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We can readily extend the linear-Gaussian graphical model to the case in which
the nodes of the graph represent multivariate Gaussian variables. In this case, we can
write the conditional distribution for nodei in the form

p(xi|pai) = N


xi

∣∣∣∣∣∣

∑

j∈pai

Wijxj + bi,Σi


 (8.19)

where nowWij is a matrix (which is nonsquare ifxi andxj have different dimen-
sionalities). Again it is easy to verify that the joint distribution over all variables is
Gaussian.

Note that we have already encountered a specific example of the linear-Gaussian
relationship when we saw that the conjugate prior for the mean µ of a GaussianSection 2.3.6
variablex is itself a Gaussian distribution overµ. The joint distribution overx and
µ is therefore Gaussian. This corresponds to a simple two-node graph in which
the node representingµ is the parent of the node representingx. The mean of the
distribution overµ is a parameter controlling a prior, and so it can be viewed as a
hyperparameter. Because the value of this hyperparameter may itself be unknown,
we can again treat it from a Bayesian perspective by introducing a prior over the
hyperparameter, sometimes called ahyperprior, which is again given by a Gaussian
distribution. This type of construction can be extended in principle to any level and is
an illustration of ahierarchical Bayesian model, of which we shall encounter further
examples in later chapters.

8.2. Conditional Independence

An important concept for probability distributions over multiple variables is that of
conditional independence(Dawid, 1980). Consider three variablesa, b, andc, and
suppose that the conditional distribution ofa, givenb andc, is such that it does not
depend on the value ofb, so that

p(a|b, c) = p(a|c). (8.20)

We say thata is conditionally independent ofb givenc. This can be expressed in a
slightly different way if we consider the joint distribution of a andb conditioned on
c, which we can write in the form

p(a, b|c) = p(a|b, c)p(b|c)
= p(a|c)p(b|c). (8.21)

where we have used the product rule of probability together with (8.20). Thus we
see that, conditioned onc, the joint distribution ofa andb factorizes into the prod-
uct of the marginal distribution ofa and the marginal distribution ofb (again both
conditioned onc). This says that the variablesa andb are statistically independent,
givenc. Note that our definition of conditional independence will require that (8.20),
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8.2. Conditional Independence 373

Figure 8.15 The first of three examples of graphs over three variables
a, b, and c used to discuss conditional independence
properties of directed graphical models.

c

a b

or equivalently (8.21), must hold for every possible value of c, and not just for some
values. We shall sometimes use a shorthand notation for conditional independence
(Dawid, 1979) in which

a ⊥⊥ b | c (8.22)

denotes thata is conditionally independent ofb givenc and is equivalent to (8.20).
Conditional independence properties play an important role in using probabilis-

tic models for pattern recognition by simplifying both the structure of a model and
the computations needed to perform inference and learning under that model. We
shall see examples of this shortly.

If we are given an expression for the joint distribution overa set of variables in
terms of a product of conditional distributions (i.e., the mathematical representation
underlying a directed graph), then we could in principle test whether any poten-
tial conditional independence property holds by repeated application of the sum and
product rules of probability. In practice, such an approachwould be very time con-
suming. An important and elegant feature of graphical models is that conditional
independence properties of the joint distribution can be read directly from the graph
without having to perform any analytical manipulations. The general framework
for achieving this is calledd-separation, where the ‘d’ stands for ‘directed’ (Pearl,
1988). Here we shall motivate the concept of d-separation and give a general state-
ment of the d-separation criterion. A formal proof can be found in Lauritzen (1996).

