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The focus so far in this book has been on unsupervised learning. including topics 
such as density estimation tlnd data c1ust~ring. We turn now to a di scuss ion of super­
vised learning, starti ng with regression. The goal of regression is to predict the value 
of one or more continuous target variables t given the va lue of a D-dimensional vec­
tor x of input variables. We have already encountered an example of a regression 
problem when we considered polynomial curve fittin g in Chapter I. The polynomial 
is a specific example of a broad class of funcli ons call ed linear regression model s, 
which share the property of being linear fun ctions of the adjustable parameters, and 
which will form the foclIs of this chapter. The simplest form of linear regression 
models are also linear runctions of the input variables. However, we can obtain a 
much more useful class of functions by taking linear combinations of a fixed set of 
nonlinear functions of the input variables, known as basis Junctio/l.,·. Such models 
arc linear functions of the parameters, which gives them simple analytical properties, 
and yet can be nonlinear with respect to the input variables. 

---'--­
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3. LINEAR MODELS FOR REGRESSION 

Given a training data set comprising N observations {xn }. where n = 1, ... , N , 
together wi th corresponding target values (t n }. the goa l is to predictlhe value of / 
for a new value of x. In the simplest approach, this can be done by directly con­
structing an appropriate function y(x) whose values for new inputs x constitute the 
predictions for the corresponding values of t. More generally, from a probabilistic 
perspective, we aim to model the predictive distribution p(t lx ) because this expresses 
our uncertainty about the value of l for each value of x. From thi s conditional dis­
tribution we can make predictions of t, for any new value of x , in such a way as to 
minimize the expected value of a suitably chosen loss function. As discussed in Sec­
tion 1.5.5, a conunon choice of loss fu nction for real-valued variables is the squared 
loss, for which the optimal solution is given by the conditional expectation of t. 

Although linear ,models have significant limitations as practical techniques for 
pattern recognition, particularly for problems involving input spaces of high dimen­
sionality, they have nice analytical properties and fornl the foundation for more so­
phisticated models to be discussed in later chapters. 

3.1. Linear Basis Function Models 
------'--­

The simplest linear model for regression is one that involves a linear combination of 
the input variables 

y (x. w ) = Wo + W 1Xl + ... + 'WDXD (3. 1 ) 

where x = (,Cl , ... , XD )T This is often si mpl y known as linear regression. The key 
property of this model is that it is a linear function orthe parameters wo , . .. , WD. It is 
also, however, a linear function of the input variables Xi , and this imposes significant 
limitations on the model. We therefore extend the class of models by considering 
linear combinations of fixed nonlinear functions of the input variables, of the form 

All 

!I (X, w ) = 'I!o + L 'Wj </>j(X) (3.2) 
j= l 

where </>j (x ) are known as basis junctions. By denoting the maxi mum value of the 
index j by M - 1, the total number of parameters in this model will be AI{. 

The parameter 100 allows for any fixed offset in the data and is sometimes called 
a bias parameter (not to be confused with ' bias' in a statistical sense). It is often 
convenient to define an additional dummy 'bas is funcli on' </>o(x) = 1 so that 

1\1 - 1 

y (x , w ) = L Wj</>j( x ) = wT¢(x) (3.3) 
j=o 

where w = (wo, ... ,WAf -S" and ¢ = (</>0, "" </>M_l )T In many practical ap­
plications of pattern recognition, we will apply some form of fixed pre-processing, 
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or feature extraction, to the original data variables. If the original variables com­
prise the vector x, then the features can be expressed in terms of the basis functions 
{4>,(x)} 

By using nonlinear basis functions, we allow the function y(x , w) to be a non­
linear function of the input vector x. Functions of the form (3 .2) are called linear 
models, however, because this function is linear in w. It is this linearity in the pa­
rameters that will greatl y simp lify the analysis of thi s class of models. However, it 
also leads to some significant limitations, as we discuss in Section 3.6. 

The example of polynomial regression considered in Chapter I is a particular 
example of this model in which there is a single input variable x, and the basis func­
tions take the form of powers oL" so that 4>,(.1') = .,,1. One limitation of polynomial 
basis functions is that they are global fu nctions of the input variable, so that changes 
in one region of input space affect all other regions. This can be resolved by dividing 
the input space up into regions and fit a different polynomial in each region. leading 
to .lpline!IIIlClions (Hastie el al. , 200 1). 

There are many other possible choices for the basis functions, for example 

(x - llojf } 4>J( X) = exp { (3.4)2,,2 

where the 11..-; govern the locations of the basis functions in input space, and the pa­
rameter s governs their spatial scale. These are usually referred to as 'Gaussian' 
basis fun ct ions, although it shou ld be noted that they are not required to have a prob­
abilistic interpretat ion, and in patticular the nornlalization coefficient is unimportant 
because these basis functions wi ll be multiplied by adaptive parameters 7IIj . 

Another poss ibility is the sigmoidal basis function of the form 

dlj(x) = U C~ I', ) (3.5) 

where uta) is the logistic sigmoid function defined by 

(3.6)a (a. ) - 1 + exp( -a)' 

Equivalently, we can use the 'tanh' function because this is related to the logistic 
sigmoid by tanh (a ) = 2u(a) - 1, and so a general linear combination of logistic 
sigmoid fun ctions is equivalent to a general linear combination of 'tanh' functions. 
These various choices of basis function are illustrated in Figure 3.1. 

Yet another possible choice of basis function is the Fourier basis, which leads to 
an expansion in sinusoidal funct ions. Each basis function represents a specific fre­
quency and has inlinite spatial cxtenl. By contrast, basis function s that are localized 
to finite regions of input space necessarily comprise a spectrum of different spatial 
frequencies. In many signal processing applications, it is of interest to consider ba­
sis functions that are localized in both space and frequency, lead ing to a class of 
functions known as wavelets. These are also defined to be mutually orthogonal, to 
si mplify their application. Wavelets are most app licable when the input values live 

---"--­
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0.5 0.75 

0 0.5 

- 0.5 

- I 
-I 0 0 0 

Figure 3.1 Examples of basis functions. showing polynomials on the left, Gaussians of the form (3.4) in the 
centre, and sigmoidal of the form (3.5) on the right. 

Sectioll 1.5.5 

on a regular lattice, such as the successive time points in a temporal sequence, or the 
pixels in an image. Useful texts on wavelets include Ogden (1997), Mallat ( 1999), 
and Vidakovic (1999). 

