedi­
ate value of h (middle panel). 
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set used earlier to demonstrate the histogram technique. We see that, as expected, 
the parameter h plays the role of a smoothing parameter, and there is a trade-off 
between sensitivity to noise at small h and over-smoothing at large h. Again, the 
optimization of h is a problem in model complexity, analogous to the choice of bin 
width in histogram density estimation, or the degree of the polynomial used in curve 
fitting. 

We can choose any other kernel function k(u) in (2.249) subject to the condi­
tions 

k(u) ~ 0, 

Jk(u)du 1 

(2.251) 

(2.252) 

which ensure that the resulting probability distribution is nonnegative everywhere 
and integrates to one. The class of density model given by (2.249) is called a kernel 
density estimator, or Parzen estimator. It has a great merit that there is no compu­
tation involved in the 'training' phase because this simply requires storage of the 
training set. However, this is also one of its great weaknesses because the computa­
tional cost of evaluating the density grows linearly with the size of the data set. 

2.5.2 Nearest-neighbour methods 
One of the difficulties with the kernel approach to density estimation is that the 

parameter h governing the kernel width is fixed for all kernels. In regions of high 
data density, a large value of h may lead to over-smoothing and a washing out of 
structure that might otherwise be extracted from the data. However, reducing h may 
lead to noisy estimates elsewhere in data space where the density is smaller. Thus 
the optimal choice for h may be dependent on location within the data space. This 
issue is addressed by nearest-neighbour methods for density estimation. 

We therefore return to our general result (2.246) for local density estimation, 
and instead of fixing V and determining the value of K from the data, we consider 
a fixed value of K and use the data to find an appropriate value for V. To do this, 
we consider a small sphere centred on the point x at which we wish to estimate the 
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Figure 2.26 Illustration of K-nearest-neighbour den­
sity estimation using the same data set 
as in Figures 2.25 and 2.24. We see 
that the parameter K governs the degree 
of smoothing, so that a small value of 
K leads to a very noisy density model 
(top panel), whereas a large value (bot­
tom panel) smoothes out the bimodal na­
ture of the true distribution (shown by the 
green curve) from which the data set was 
generated. 

Exercise 2.61 

density p(x), and we allow the radius of the sphere to grow until it contains precisely 
K data points. The estimate of the density p(x) is then given by (2.246) with V set to 
the volume of the resulting sphere. This technique is known as K nearest neighbours 
and is illustrated in Figure 2.26, for various choices of the parameter K, using the 
same data set as used in Figure 2.24 and Figure 2.25. We see that the value of K 
now governs the degree of smoothing and that again there is an optimum choice for 
K that is neither too large nor too small. Note that the model produced by K nearest 
neighbours is not a true density model because the integral over all space diverges. 

We close this chapter by showing how the K-nearest-neighbour technique for 
density estimation can be extended to the problem of classification. To do this, we 
apply the K -nearest-neighbour density estimation technique to each class separately 
and then make use of Bayes' theorem. Let us suppose that we have a data set com­
prising Nk points in class ck with N points in total, so that Lk Nk = N. If we 
wish to classify a new point x, we draw a sphere centred on x containing precisely 
K points irrespective of their class. Suppose this sphere has volume V and contains 
Kk points from class Ck. Then (2.246) provides an estimate of the density associated 
with each class 

Kk 
p(x!Ck) = Nk V. 

Similarly, the unconditional density is given by 

while the class priors are given by 

K 
p(x) =NV 

(2.253) 

(2.254) 

(2.255) 

We can now combine (2.253), (2.254), and (2.255) using Bayes' theorem to obtain 
the posterior probability of class membership 

(c I ) = p(x!Ck)p(Ck) = Kk 
p k x p(x) K. (2.256) 
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Figure 2.27 (a) In the K-nearest- X2 X2 
neighbour classifier, a new point, 
shown by the black diamond, is clas- • • sified according to the majority class • • • membership of the K closest train- • 

~ ing data points, in this case K = • 
3. (b) In the nearest-neighbour • • • • (K = 1) approach to classification, • • • the resulting decision boundary is • • • 
composed of hyperplanes that form • 

• perpendicular bisectors of pairs of • • • • 
points from different classes. 