8.2.1 Three example graphs
We begin our discussion of the conditional independence properties of directed

graphs by considering three simple examples each involvinggraphs having just three
nodes. Together, these will motivate and illustrate the keyconcepts of d-separation.
The first of the three examples is shown in Figure 8.15, and thejoint distribution
corresponding to this graph is easily written down using thegeneral result (8.5) to
give

p(a, b, c) = p(a|c)p(b|c)p(c). (8.23)

If none of the variables are observed, then we can investigate whethera andb are
independent by marginalizing both sides of (8.23) with respect toc to give

p(a, b) =
∑

c

p(a|c)p(b|c)p(c). (8.24)

In general, this does not factorize into the productp(a)p(b), and so

a 6⊥⊥ b | ∅ (8.25)
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374 8. GRAPHICAL MODELS

Figure 8.16 As in Figure 8.15 but where we have conditioned on the
value of variable c.

c

a b

where∅ denotes the empty set, and the symbol6⊥⊥ means that the conditional inde-
pendence property does not hold in general. Of course, it mayhold for a particular
distribution by virtue of the specific numerical values associated with the various
conditional probabilities, but it does not follow in general from the structure of the
graph.

Now suppose we condition on the variablec, as represented by the graph of
Figure 8.16. From (8.23), we can easily write down the conditional distribution of
a andb, givenc, in the form

p(a, b|c) =
p(a, b, c)

p(c)

= p(a|c)p(b|c)

and so we obtain the conditional independence property

a ⊥⊥ b | c.

We can provide a simple graphical interpretation of this result by considering
the path from nodea to nodeb via c. The nodec is said to betail-to-tail with re-
spect to this path because the node is connected to the tails of the two arrows, and
the presence of such a path connecting nodesa andb causes these nodes to be de-
pendent. However, when we condition on nodec, as in Figure 8.16, the conditioned
node ‘blocks’ the path froma to b and causesa and b to become (conditionally)
independent.

We can similarly consider the graph shown in Figure 8.17. Thejoint distribu-
tion corresponding to this graph is again obtained from our general formula (8.5) to
give

p(a, b, c) = p(a)p(c|a)p(b|c). (8.26)

First of all, suppose that none of the variables are observed. Again, we can test to
see ifa andb are independent by marginalizing overc to give

p(a, b) = p(a)
∑

c

p(c|a)p(b|c) = p(a)p(b|a).

Figure 8.17 The second of our three examples of 3-node
graphs used to motivate the conditional indepen-
dence framework for directed graphical models.

a c b
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Figure 8.18 As in Figure 8.17 but now conditioning on node c. a c b

which in general does not factorize intop(a)p(b), and so

a 6⊥⊥ b | ∅ (8.27)

as before.
Now suppose we condition on nodec, as shown in Figure 8.18. Using Bayes’

theorem, together with (8.26), we obtain

p(a, b|c) =
p(a, b, c)

p(c)

=
p(a)p(c|a)p(b|c)

p(c)

= p(a|c)p(b|c)

and so again we obtain the conditional independence property

a ⊥⊥ b | c.

As before, we can interpret these results graphically. The nodec is said to be
head-to-tailwith respect to the path from nodea to nodeb. Such a path connects
nodesa andb and renders them dependent. If we now observec, as in Figure 8.18,
then this observation ‘blocks’ the path froma to b and so we obtain the conditional
independence propertya ⊥⊥ b | c.

Finally, we consider the third of our 3-node examples, shownby the graph in
Figure 8.19. As we shall see, this has a more subtle behaviourthan the two
previous graphs.

The joint distribution can again be written down using our general result (8.5) to
give

p(a, b, c) = p(a)p(b)p(c|a, b). (8.28)

Consider first the case where none of the variables are observed. Marginalizing both
sides of (8.28) overc we obtain

p(a, b) = p(a)p(b)

Figure 8.19 The last of our three examples of 3-node graphs used to
explore conditional independence properties in graphi-
cal models. This graph has rather different properties
from the two previous examples.

c

a b
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376 8. GRAPHICAL MODELS

Figure 8.20 As in Figure 8.19 but conditioning on the value of node
c. In this graph, the act of conditioning induces a depen-
dence between a and b.

c

a b

and soa andb are independent with no variables observed, in contrast to the two
previous examples. We can write this result as

a ⊥⊥ b | ∅. (8.29)

Now suppose we condition onc, as indicated in Figure 8.20. The conditional
distribution ofa andb is then given by

p(a, b|c) =
p(a, b, c)

p(c)

=
p(a)p(b)p(c|a, b)

p(c)

which in general does not factorize into the productp(a)p(b), and so

a 6⊥⊥ b | c.