Most of the discussion in this chapler, however, is independent of the particular 
choice of basis function set, and so for most of our discussion we shall not specify 
the particular form or the basis function s, except for the purposes or numcrical il­
lustration. Indeed, much of our discussion will be equally applicable to the situation 
in whi ch the vector c/> (x ) of basis functions is simply the idcntity c/> (x ) = x. Fur­
thermore, in order to keep the nOlalion simple, we shall focus on the case or a single 
target variable t. However, in Section 3. I .5, we consider briefly the modifications 
necdcd to deal with multiple target variables. 

3.1.1 Maximum likelihood and least squares 

In Chapter I , wc fitted polynomial functions to data sets by minimizing a sum­
of-squares error function. We also showcd Ihat Ihis error function could be motivated 
as the maximum likelihood solution under an assumed Gaussian noise model. Let 
us return to this di scussion and consider the least squares approach, and its relation 
to maximum likelihood, in more detail. 

As before, we assume that the target variable l is given by a dctenninistic func­
tion y(x , w ) with additive Gaussian noi se so that 

t = y(x , w ) + E (3.7) 

where ( is a zero mean Gaussian random variahle with precision (inverse variance) 
(3. Thus we can write 

p(tl x , w ,(:I) = N(t. lv(x , w),{3- ' ). (3.8) 

Recall that, if we assume a squarcd loss funclion , then the optimal prediction, for a 
ncw value of x , will be given by the conditional mcan of the target variable. In the 
case of a Gaussian conditional distribution of the form (3.8), the condilional mean 



o 
'e form (3.4) in the 

,I sequence, or the 
7), Malia! (1999), 

1l of the particular 
, shall not specify 
:S of numerical il­
Jle to the situation 
, ¢ (x ) = x. Fur­
he case of a single 
the modifications 

linimizing a sum­
ould be motivated 
noise model. Let 
h, and its relation 

cterministic func­

(3.7) 

:inversc variance) 

(3.8) 

I prediction, for a 
:t variable. In the 
conditional mean 

3.1. Linear Basis Function Models 141 

will be simply 

lE[t lx ] = .I tp(t lx) dt = y(x , w ). (3.9) 

Note that the Gaussian noise assumption implies that the conditional distribution of 
I. given x is unimodal, which may be inappropriate for some applications. An ex­
tension to mixtures of conditional Gaussian distributions, which permit multi modal 
conditional distributions, will be discussed in Section 14.5.1. 

Now consider a data set of inputs X = {Xl , ___ , XN } with corresponding target 
values t ___ , tN, We group the target variables {In} into a column vector that we 

" denote by t where the typeface is chosen to distinguish it from a single observation 
of a multivariate target, which would be denoted t. Making the assumption that 
these data points are drawn independently from the distribution (3 .8), we obtain the 
following expression for the likelihood function , which is a function of the adjustable 
parameters wand ri, in the form 

N 

p(t IX , w ,;3) = IIN(lnI WT¢(Xn),rl) (3.10) 
n= l 

where we have used (3.3). Note that in supervised learning problems such as regres­
sion (and classincation), we are not seeking to model the distribution of the input 
variables. Thus x will always appear in the set of conditioning variables, and so 
from now on we will drop the explicit X from expressions such as p (t lx , w ,;3) in or­
der to keep the notation uncluttered. Taking the logarithm of the likelihood function, 
and making use of the standard form (1.46) for the univariate Gaussian, we have 

N 

Inp(t lw ,{:I) = LlnN(tnl w T¢ (Xn),;3- 1) 
n -= l 

N N
-llI fJ - -In(21[) - {:IE D(W) (3.11)
2 2 

where the sum-of-squarcs error function is defined by 
• 

N 

Ev (w ) = ~ L {tn - w T ¢(Xn)} 2 (3.12) 
11=1 

Having written down the likelihood function, we can use maximum likelihood to 
detennine wand ;3. Consider first the maximization with respect to w. As observed 
already in Section 1.2.5, we see that maximization of the likelihood function under a 
conditiona1 Gaussian noise distribution for a linear model is equivalent to minimizing 
a sum-of-squares error function given by ED (W). The gradient of the log likelihood 
function (3.11) takes the fonn 

N 

'Vlnp(t lw , i3) = L {tn - w T¢ (x n) } ¢ (Xn)T (3.1 3) 
11=1 

--'-­
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Setting this gradient to zero gives 

(3.14) 

Solving for w we obtain 
T ) - 1 TWML = ( <I> <I> <I> t (3 .15) 

which are known as the nonnal equations for the least squares problem. Here <I> is an 
N x M matrix, called the desi/in matrix, whose e lements are given by <Pnj = <P.1 (xn ), 
so that 

<P1 (xJ) <PM-1(x d ( ;,(x,)
• <Po(X2) <P1(X2) <PM- 1(X2)
<1> = (3.16))

<PO(XN) <P1 (XN) <PM - 1(XN) 
The quantity 

<1>1 =' (<I>T<I>r ' <l>T (3.17) 
is known as the Moore-Penrose pseudo-inverse of the matrix <I> (Rao and Mitra, 
1971 ; Golub and Van Loan, 1996). It can be regarded as a generali zation of the 
notion of matrix inverse to nonsquare matrices. Indeed. if ~ is square and invertible , 
then usi ng the property (AB)-l = B - 1A -1 we see that <1>1 =' <1> - 1 

At this point, we can gain some insight into the role of the bias parameter WO o If 
we make the bias parameter explicit, then the error function (3.12) becomes 

N M-l 

ED(w) = ~ 2:)tn - Wo - L Wj<pj(Xn )}2 (3.18) 
n= l j=1 

Setting the derivative with respect to wo equal to zero, and solving for Wo, we obtain 

M- 1 
1110 = t - L Wj<Pj (3. 19) 

j=l 

where we have defined 

_ 1 N 

{.= N L tn , (3.20) 
n = ! 

Thus the bias Wo compensates for the difference between the averages (over the 
training set) of the target values and the weighted sum of the averages of the basis 
function values. 

We can also maximize the log likelihood function (3. 11) with respect to the noise 
precision parameter {3. giving 

(3.21) 

Flgu" 

Exercise 3.2 
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Geometrical interpretation of the least-squares 
solution, in an N -dimensional space whose axes 
are the values of h, . .. , iN. The least-squares 
regression function is obtained by finding the or­
thogonal projection of the data vector t onto the 
subspace spanned by the basis functions q,j( x ) 
in which each basis function is viewed as a vec­
tor 'P j of length N with elements q,j (x,,) . 

and so we see that the inverse of the noise precision is given by the residual variance 
of the target values around the regression function. 