• • • • •• 
X1 X1 

(a) (b) 

If we wish to minimize the probability of misclassification, this is done by assigning 
the test point x to the class having the largest posterior probability, corresponding to 
the largest value of Kk/ K. Thus to classify a new point, we identify the K nearest 
points from the training data set and then assign the new point to the class having the 
largest number of representatives amongst this set. Ties can be broken at random. 
The particular case of K = 1 is called the nearest-neighbour rule, because a test 
point is simply assigned to the same class as the nearest point from the training set. 
These concepts are illustrated in Figure 2.27. 

2 

X7 

1 . 

0 
0 

In Figure 2.28, we show the results of applying the K-nearest-neighbour algo­
rithm to the oil flow data, introduced in Chapter 1, for various values of K. As 
expected, we see that K controls the degree of smoothing, so that small K produces 
many small regions of each class, whereas large K leads to fewer larger regions. 

K=l K=3 K=31 
2 

X7 X7 
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Figure 2.28 Plot of 200 data points from the oil data set showing values of x 6 plotted against x 7 , where the 
red, green, and blue points correspond to the 'laminar', 'annular', and 'homogeneous' classes, respectively. Also 
shown are the classifications of the input space given by the K -nearest-neighbour algorithm for various values 
of K. 
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An interesting property of the nearest-neighbour (K = 1) classifier is that, in the 
limit N ---+ oo, the error rate is never more than twice the minimum achievable error 
rate of an optimal classifier, i.e., one that uses the true class distributions (Cover and 
Hart, 1967) . 

As discussed so far, both the K -nearest-neighbour method, and the kernel den­
sity estimator, require the entire training data set to be stored, leading to expensive 
computation if the data set is large. This effect can be offset, at the expense of some 
additional one-off computation, by constructing tree-based search structUres to allow 
(approximate) near neighbours to be found efficiently without doing an exhaustive 
search of the data set. Nevertheless, these nonparametric methods are still severely 
limited. On the other hand, we have seen that simple parametric models are very 
restricted in terms of the forms of distribution that they can represent. We therefore 
need to find density models that are very flexible and yet for which the complexity 
of the models can be controlled independently of the size of the training set, and we 
shall see in subsequent chapters how to achieve this. 

2.1 (*) 11!1!11 Verify that the Bernoulli distribution (2.2) satisfies the following prop­
erties 

1 

LP(xjp,) 1 (2.257) 
x=O 

IE[x] p, (2.258) 

var[x] p,(1-p,). (2.259) 

Show that the entropy H[x] of a Bernoulli distributed random binary variable xis 
given by 

H[x] = -p,lnp,- (1- p,) ln(1- p,). (2.260) 

2.2 (**) The form of the Bernoulli distribution given by (2.2) is not symmetric be­
tween the two values of x. In some situations, it will be more convenient to use an 
equivalent formulation for which x E { -1, 1}, in which case the distribution can be 
written 

( 
1 _ p,) (1-x)/2 ( 1 + p,) (l+x)/2 

p(xiJL) = -
2

- --
2

- (2.261) 

where JL E [-1, 1]. Show that the distribution (2.261) is normalized, and evaluate its 
mean, variance, and entropy. 

2.3 (**) 111!1 In this exercise, we prove that the binomial distribution (2.9) is nor­
malized. First use the definition (2.1 0) of the number of combinations of m identical 
objects chosen from a total of N to show that 

(2.262) 
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Use this result to prove by induction the following result 

(2.263) 

which is known as the binomial theorem, and which is valid for all real values of x. 
Finally, show that the binomial distribution is normalized, so that 

(2.264) 

which can be done by first pulling out a factor (1 - I.L)N out of the summation and 
then making use of the binomial theorem. 

2.4 (**) Show that the mean of the binomial distribution is given by (2.11). To do this, 
differentiate both sides of the normalization condition (2.264) with respect to /.Land 
then rearrange to obtain an expression for the mean of n. Similarly, by differentiating 
(2.264) twice with respect to /.L and making use of the result (2.11) for the mean of 
the binomial distribution prove the result (2.12) for the variance of the binomial. 

2.5 (**) l!!!i!m!J In this exercise, we prove that the beta distribution, given by (2.13), is 
correctly normalized, so that (2.14) holds. This is equivalent to showing that 

11 a-1(1- )b-1 d = r(a)r(b) 
0 /.L /.L /.L r(a+b)" (2.265) 

From the definition (1.141) ofthe gamma function, we have 

r(a)r(b) = 100 

exp( -x)xa-1 dx 100 

exp( -y)yb-1 dy. (2.266) 

Use this expression to prove (2.265) as follows. First bring the integral over y inside 
the integrand of the integral over x, next make the change of variable t = y + x 
where x is fixed, then interchange the order of the x and t integrations, and finally 
make the change of variable x = tt.L where t is fixed. 

2.6 (*) Make use of the result (2.265) to show that the mean, variance, and mode of the 
beta distribution (2.13) are given respectively by 

lE [t.L] 
a 

(2.267) 
a+b 

var[t.L] 
ab 

(2.268) 
(a+b) 2 (a+b+1) 

mode[I.L] 
a-1 

(2.269) = a+b-2. 
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2. 7 (**) Consider a binomial random variable x given by (2.9), with prior distribution 
for J.L given by the beta distribution (2.13), and suppose we have observed m occur­
rences of x = 1 and l occurrences of x = 0. Show that the posterior mean value of x 
lies between the prior mean and the maximum likelihood estimate for J.L· To do this, 
show that the posterior mean can be written as >.times the prior mean plus (1 - >.) 
times the maximum likelihood estimate, where 0 ~ >. ~ 1. This illustrates the con­
cept of the posterior distribution being a compromise between the prior distribution 
and the maximum likelihood solution. 

2.8 (*) Consider two variables x andy with joint distributionp(x, y). Prove the follow­
ing two results 

IE[x] 

var[x] 
lEy [IEx[xly]] 

lEy [varx[xly]] +vary [IEx[xlylJ. 

(2.270) 

(2.271) 

Here IEx[xly] denotes the expectation of x under the conditional distribution p(xly), 
with a similar notation for the conditional variance. 

2.9 (***) lm!!!J . In this exercise, we prove the normalization of the Dirichlet dis­
tribution (2.38) using induction. We have already shown in Exercise 2.5 that the 
beta distribution, which is a special case of the Dirichlet for M = 2, is normalized. 
We now assume that the Dirichlet distribution is normalized for M - 1 variables 
and prove that it is normalized for M variables. To do this, consider the Dirichlet 
distribution over M variables, and take account of the constraint :L;~1 J.Lk = 1 by 
eliminating J.LM, so that the Dirichlet is written 

(2.272) 

and our goal is to find an expression for eM. To do this, integrate over /-LM-1, taking 
care over the limits of integration, and then make a change of variable so that this 
integral has limits 0 and 1. By assuming the correct result for CM- 1 and making use 
of (2.265), derive the expression for C M. 

2.10 (**) Using the property r(x + 1) = xr(x) of the gamma function, derive the 
following results for the mean, variance, and covariance of the Dirichlet distribution 
given by (2.38) 

where a 0 is defined by (2.39). 

CY-j 

ao 
aj(ao- aj) 

a5(ao + 1) 
O!jO!Z 

(2.273) 

(2.274) 

(2.275) 
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2.11 ( *) 111!1 By expressing the expectation of ln /-Lj under the Dirichlet distribution 
(2.38) as a derivative with respect to a-3, show that 

where a 0 is given by (2.39) and 

d 
'1/J(a) = da lnf(a) 

is the digamma function. 

2.12 (*) The uniform distribution for a continuous variable xis defined by 

1 
V(xla,b) = b-a' a:::; x:::; b. 

(2.276) 

(2.277) 

(2.278) 

Verify that this distribution is normalized, and find expressions for its mean and 
variance. 