3.1.2 Geometry of least squares 
At this point, it is instructive to consider the geometrical interpretation of the 

least-squares solution. To do this we consider an N -dimensional space whose axes 
are given by the tn, so that t = (t l , . .. , tN)T is a vector in this space. Each basis 
function ¢j (xn) , evaluated at the N data points, can also be represented as a vector in 
the same space, denoted by 'P.i' as illustrated in Figure 3.2. Note that 'P.i corresponds 
to the j'h column of '1>, whereas c!>(x,, ) corresponds to the nth row of '1>. If the 
number M of basis functions is smaller than the number N of data points, then the 
M vectors ¢j (xn) will span a linear subspace S of dimensionality M . We define 
y to be an N-dimensional vector whose n i h element is given by y(x n, w ), where 
n = 1, ... ,N. Because y is an arbitrary linear combination of the vectors 'P j' it can 
live anywhere in the M -dimensional subspace. The sum-of-squares error (3.12) is 
then equal (up to a factor of 1/ 2) to the squared Euclidean distance between y and 
t. Thus the least-squares solution for w corresponds to that choice of y that lies in 
subspace S and that is closest to t. Intuitively, from Figure 3.2, we anticipate that 
this solution corresponds to the orthogonal projection of t onto the subspace S. This 
is indeed the case, as can easily be verified by noting that the solution for y is given 
by 'l>WML, and then confirming that this takes the form of an orthogonal projection. 

In practice, a direct solution of the normal equations can lead to numerical diffi ­
culties when 'l>T'I> is close to singular. Tn particular, when two or more of the basis 
vectors 'P j are co-linear, or nearly so, the resulting parameter values can have large 
magnitudes. Such near degeneracies will not be uncommon when dealing with real 
data sets. The resulting numerical difficulties can be addressed using the technique 
of singular value decomposition, or SVD (Press et aI. , 1992; Bishop and Nabney, 
2008). Note that the addition of a regularization term ensures that the matrix is non­
singular, even in the presence of degeneracies. 

3.1.3 Sequential learning 
Batch techniques, such as the maximum likelihood solution (3.15), which in­

volve processing the entire training set in one go, can be computationally costly for 
large data sets. As we have discussed in Chapter I. if the data set is sufficiently large, 
it may be worthwhile to use sequelllial algorithms, also known as on-line algorithms, 
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in which the data points are considered one at a time, and the model parameters up­
dated after each such presentation . Sequential learning is also appropriate for real­
time applications in which the data observations are arriving in a cominuous stream , 
and predictions must be made before all of the data points are seen. 

We ean obtain a sequential learning algorithm by applying the technique of 
,\"tocha,\,tic gradient descent, also known as sequential gradiellt descent, as follows. If 
the error function comprises a sum over data points E = Ln Em then after pre sen­
tation of pattern n. the stochastic gradient descent algorithm updates the parameter 
vector w using 

(3.22) 

where T denotes the iteration number, and "7 is a learning rate parameter. We shall 
discuss the choice 01' value for ." shortly. The value ofw is initiali zed to some starting 
vector w (O). For the case o f the sum-of- squares error function (3. 12), this gives 

(3.23) 

where </>n = </>(xn). This is known as least-meall-squares or the LMS algorithm. 
The value of 17 needs to be chosen with care to ensure that the algorithm converges 
(Bishop and Nabney, 2008). 

3.1.4 Regularized least squares 
In Section 1.1 . we introduced the idea of adding a regularization term to an 

error function in order to control over-fitling, so that the total error function to be 
minimized takes the form 

Ev(w ) + AEW(W) (3.24) 

where A is the regularization coefficient that controls the relative importance of the 
data-dependent error E,, (w ) and the regularization term Ew(w ). One of the sim­
plest forms of regularizer is given by the sum-of-squares of the weight vector ele­
ments 

1
Ew (w ) = ZwTw . (3.25) 

If we also consider the sum-of-squares error function given by 

N 

E(w ) = ~ I)t" - w T</>(Xn)}2 (3.26) 
n = l 

then the total error function becomes 

N 
1 "'{ T 2 A TZ~ I,,, - w </>(x,,)} + Z W W. (3.27) 

n = 1 

This particular choice of regularizer is known in the machine learning literature as 
weight decay because in sequential learning algorithms, it encourages weight values 
to deeay towards zero, unless supported by the data. In statistics, it provides an ex­
ample of a parameter shrinkage method because it shrinks parameter values towards 

q = o. 

Figure ~ 

Exercise 3.5 

Appelldix E 
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(j = 0.5 

Figure 3.3 

Exercise 3.5 

Appendix E 

q = 1 q = 2 '1 = 4 

Contours of the regularization term in (3.29) for various values of the parameter q. 

zero. It has the advantage that the error function remains a quadratic function of 
w , and so its exact minimizer can be found in closed fonn. Specifically, setting the 
gradient of (3.27) with respect to w to zero, and solving for was before, we obtain 

w = (AI + <J>T<J> r ' <J>Tt. (3.28) 

Thi s represents a simple exten,ion of the least-squares solution (3. 15). 
A more general regularizer is sometimes used, [or which the regularized error 

takes the rorm 
1 N A M 

(3.29)2' I)tn - w T 1>(xn)}2 + 2' L IWjlq 

n=l j= 1 

where q = 2 corresponds to the quadratic regularizer (3.27). Figure 3.3 shows con­
tours of the regularization function for different values of q. 

The case of q = 1 is know as the lasso in the statistics literature (Tibshirani, 
1996). It has the propeny that if A is sufficiently large, some of the coefficients 
W j arc driven to zero, leading to a sparse model in which the corresponding basis 
functions play no role. To see this, we first note that minimizing (3.29) is equivalent 
to minimizing the unregularized sum-of-squares error (3. 12) subject to the constraint 

M 

L 1':11:1 Iq ~ 1) (3.30) 

j= l 

for an appropriate value of the parameter 1), where the two approaches can be related 
using Lagrange multipliers. The origin of the spa"ity can be seen from Figure 3.4, 
which shows that the minimum of the error function, subject to the constraint (3.30). 
As >. is increased, so an increasing number of parameters arc driven to zero. 