2.13 (**) Evaluate the Kullback-Leibler divergence (1.113) between two Gaussians 
p(x) = N(xiJL, :E) and q(x) = N(xlm, L). 

2.14 ( * *) iiiii This exercise demonstrates that the multivariate distribution with max­
imum entropy, for a given covariance, is a Gaussian. The entropy of a distribution 
p(x) is given by 

H[x] = - j p(x) lnp(x) dx. (2.279) 

We wish to maximize H[x] over all distributions p(x) subject to the constraints that 
p(x) be normalized and that it have a specific mean and covariance, so that 

j p(x)dx = 1 

j p(x)x dx = JL 

j p(x)(x- JL)(x- JL)T dx =:E. 

(2.280) 

(2.281) 

(2.282) 

By performing a variational maximization of (2.279) and using Lagrange multipliers 
to enforce the constraints (2.280), (2.281), and (2.282), show that the maximum 
likelihood distribution is given by the Gaussian (2.43). 

2.15 (**) Show that the entropy of the multivariate Gaussian N(xiJL, :E) is given by 

1 D 
H[x] = 21n I:EI + 

2 
(1 + ln(21r)) (2.283) 

where D is the dimensionality of x. 
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2.16 (***) 111!1 Consider two random variables XI and x2 having Gaussian distri­
butions with means f.LI, f.L2 and precisions 7I, 7 2 respectively. Derive an expression 
for the differential entropy of the variable x = XI + x2 . To do this, first find the 
distribution of x by using the relation 

(2.284) 

and completing the square in the exponent. Then observe that this represents the 
convolution of two Gaussian distributions, which itself will be Gaussian, and finally 
make use of the result ( 1.11 0) for the entropy of the univariate Gaussian. 

2.17 (*) 111!1 Consider the multivariate Gaussian distribution given by (2.43). By 
writing the precision matrix (inverse covariance matrix) ~-I as the sum of a sym­
metric and an anti-symmetric matrix, show that the anti-symmetric term does not 
appear in the exponent of the Gaussian, and hence that the precision matrix may be 
taken to be symmetric without loss of generality. Because the inverse of a symmetric 
matrix is also symmetric (see Exercise 2.22), it follows that the covariance matrix 
may also be chosen to be symmetric without loss of generality. 

2.18 (***) Consider a real, symmetric matrix~ whose eigenvalue equation is given 
by (2.45). By taking the complex conjugate of this equation and subtracting the 
original equation, and then forming the inner product with eigenvector ui, show that 
the eigenvalues Ai are real. Similarly, use the symmetry property of ~ to show that 
two eigenvectors ui and uj will be orthogonal provided Aj =1- Ai. Finally, show that 
without loss of generality, the set of eigenvectors can be chosen to be orthonormal, 
so that they satisfy (2.46), even if some of the eigenvalues are zero. 

2.19 (* *) Show that a real, symmetric matrix ~ having the eigenvector equation (2.45) 
can be expressed as an expansion in the eigenvectors, with coefficients given by the 
eigenvalues, of the form (2.48). Similarly, show that the inverse matrix ~-I has a 
representation of the form (2.49). 

2.20 (**) 111!1 A positive definite matrix ~ can be defined as one for which the 
quadratic form 

aT~a (2.285) 

is positive for any real value of the vector a. Show that a necessary and sufficient 
condition for ~ to be positive definite is that all of the eigenvalues Ai of ~. defined 
by (2.45), are positive. 

2.21 (*) Show that areal, symmetric matrix of sizeD x D has D(D + 1)/2 independent 
parameters. 

2.22 (*) 111!1 Show that the inverse of a symmetric matrix is itself symmetric. 

2.23 (**) By diagonalizing the coordinate system using the eigenvector expansion (2.45), 
show that the volume contained within the hyperellipsoid corresponding to a constant 
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Mahalanobis distance D. is given by 

(2.286) 

where Vn is the volume of the unit sphere in D dimensions, and the Mahalanobis 
distance is defined by (2.44). 

2.24 (**) 1111 Prove the identity (2.76) by multiplying both sides by the matrix 

(2.287) 

and making use of the definition (2.77). 