Regularization allows complex models to be trained on data sets of limited size 
without severe over-fitting, essentially by limiting the effective model complexity. 
However, the problem of determining the optimal model complexity is then shifted 
from one of finding the appropriate number of basis functions to one of detennining 
a suitable value of the regularization coefficient A. We shall return to the issue of 
model complexity later in this chapter. 
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Figure 3.4 Plot of the contours 
of the unregularized error function 
(blue) along with the constraint reo 
gion (3.30) for the quadratic regular­
izer q = 2 on the left and the lasso 
regularizer q = 1 on the right, in 
which the optimum value for the pa­
rameter vector w is denoted by w". 
The lasso gives a sparse solution in 
which 'Wi = O. 

o 

For the remainder of this chapter we shall focus on the quadratic regularizer 
(3.27) both for its practical importance and its analytical tractability. 

3.1.5 Multiple outputs 

So far, we have considered the case of a single target variable l. In some applica­
tions. we may wish to predict J( > 1 target variables, which we denote collectively 
by the target vector t. This could be done by introducing a different set of basis func­
tions for each component of t, leading to multiple. independent regression problems. 
However, a more interesting, and morc common, approach is to use the same set of 
basis functions to model all of the components of the target vector so that 

y (X, w ) = WT</>(x ) (3.31) 

where y is a 1(-dimensional column vector, W is an M x 1( matrix of parameters, 
and </>(x) is an M-dimensional column vector with elements <pj(x ). with <po(x) = 1 
as before. Suppose we take the conditional distribution of the target vector to be an 
isotropic Gaussian of the form 

(3.32) 

If we have a set of observations t Il ... : t N, we can combine these into a matrix T 
of size N x T< such that the nth row is given by t~ . Similarly, we can combine the 
input vectors Xl , ... : X N into a matrix X. The log likelihood function is then given 
by 

N 

Inp(TIX, W , i1l L InN(t nIWT</>(Xn ), /3-1 I ) 
n=l 
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As before, we can maximize this function with respect to W, giving 

l' ) -I T 

o 

W ML = ( iJl iJl <I> T . (3.34) 


If we examine this result for each target variable tk, we have 

l' ) - 1 l' I
W k = ( <I> <I> <I> 	 t k = <I> tk (3.35) 

where t k: is an N-dimensional column vector with components tnk for n = I , ... N. 
Thus the solution to the regression problem deeouples between the different target 
variables. and we need only compute a single pseudo-inverse matrix <1>1 , which is 
shared by a ll of the vectors Wk .~ w,• 

The extension to general Gaussian noise distributions having arbitrary covari­
Exercise 3.6 	 ance matrices is straightforward. Again, this leads to a decoupling into J( inde­

pendent regression problems. This result is unsurprising because the parameters W 
define only the mean of the Gaussian noise distribution, and we know from Sec­
tion 2.3.4 that the maximum likelihood solution for the mean of a multivariate Gaus­adratic regularizer 
sian is independent of the covariance. From now on, we shall therefore consider a ity. 
s ingle target variable I. for simplicity. 

~. In some applica­
___---=3:.:.=.:2. The Bias-Variance Decomposition lenote collectively 

!t setofbasis runc­
~ression problems. 	 So far in our discussion of linear models for regression, we have assumed that the 
Ise the same set of 	 form and number of basis functions are both fixed. As we have seen in Chapter I , 
. so that 	 the use of maximum likelihood, or equivalently least squares. can lead to severe 

over-fitting if complex models are trained using datu sets of limited size. However. 
(3.31 ) 	 limiting the number of basis functions in order to avoid over-fitting has the side 

effect of limiting the flexibility of the model to capture interesting and important 
:rix of parameters, trends in the data. Although the introduction of regularization terms can control 
), with rPo(x ) = 1 over-fitting for models with many parameters, this raises the question of how to 
~et vector to be an determine a suitable value for the regularization coefficient A. Seeking the solution 

that minimizes the regularized error funrtion with respect to both the weight vector 
wand the regularization coefficient A is clearly not the right approach since this 

(3.32) 
leads to the unregularized solution with A = 	O. 

As we have seen in earlier chapters. the phenomenon of over-fitting is really ane into a matrix T 
unfortunate property of maximum likelihood and does not ari se when we marginalize can combine the 
over parameters in a Bayesian setting. In this chapter, we shall consider the Bayesian 'lion is then given 
view of model complexity in some depth. Before doing so, however, it is instructive 
to consider a frequentist viewpoint of the model complex.ity issue, known as the bias­
variance trade-ofr. Although we shall introduce this concept in the context of linear 
basis function models, where it is easy to illustrate the ideas using simple examples, 
the discussion has more general applicability. 

In Section 1.5.5, when we discussed deci sion theory for regression problems, 

p(xn)11 2 
. (3.33) we considered various loss functions each of which leads to a corresponding optimal 

prediction once we are given the conditional distribution l'(tlx ). A popular choice is 
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the squared loss function. for which the optimal prediction is given by the conditional 
expectation. which we denote by h(x) and which is given by 

h(x) = E [t lx ] = / tp(tlx) dt. (3.36) 

At this point. it is worth distinguishing between the squared loss function arising 
from decision theory and the sum-or-squares error function that arose in the maxi­
mum likelihood estimation of model parameters. We might use more sophisticated 
techniques than least squares, for example regularization or a fully Bayesian ap­
proach. to determine the conditional distribution p(t lx ). These can all be combined 
with the squared I,oss function for the purpose of making predictions. 

We showed in Section 1.5.5 that the expected squared loss can be written in the 
foml 

E [L ] = / {y(x ) - h(x)} ~ p(x) dx + / {h (x ) - t }2p(x , t ) dxdl.. (3.37) 

Recall that the second term, which is independent of y(x), arises from the intrinsic 
noise on the data and represents the minimum achievable value of the expected loss. 
The first term depends on our choice for the function y( x). and we wi 11 seek a so­
lution for y(x) which makes this teml a minimum. Because it is nonnegative, the 
smallest that we can hope to make this term is zero. If we had an unlimited supply of 
data (and unlimited computational resources), we could in principle find the regres­
sion function h(x) to any desired degree of accuracy, and this would represent the 
optimal choice for y(x). However, in practice we have a data set D containing only 
a finite number N of data points, and consequently we do not know the regression 
function h(x ) exactly. 

If we model the h(x) using a parametric function y(x , w) governed by a pa­
rameter vector w, then from a Bayesian perspective the uncertainty in our model is 
expressed through a posterior distribution over w. A frequentist treatment, however, 
involves making a point estimate of w based on the data set D, and tries instead 
to interpret the uncertainty of this estimate through the following thought experi­
ment. Suppose we had a large number of data sets each of size N and each drawn 
independently tram the distribution p(t, x ). For any given data set D, we can run 
our learning algorithm and obtain a prediction function y(x ; D ). Different data sets 
from the ensemble will give different functions and consequently different values of 
the squared loss. The performance of a particular learning algorithm is then assessed 
by taking the average over this ensemble of data sets. 

Consider the integrand or the first term in (3.37), which for a particular data set 
D takes the form 

{y (x ; D ) - h(X)} 2 (3.38) 

Because this quantity will be dependent on the particular data set D, we take its aver­
age over the ensemble of data sets. If we add and subtract the quantity Ev [y(x; D )] Appendix A 
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I by the conditional inside the braces. and then expand. we obtain 

{y(x; D) - lEv[Y(x; D) ] + lEv [y(x; D) ]- h(x)}2 

(3.36) {)I (x; D) ­ lEv [y(x; D)])2 + {lEv [y(x; D) ] ­ h(x)}2 

+2{y(x; D) - lEv[y(x; D)]}{lEv [y(x; D )] ­ hex)}. (3.39) 

~s function arising 
arose in the maxi­ We now take the expectation of Ihis expression with respect to D and note that the 

nore sophisticated final term will vanish, giving 

'u lly Bayesian ap­
ID all be combined 

lEv [{y(x; D) - hex) }'] 

lOS. {lEv [y(x; D) ] ­ h(x)} 2 + lEv [{y(x; D) - lEv [vex; D)]}2 ] . (3.40) 

n be written in the 
, v 

(bias)' 

' , 

vanance 
' 

dxJt. (3.37) 
We see that Ihe expected squared difference between y(x; D) and the regression 
function hex) can be expressed as the sum of two terms. The first term. called the 
squared bias, represents the extent to which the average prediction over all data sets 

from the intrinsic differs from the desired regression function. The second term, called the variance, 
the expected loss. measures the extent to which the solutions for individual data sets vary around their 
Ne will seek a so­ average, and hence this measures the extent to which the function vex; D) is sensi tive 
I nonnegative, the to the particular choice of data set. We shall provide some intuition to support these 
"limited supply of definitions shOltly when we consider a simple example. 
,Ie find the regres­ So far, we have considered a single input value x. If we substitute thi s expansion 
)uld represent the back into (3.37), we obtain the following decomposition of the expected squared loss 
Dcontaining only 
ow the regression expected loss = (bias)2 + variance + noise (3.41 ) 

:ovemed by a pa­
where 

Iy in our model is 
~atment, however, (hi",,)' ./{JE.D[Y(x; D) ] - h(x)}2p(x) dx (3.42) 

and lries instead 
g thought experi­
I and each drawn 

vanance ./ lEv [(y(x;,D) - lEv [Y(x; D)W] p(x) dx (3.43) 

et D, we can run 
)ifferent data sets 

noise ./{ h(X) - t}2p(x,t)dxdt (3.44) 

lifferent values of 
n is then assessed and the bias and variance terms now refer to integrated quantities. 

Our goal is to minimi ze the expected loss, which we have decomposed into the 

)articular data set sum of a (squared) bias, a variance, and a constant noise term. As we shall see, there 
is a trade-off between bias and variance, with very flexible model s having low bias 

(3.38) and high variance, and relatively rigid models having high bias and low variance. 
The model with the optimal predictive capability is the one that leads to the best 

, we take its aver­
Itity lEv[y(x ; D)] Appendix A 

balance belween bias and variance. This is illustrated by considering the sinusoidal 
data set from Chapter I. Here we generate 100 data sets, each containing N = 25 
data points, independently from the sinusoidal curve hex) = sin(21r:I:). The data 
sets are indexed by l = 1, ... , L , where L = 100, and for each data set D(l ) we 
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Figure 3.5 Illustration of the dependence of bias and variance on model complexity. governed by a regulariza­
tion parameter A, using the sinusoidal data set from Chapter 1. There are L = 100 data sets, each having N = 25 
data pOints, and there are 24 Gaussian basis functions in the model so that the total number of parameters is 
M = 2& including the bias parameter. The left column shows the result of fitting the model to the data sets for 
various values of In A (for clarity, only 20 of the 100 fits are shown). The right column shows the corresponding 
average of the 100 fits (red) along with the sinusoidal function from which the data sets were generated (green) . 
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Plot of squared bias and variance. 
0.15 rl------------------,together with their sum, correspond­

ing to the results shown in Fig­ --- (hias)2 
---- variance ure 3.5. Also shown is the average 0.12 

test set error for a test data set size ---- (bias)2 + variance 
of 1000 paints. The minimum value 0.09 ---- tc~t error 
of (biasr.! + variance occurs around 
In.\ ~ -0.31. which is close to the 0.06
value that gives the minimum error 
on the test data. 

°°:1 ???:' 
- 3 - 2 - I o 2 

ill A 

fit a model with 24 Gaussian basis functions by minimizing the regularized error 
function (3.27) to give a prediction function y(l) (x ) as shown in Figure 3.5. The 
lOp row corresponds to a large value of the regularization coefficient.\ that gives low 
variance (because the red curves in the left plot look similar) but high bias (because 
the two curves in the right plot are very different). Conversely on the bottom row, for 
which .\ is small, there is large variance (shown by the high variability between the 
red curves in the left plot) but low bias (shown by the good fit between the average 
model fit and the original sinusoidal function). Note that the result of averaging many 
solutions for the complex model with !vI = 25 is a very good fit to the regression 
function, which suggests that averaging may be a beneficial procedure. Indeed, a 
weighted averaging of multiple solutions lies at the heart of a Bayesian approach, 
although the averaging is with respect to the posterior distribution of parameters, not 
with respect to multiple data sets. 

We can also examine the bias-variance trade-off quantitatively for this example. 
The average prediction is estimated from 

y (x ) = 
1 L

L Ly(l)(x) (3.45) 

•1= 1 

and Lhe integrated squared bias and integrated variance are then given by 

(bias)2 
1 N 
N L {Y(l:,,) - hCT,,)}2 (3.46) 

n = l 

variance 
I N 1 L 

N L L L {y (l )(Xn) _y(xn)}2 (3.47) 

n = l l=l 

where the integral over x weighted by the distribution p(x) is approximated by a 
finite sum over data points drawn from that distribution. These quantities, along 
wilh lheir sum, are plotted as a function of In). in Figure 3.6. We see that small 
values of .\ allow the model to become finely tuned to the noise on each individual 

x 
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data sel leading to large variance. Convcr~ely, a large value of A pulls the weight 
parameters towards zero leading to large bias. 