2.25 (**) In Sections 2.3.1 and 2.3.2, we considered the conditional and marginal distri­
butions for a multivariate Gaussian. More generally, we can consider a partitioning 
of the components of x into three groups Xa, Xb, and Xc, with a corresponding par­
titioning of the mean vector JL and of the covariance matrix :E in the form 

(

:Eaa :Eab :Eac) 
:E = :Eba :Ebb :Ebc · 

:Eca :Ecb :Ecc 

(2.288) 

By making use of the results of Section 2.3, find an expression for the conditional 
distribution p(xalxb) in which Xc has been marginalized out. 

2.26 (**) A very useful result from linear algebra is the Woodbury matrix inversion 
formula given by 

(2.289) 

By multiplying both sides by (A+ BCD) prove the correctness of this result. 

2.27 (*) Let x and z be two independent random vectors, so that p(x, z) = p(x)p(z). 
Show that the mean of their sum y = x + z is given by the sum of the means of each 
of the variable separately. Similarly, show that the covariance matrix of y is given by 
the sum of the covariance matrices of x and z. Confirm that this result agrees with 
that of Exercise 1.10. 

2.28 (***) 1111 Consider a joint distribution over the variable 

z= (~) (2.290) 

whose mean and covariance are given by (2.108) and (2.105) respectively. By mak­
ing use of the results (2.92) and (2.93) show that the marginal distribution p(x) is 
given (2.99). Similarly, by making use of the results (2.81) and (2.82) show that the 
conditional distributionp(ylx) is given by (2.100). 
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2.29 (**) Using the partitioned matrix inversion formula (2.76), show that the inverse of 
the precision matrix (2.104) is given by the covariance matrix (2,105). 

2.30 (*) By starting from (2.107) and making use of the result (2.105), verify the result 
(2.108). 

2.31 (**) Consider two multidimensional random vectors X and z having Gaussian 
distributions p(x) = N(xiJ..tx, :Ex) and p(z) = N(ziJ..tz, :Ez) respectively, together 
with their sum y = x+z. Use the results (2.109) and (2.110) to find an expression for 
the marginal distribution p(y) by considering the linear-Gaussian model comprising 
the product of the marginal distributionp(x) and the conditional distributionp(yjx). 

2.32 (***) 1!11!1 This exercise and the next provide practice at manipulating the 
quadratic forms that arise in linear-Gaussian models, as well as giving an indepen­
dent check of results derived in the main text. Consider a joint distribution p( x, y) 
defined by the marginal and conditional distributions given by (2.99) and (2.100). 
By examining the quadratic form in the exponent of the joint distribution, and using 
the technique of 'completing the square' discussed in Section 2.3, find expressions 
for the mean and covariance of the marginal distribution p(y) in which the variable 
x has been integrated out. To do this, make use of the Woodbury matrix inversion 
formula (2.289). Verify that these results agree with (2.109) and (2.110) obtained 
using the results of Chapter 2. 

2.33 (***) Consider the same joint distribution as in Exercise 2.32, but now use the 
technique of completing the square to find expressions for the mean and covariance 
of the conditional distribution p( xjy). Again, verify that these agree with the corre­
sponding expressions (2.111) and (2.112). 

2.34 (**) l!l!IIJ To find the maximum likelihood solution for the covariance matrix 
of a multivariate Gaussian, we need to maximize the log likelihood function (2.118) 
with respect to :E, noting that the covariance matrix must be symmetric and positive 
definite. Here we proceed by ignoring these constraints and doing a straightforward 
maximization. Using the results (C.21), (C.26), and (C.28) from Appendix C, show 
that the covariance matrix :E that maximizes the log likelihood function (2.118) is 
given by the sample covariance (2.122). We note that the final result is necessarily 
symmetric and positive definite (provided the sample covariance is nonsingular). 

2.35 (**) Use the result (2.59) to prove (2.62). Now, using the results (2.59), and (2.62), 
show that 

(2.291) 

where Xn denotes a data point sampled from a Gaussian distribution with mean J..t 
and covariance :E, and Inm denotes the (n, m) element of the identity matrix. Hence 
prove the result (2.124). 

2.36 (**) iE!i Using an analogous procedure to thatused to obtain (2.126), derive 
an expression for the sequential estimation of the variance of a univariate Gaussian 
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distribution, by starting with the maximum likelihood expression 

N 

2 1"' 2 O"ML = N L.)xn- J.L) . 
n=1 

(2.292) 

Verify that substituting the expression for a Gaussian distribution into the Robbins­
Monro sequential estimation formula (2.135) gives a result of the same form, and 
hence obtain an expression for the corresponding coefficients aN. 

2.37 (**) Using an analogous procedure to that used to obtain (2.126), derive an ex­
pression for the sequential estimation of the covariance of a multivariate Gaussian 
distribution, by starting with the maximum likelihood expression (2.122). Verify that 
substituting the expression for a Gaussian distribution into the Robbins-Monro se­
quential estimation formula (2.135) gives a result of the same form, and hence obtain 
an expression for the corresponding coefficients aN. 

2.38 (*) Use the technique of completing the square for the quadratic form in the expo­
nent to derive the results (2.141) and (2.142). 

2.39 (**) Starting from the results (2.141) and (2.142) for the posterior distribution 
of the mean of a Gaussian random variable, dissect out the contributions from the 
first N - 1 data points and hence obtain expressions for the sequential update of 
J.LN and a-'Jv. Now derive the same results starting from the posterior distribution 
p(J.Lix1, ... , XN-1) = N(J.LIJ.LN-1, a-'Jv_1) and multiplying by the likelihood func­
tion p(xNIJ.L) = N(xNIJ.L, a-2 ) and then completing the square and normalizing to 
obtain the posterior distribution after N observations. 

2.40 (**) 11!1111 Consider aD-dimensional Gaussian random variable x with distribu­
tion N(xiJL, :E) in which the covariance :E is known and for which we wish to infer 
the mean JL from a set of observations X = { x 1 , ... , XN}. Given a prior distribution 
p(JL) = N(JLIJL0 , :Eo), find the corresponding posterior distribution p(JLIX). 

2.41 (*) Use the definition of the gamma function (1.141) to show that the gamma dis­
tribution (2.146) is normalized. 

2.42 (**) Evaluate the mean, variance, and mode of the gamma distribution (2.146). 

2.43 (*) The following distribution 

2 q ( lxlq) 
p(xio- 'q) = 2(2a-2)1/qr(1/q) exp - 2a-2 (2.293) 

is a generalization of the univariate Gaussian distribution. Show that this distribution 
is normalized so that 1: p(xio-2

, q) dx = 1 (2.294) 

and that it reduces to the Gaussian when q = 2. Consider a regression model in 
which the target variable is given by t = y(x, w) + E and E is a random noise 
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variable drawn from the distribution (2.293). Show that the log likelihood function 
over w and u

2
, for an observed data set of input vectors X = { x 1 , ... , XN} and 

corresponding target variables t = (t1, ... , tN )T, is given by 

1 N N 
lnp(t/X, w, u

2
) =-

2
u 2 L /y(xn, w)- tn/q- -ln(2u2) + const (2.295) 

n=l q 

where 'const' denotes terms independent of both wand u 2 . Note that, as a function 
of w, this is the Lq error function considered in Section 1.5.5. 

2.44 (**) Consider a univariate Gaussian distribution N(x/J.L, T-1) having conjugate 
Gaussian-gamma prior given by (2.154), and a data set x = {x1 , ... , xN} of i.i.d. 
observations. Show that the posterior distribution is also a Gaussian-gamma distri­
bution of the same functional form as the prior, and write down expressions for the 
parameters of this posterior distribution. 

2.45 (*) Verify that the Wishart distribution defined by ,(2.155) is indeed a conjugate 
prior for the precision matrix of a multivariate Gaussian. 

2.46 (*) 111!1 Verify that evaluating the integral in (2.158) leads to the result (2.159). 