Although the bias-variance decomposition may provide some interesting in­
sights into the model complexity issue from a frequentist perspective, it is of lim­
ited practical value, because the bias-variance decumposition is based on averages 
with respect to enscmbles of data sets , whereas in practice we have only the si ngle Exercise 3.7 
observed data set. If we had a large number of independent training sets of a given 
size. we would be bCllcr off combining them into a single large train ing set , which 
of course would reduce the level of over-fitting for a given model complex ity. 

Given these limitations, we turn in the next section to a Bayesian treatment of 
linear basis function model s. which not only provides powerl"ul insights into the 
issues of over-fitting but which also leads to practical techniques for addressing the 
question model complexity. 

3.3. Bayesian Linear Regression 

In our discussion of max imum li kelihood for setting the parameters of a linear re­
gression model, we have seen that the effective model complexity, governed by the 
number of basis functions, needs to be controlled according to the size of the data 
set. Adding a regularization ternl to the log likelihood function means the effecti ve 
model complexity can then be controlled by the value of the regularization coeffi­

Exercise 3.8 
cient, although the choice of the number and form of the basis functions is of course 
sti ll important in determining the overall behaviour of the model. 

This leaves the issue of deciding the appropriate model complex it y for the par­
ticular problem, which cannot be decided simply by maximizing the likelihood func­
tion, because this always leads to excessively complex models and over-fitting. In­
dependent hold-out data can be used to determine model complexity, as discussed 
in Section 1.3, but this can be both computationally expensive and wasteful of valu­
able data. We therefore turn to a Bayesian treatment of linear regression, which w ill 
avoid the over-fitt ing problem of maximum likelihood, and which will also lead 10 
automatic methods of determining model complexity using the training data alone. 
Again, for simplici ty we will focus on the case of a single target vari able I.. Ex­
tension to multiple target variables is straightforward and follows the discussion of 
Section 3.1.5. 

3.3.1 Parameter distribution 


We begin our discussion of the Bayesian trcatment of lincar regression by in­

troducing a prior probability distribution over the model parameters w. For the mo­
ment, we shall treat the noise precision parameter f3 as a known constant. First note 
that the likelihood function p(t lw) defined by (3.10) is the exponential of a quadratic 
function of w. The corresponding conjugate prior is therefore given by a Gaussian 
distribution of the form 

p(w) = N(w lrno. So) (3.48) 

having mcan rno and covariance S o. 
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Next we compute the posterior distribution, which is propOltional to the product 
of the like lihood function and the priOf. Due to the choice of a conjugate Gaus­
sian prior distribution, the posterior will also be Gaussian. We can evaluate this 
distribution by the usual procedure of completing the square in the exponential , and 
then finding the normalil',aLion coefficient using the standard result ror a normalized 
Gaussian. However, we have already done the necessary work in deriving the gen­
efal fesult (2. 116), which allows us to write down the postefior distribution directly 
in the form 

p(w lt ) =N(wlm N .SN) (3.49) 

where 

IT) (3.50)m N = SN (So m n + j3ip t 


SN1 So 1 + j3 ipTip . (3.5 1 ) 


Note that because the posterior distribution is Gaussian, its mode coincides wi th its 
mean. Thus the maximum posterior weight vector is simply given by W ?-. IAP = nIN . 

If we consider an infinitely broad prior So = a-I I with 0: ----l> O. the mean 111 N 

of the posterior distribution reduces to the maximum likelihood value WML given 
by (3.15). Similarl y, if N = 0, then the posterior distribution reverts to the prior. 
Furthermore, if data points arrive sequentially, then the posterior distribution at any 
stage acts as the prior distribution for the subsequent data point, such that the new 
posterior distribution is again given by (3.49). 

For the remainder of thi s chapter, we shall consider a particular form of Gaus­
sian prior in order to simplify the treatment. Specifically, we consider a zero-mean 
isotropi c Gaussian governed by a si ngle precision parameter () so that 

p(w la ) = N (w IO, a -I I ) (3.52) 

and the corresponding posterior distribution over w is then given by (3.49) with 

m N j3SNipT t (3.53) 

S;V' = " I + j3ip Tip. (3.54)
• 

The log of the posterior distribution is given by the sum of the log likelihood and 
the log of the prior and, as a fun ction of w, takes the form 

N 
(I", T IX Tln p(wlt) = - 2' L.,,{ln - W ¢ (x n)}2 - 2'w w + const. (3.55) 

11 1 

Maximi zation of this posterior distribution with respect to w is therefore equi va­
lent to the minimi zation of the sum-of-squares error function with the addition of a 
quadratic regularization term, corresponding to (3.27) with ,\ = a / j3. 

We can illustrate Bayesian learning in a linear basis function model , as well as 
the sequential update of a posterior distribution, lIsing a simple example involving 
straight-line filling. Consider a single input variable L, a single target variable t and 
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a linear model of the form y(x, w ) = 'WO + 'WI:". Because this has just two adap­
tive parameters, we can plot the prior and posterior distributions directly in parameter 
space. We generate synthetic data from the function f (x, a ) = ao +a I x with param­
eter values au = -0.3 and ti l = 0.5 by first choosing values of X n from the uniform 
distribution U(xl - 1, 1), then evaluating f (xn , a ), and finally adding Gaussian noise 
with standard deviation of 0.2 to obtain the target values tn. Our goal is to recover 
the values of au and {J. , from such data, and we will explore the dependence on the 
size of the data set. We assume here that the noise variance is known and hence we 
set the precision parameter to its true value (3 = (1/ 0.2)' = 25. Similarly, we fix 
the parameter Ct to 2.0. We shall Sh0l11y discuss strategies for determining (X and 
f3 rrom the trainjng data. Figure 3.7 shows the results of Bayesian learning in this 
model as the siz& of the data set is increased and demonstrates the sequential nature 
of Bayesian learning in which the current posterior distribution forms the prior when 
a new data point is observed. It is worth taking time to study this figure in detail as 
it illustrates several important aspects of Bayesian inference. The first row of this 
figure corresponds to the situation before any data points are observed and shows a 
plot of the prior distribution in w space together with six samples of the function 
y(x, w ) in which the values of ware drawn hom the prior. In the second row, we 
see the situation after observing a single data point. The location (:T: , t) of the data 
point is shown by a blue circle in the right-hand column. In the left-hand column is a 
plot of the likelihood function 1'(t l:r;, w ) for this data point as a function of w. Note 
that the likelihood function provides a soft constraint that the line must pass close to 
the data point, where close is determined by the noise precision (3. For comparison, 
the true parameter values 0.0 = - 0.3 and 11 , = 0.5 used to generate the data set 
are shown by a white cross in the plots in the left column of Figure 3.7. When we 
mUltiply this likelihood function by the prior from the top row, and normalize, we 
obtain the posterior distribution shown in the middle plot on the second row. Sam­
ples of the regression function y(x, w ) obtained by drawing samples of w from this 
posterior distribution are shown in the right-hand plot. Note that these sample lines 
all pass close to the data point. The third row of this figure shows the effect of ob­
serving a second data point, again shown by a blue circle in the plot in the right-hand 
column. The corresponding likelihood function for this second data point alone is 
shown in the left plot. When we multiply this likelihood function by the posterior 
distribution rrom the second row, we obtain the posterior distribution shown in the 
middle plot of the third row. Note that this is exactly the same posterior distribution 
as would be obtained by combining the original prior with the likelihood function 
for the two data points. This posterior has now been influenced by two data points. 
and because two points are sufficient to define a line this already gives a relatively 
compact posterior distribution. Samples from this posterior distribution give rise to 
the functions shown in red in the third column, and we see that these functions pass 
close to both of the data points. The fourth row shows the effect of observing a total 
of 20 data points. The left-hand plot shows the likelihood function for the 20th data 
point alone, and the middle plot shows the resulting posterior distribution that has 
now absorbed information from all 20 observations. Note how the posterior is much 
sharper than in the third row. In the limit of an infinite number of data points. the 