2.47 (*) 111!1 Show that in the limit v -+ oo, the t-distribution (2.159) becomes a 
Gaussian. Hint: ignore the normalization coefficient, and simply look at the depen­
dence on x. 

2.48 (*) By following analogous steps to those used to derive the univariate Student's 
t-distribution (2.159), verify the result (2.162) for the multivariate form of the Stu­
dent's t-distribution, by marginalizing over the variable ry in (2.161). Using the 
definition (2.161 ), show by exchanging integration variables that the multivariate 
t-distribution is correctly normalized. 

2.49 (**) By using the definition (2.161) ofthe multivariate Student's t-distribution as a 
convolution of a Gaussian with a gamma distribution, verify the properties (2.164), 
(2.165), and (2.166) for the multivariate t-distribution defined by (2.162). 

2.50 (*) Show that in the limit v-+ oo, the multivariate Student's t-distribution (2.162) 
reduces to a Gaussian with mean J.L and precision A. 

2.51 (*) 111!1 The various trigonometric identities used in the discussion of periodic 
variables in this chapter can be proven easily from the relation 

exp(iA) =cos A+ isinA 

in which i is the square root of minus one. By considering the identity 

exp(iA) exp( -iA) = 1 

prove the result (2.177). Similarly, using the identity 

cos(A- B)= ?Rexp{i(A- B)} 

(2.296) 

(2.297) 

(2.298) 
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where ~denotes the real part, prove (2.178). Finally, by using sin(A- B) = 
~exp{ i(A- B)}, where~ denotes the imaginary part, prove the result (2.183). 

2.52 (**) For large m, the von Mises distribution (2.179) becomes sharply peaked 
around the mode Bo. By defining~ = m 112 ((} - (}0 ) and making the Taylor ex­
pansion of the cosine function given by 

a2 
cos a= 1- 2 + O(a4

) (2.299) 

show that as m ----t oo, the von Mises distribution tends to a Gaussian. 

2.53 (*) Using the trigonometric identity (2.183), show that solution of (2.182) for (}0 is 
given by (2.184). 

2.54 (*) By computing first and second derivatives of the von Mises distribution (2.179), 
and using I o ( m) > 0 for m > 0, show that the maximum of the distribution occurs 
when(}= (}0 and that the minimum occurs when(}= (}0 + 1r (mod 21r). 

2.55 (*) By making use of the result (2.168), together with (2.184) and the trigonometric 
identity (2.178), show that the maximum likelihood solution mML for the concentra­
tion of the von Mises distribution satisfies A( mML) = r where r is the radius of the 
mean of the observations viewed as unit vectors in the two-dimensional Euclidean 
plane, as illustrated in Figure 2.17. 

2.56 (**) llm!J Express the beta distribution (2.13), the gamma distribution (2.146), 
and the von Mises distribution (2.179) as members of the exponential family (2.194) 
and thereby identify their natural parameters. 

2.57 (*) Verify that the multivariate Gaussian distribution can be cast in exponential 
family form (2.194) and derive expressions for 7J, u(x), h(x) and g( 'IJ) analogous to 
(2.220)-(2.223). 

2.58 (*) The result (2.226) showed that the negative gradient of ln g( 1J) for the exponen­
tial family is given by the expectation of u(x). By taking the second derivatives of 
(2.195), show that 

-\7\i'lng(ry) = lE[u(x)u(x)T]-lE[u(x)]lE[u(x?J = cov[u(x)]. (2.300) 

2.59 (*) By changing variables using y = xja, show that the density (2.236) will be 
correctly normalized, provided f(x) is correctly normalized. 

2.60 (**) 11!1!111 Consider a histogram-like density model in which the space xis di­
vided into fixed regions for which the density p(x) takes the constant value hi over 
the ith region, and that the volume of region i is denoted ~i· Suppose we have a set 
of N observations of x such that ni of these observations fall in region i. Using a 
Lagrange multiplier to enforce the normalization constraint on the density, derive an 
expression for the maximum likelihood estimator for the {hi}. 

2.61 (*) Show that the K -nearest-neighbour density model defines an improper distribu­
tion whose integral over all space is divergent. 