Figure 
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Exercise 3.10 

Exercise 3.11 

posterior distribution wou ld become a delta function centred on the true parameter 
values, shown by the white cross. 

Other forms of prior over the parameters can be considered. For instance, we 
can generalize the Gaussian prior to give 

(3.56) 

in which q = 2 corresponds to the Gaussian distribution. and only in this case is the 
prior conj ugate to the likelihood function (3. 10). Finding the maximum of the poste ­
riur distribut ion over w corresponds to minimization of the regularized error fun ction 
(3.29). In the cas~ of the Gaussian prior. the mode of the posterior distribution was 
equal to the mean. although this will no longer hold if q i 2. 

3.3.2 Predictive distribution 
In practice, we are nol usua ll y interested in the value of w itself but rather in 

making predictions of " for new values of x . This requires that we evaluaLe the 
predictive distribution defined by 

p(tl l , n. !3) = .I p(tlw , ,6)p(w ll . a . ,6) dw (3.57) 

in which t is the vector of target va lues from the training set, and we have omitted the 
corresponding input vectors from the right-hand side of the conditioning statement s 
to simplify the notation . The conditional distribution p{l lx , w ,,6) of the target vari ­
able is given by (3 .8), and the posterior weight distribution is given by (3.49). We 
see that (3.57) involves the convolution of two Gaussian distributions, and so making 
use of the resulL (2. 1 15) from Section 8.1.4, we see that the predictive distribution 
takes the form 

. r T ) 2p{llx , I , a . ,6) = J V (tl m Nq,(x . iTN(x )) (3.58) 

where the variance a'fv (x) of the prediclive distribution is given by 

2 I T
aN (x ) = (j + q,(x ) SNq,(X). (3.59) 

The first tenn in (3.59) represents the noise on the data whereas the second Lerm 
reflects the uncertainty associated with the parameters w. Because the no i ~e process 
and the distribution of w arc independent Gaussians, their variances are additive. 
Note that, as additional data points are observed, the posterior distribulion becomes 
narrower. As a consequence it can be shown (Qazaz et aI., 1997) Lhat aR,+l (x) ,,; 
a;;" (x ). In the limit N --+ 00, the second term in (3.59) goes to zero, and the variance 
of the predictive distribuLion arises solely from the additive noise governed by the 
parameter {3. 

As an illustration of the predictive di stribution for Bayesian linear regression 
models. let us return to the synthetic sinu soidal data set of Section 1.1. In Figure 3.8, 
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Figure 3.8 Examples of the predictive distribution (3.58) for a model consisting of 9 Gaussian basis functions 
of the form (3.4) using the synthetic sinusoidal data set of Section 1.1. See the text for a detailed discussion. 

we fit a model comprising a linear combination of Gaussian basis functions to data 
selS of various sizes and then look at Ihe corresponding posterior distributions. Here 
the green curves correspond to the funclion sin (27I"1;) from which the data points 
were generated (with the addition of Gaussian noise). Data sets of size N = 1, 
N = 2, N = 4, and N = 25 are shown in the four plots by the blue circles. For 
each plot, the red curve shows the mean of the corresponding Gaussian predictive 
distribution, and the red shaded region spans one standard deviation either side of 
the mean. Note that the predictive uncertainty depends on x and is smallest in the 
neighbourhood of the data points. Also note that the level of uncertainty decreases 
as morc data points are observed. 

The plots in Figure 3.8 only show the point-wise predictive variance as a func­
tion of x. In order to gain insight into the covariance between the predictions at 
different values of x , we can draw samples from the posterior distribution over w , 
and then plot the corresponding functions Vex, w), as shown in Figure 3.9. 
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Figure 3.9 Plots of the function y(x, w ) using samples from the posterior distributions over w corresponding to 
the plots in Figure 3.8. 

If we used localized basis functions such as Gaussians, then in regions away 
rrom the basis function centres, the contribution from the second term in the predic­
tive variance (3.59) will go to zero, leaving only the noise contribution fJ- 1 Thus, 
the model becomes very confident in its predictions when extrapolating outside the 
region occupied by the basis functions, which is generally an undesirable behaviour. 
This problem can be avoided by adopting an alternative Bayesian approach to re­

Section 6.4 gression known as a Gaussian process. 
Note that, if both wand (J are treated as unknown, then we can introduce a 

conjugate prior distribution p(w, fJ) that, from the discussion in Section 2.3.6, will 
be given by a Gaussian-gamma dimibution (Denison et aI., 2002). In this case, the Exereisl' 3./2 

Exercise 3./3 predictive distribution is a Student's t-distribution. 
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Figure 3.10 The equivalent ker­
nel k(x, x' ) for the Gaussian basis 
functions in Figure 3.1 , shown as 
a plot of x versus ,,/ , together with 
three slices through this matrix cor­
responding to three different values 
of x. The data set used to generate 
this kernel comprised 200 values of 
x equally spaced over the interval 
(-1 , 1). 

3.3.3 Equivalent kernel 

The posterior mean solution (3.53) for the linear basis function model has an in ­


teresting interpretation that will set the stage for kernel methods, including Gaussian 
Chapte,-6 processes. If we substitute (3.53) into the expression (3 .3), we see that the predictive 

mean can be written in the fonn 

N 
T T T'" Ty(x,mN) = m Nc/>(x) = (3C/>(x) SNCP t = L.. {3c/>(x) SNc/>(Xn)t" (3.60) 

n = ] 

where S N is defined by (3.51). Thus the mean of the predictive distribution at a point 
x is given by a linear combination of the training sel target variables tn. so that we 
can write 

N 

y(x, m N) = L k(x, x")t,, (3.6 1 ) 
n = l 

where the function 
k(x , x') = (3c/>(x)TS Nc/>(X') (3.62) 

is known as the smoother matrix or the equivalent kernel. Regression functions, such 
as this, which make predictions by taking linear combinations of the training set 
target values are known as linear smoothers. Note that the equivalent kernel depends 
on the input values X n from the data set because these appear in the definition of 
SN . The equivalent kernel is illustrated for the case of Gaussian basis functions in 
Figure 3. 10 in which the kernel functions k(x, :ti) have been plotted as a function of 
x' for three different values of 1;. We see that they are localized around 1;, and so the 
mean of the predictive distribution at 1;, given by y(1; , m N) , is obtained by fonning 
a weighted combination of the target values in which data points close to x are given 
higher weight than points further removed from x. Intuitively, it seems reasonable 
that we should weight local evidence more strongly than distant evidence. Note that 
this localization property holds not only for the localized Gaussian basis functions 
but also for the nonlocal polynomial and sigmoidal basis functions, as illustrated in 
Figure 3.11. 
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Figure 3.11 Examples of equiva­
lent kernels k(x, x') for x ~ 0 

0.04plotted as a function of :1;', corre­
sponding (left) to the polynomial ba­
sis functions and (right) to the sig­
moidal basis functions shown in Fig­
ure 3.1. Note that these are local­
ized functions of x' even though the 
corresponding basis functions are 
nonlocaL 	 - I () 

Further insight into the role of the equivalent kernel can he obtained by consid­
ering the covariatjce between y(x ) and y(x' ), which is given by 

cov[y(x ), y(x' )] cov[<t>(x )Tw , w T<t>(x')] 
= <t>(x)TS N<t> (x' ) = {3- 1k(x , x') (3.63) 

where we have made use of (3 .49) and (3.62) . From thc form of the equivalent 
kernel , we see that the predictive mean at nearby points will be highly correlated, 
whereas for more distant pairs of points the correlation will be smaller. 

The predictive distribution shown in Figure 3.g allows us to visualize the point­
wise uncertainty in the predictiuns, governed by (3 .59). However, by drawing sam­
ples from the posterior distribution over w, and plotting the corresponding model 
funclions y(x , w) as in Figure 3.9, we are visualizing the joint uncertainty in the 
posterior distribution between the y values at two (or more) x values, as governed by 
the equivalent kernel. 

The formulation of linear regression in terms of a kemel function suggests an 
alternative approach to regression as follows. Instead of introducing a set of basis 
functions, which implicitly determines an equivalent kernel , we can inslead define 
a localized kernel directly and use this to make predictions for new input vectors x, 
given the observcd training set. This leads to a practical framework for regression 
(and classification) called Gaussian proce.ues, which will be discussed in dclail in 
Section 6.4. 

We have seen thai the effective kernel defines the weights by which the training 
seL target values are combined in order to make a prediction at a new value of x , and 
it can be shown that these weights sum to one, in other words 

N

L k(x. xn ) = 1 	 (3.64) 
n=1 

Exercise 3.14 	 for all values of x. This intuitively pleasing result can easily be proven informally 
by noting that the summation is equivalent to considering the predictive mean y (x ) 
for a set of target data in which tn = 1 for all n . Provided the basis functions are 
linearly independent, that there are more data points than basis functions, and that 
one of the basis functions is constant (corresponding to the bias parameter), then it is 
clear that we can fit the training data exactly and hence that the predictive mean will 
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3.4. Bayesian Model Comparison 

be simply y(x) = 1, from which we obtain (3.64). Note that the kernel funclion can 
be negative as well as positive, so although it satisfies a summation constraint, the 
corresponding predictions are not. necessarily convex combinations of the training 
set target variables. 

Finally, we note that the equivalent kernel (3.62) satisfies an important property 
shared by kernel functions in general, namely that it can be expressed in the form an 
inner product with respect to a vector 'IjJ(x) of nonlinea.r function s, so that 

k(x. z) = 'IjJ(x)T'IjJ (Z) (3.65) 

1/ 2 where 'IjJ (x ) = j3' / 2SN q,(x ). 

Bayesian Model Comparison 

In Chapter I, we highlighted the problem of over-fitting as well as the use of cross­
validation as a technique for setting the values of regularization parameters or for 
choosing between alternative models. Here we consider the problem of model se­
lection from a Bayesian perspective. In this section, our di scussion will be very 
general, and then in Section 3.5 we shall see how these ideas can be applied to the 
determination or regularizalion parameters in linear regression. 

As we shall see, the over-fitting associated with maximum likelihood can be 
avoided by marginalizing (summing or integrating) over the model parameters in­
stead of making point estimates of their values. Models can then be compared di­
rectly on the training data. without the need for a validation sel. This allows all 
available daw to be used for training and avoids the multiple training runs fur each 
model associated with cross-validation. It also allows multiple complexity parame­
ters to be deternlined simultaneously as part of the training process. For example, 
in Chapler 7 we shall inlroduce the relevance vector machine, which is a Bayesian 
model having one complexity parameter for every training data poinl. 

The Bayesian view of model comparison simply involves the use of probabilities 
to represent unceltainty in the choice of model, along wilh a consistent application 
of the sum and product rules of probability. Suppose we wish to compare a set of L 
models {M i } where i = 1, ... , L. Here a model refers to a probability distribution 
over the observed data D. In the case of the polynomial curve-fitting problem, the 
distribution is defined over the set of target values t, while the set of input values X 
is assumed to be known. Other types of model define a joint di stributions over X 
and t. We shall suppose that the data is generated from one of these models but we 
are uncertain which one. Our unceltainty is expressed th.rough a prior probability 
distribution P(M i) . Given a training set D, we then wish to evaluate the posterior 
distribution 

1,(M i ID) <X p(M i)p(D IM i) . (3.66) 

The prior allows us 10 express a preference for different models. Let us simply 
assume that all models are given equal prior probability. The interesting term is 
the model evidellce p(DIM i) which expresses the preference shown by the data for 