Thus our third example has the opposite behaviour from the first two. Graphically,
we say that nodec is head-to-headwith respect to the path froma to b because it
connects to the heads of the two arrows. When nodec is unobserved, it ‘blocks’
the path, and the variablesa and b are independent. However, conditioning onc
‘unblocks’ the path and rendersa andb dependent.

There is one more subtlety associated with this third example that we need to
consider. First we introduce some more terminology. We say that nodey is a de-
scendantof nodex if there is a path fromx to y in which each step of the path
follows the directions of the arrows. Then it can be shown that a head-to-head path
will become unblocked if either the node,or any of its descendants, is observed.Exercise 8.10

In summary, a tail-to-tail node or a head-to-tail node leaves a path unblocked
unless it is observed in which case it blocks the path. By contrast, a head-to-head
node blocks a path if it is unobserved, but once the node, and/or at least one of its
descendants, is observed the path becomes unblocked.

It is worth spending a moment to understand further the unusual behaviour of the
graph of Figure 8.20. Consider a particular instance of sucha graph corresponding
to a problem with three binary random variables relating to the fuel system on a car,
as shown in Figure 8.21. The variables are calledB, representing the state of a
battery that is either charged (B = 1) or flat (B = 0), F representing the state of
the fuel tank that is either full of fuel (F = 1) or empty (F = 0), andG, which is
the state of an electric fuel gauge and which indicates either full (G = 1) or empty
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8.2. Conditional Independence 377

G

B F

G

B F

G

B F

Figure 8.21 An example of a 3-node graph used to illustrate the phenomenon of ‘explaining away’. The three
nodes represent the state of the battery (B), the state of the fuel tank (F ) and the reading on the electric fuel
gauge (G). See the text for details.

(G = 0). The battery is either charged or flat, and independently the fuel tank is
either full or empty, with prior probabilities

p(B = 1) = 0.9

p(F = 1) = 0.9.

Given the state of the fuel tank and the battery, the fuel gauge reads full with proba-
bilities given by

p(G = 1|B = 1, F = 1) = 0.8

p(G = 1|B = 1, F = 0) = 0.2

p(G = 1|B = 0, F = 1) = 0.2

p(G = 1|B = 0, F = 0) = 0.1

so this is a rather unreliable fuel gauge! All remaining probabilities are determined
by the requirement that probabilities sum to one, and so we have a complete specifi-
cation of the probabilistic model.

Before we observe any data, the prior probability of the fueltank being empty
is p(F = 0) = 0.1. Now suppose that we observe the fuel gauge and discover that
it reads empty, i.e.,G = 0, corresponding to the middle graph in Figure 8.21. We
can use Bayes’ theorem to evaluate the posterior probability of the fuel tank being
empty. First we evaluate the denominator for Bayes’ theoremgiven by

p(G = 0) =
∑

B∈{0,1}

∑

F∈{0,1}

p(G = 0|B,F )p(B)p(F ) = 0.315 (8.30)

and similarly we evaluate

p(G = 0|F = 0) =
∑

B∈{0,1}

p(G = 0|B,F = 0)p(B) = 0.81 (8.31)

and using these results we have

p(F = 0|G = 0) =
p(G = 0|F = 0)p(F = 0)

p(G = 0)
' 0.257 (8.32)
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378 8. GRAPHICAL MODELS

and sop(F = 0|G = 0) > p(F = 0). Thus observing that the gauge reads empty
makes it more likely that the tank is indeed empty, as we wouldintuitively expect.
Next suppose that we also check the state of the battery and find that it is flat, i.e.,
B = 0. We have now observed the states of both the fuel gauge and thebattery, as
shown by the right-hand graph in Figure 8.21. The posterior probability that the fuel
tank is empty given the observations of both the fuel gauge and the battery state is
then given by

p(F = 0|G = 0, B = 0) =
p(G = 0|B = 0, F = 0)p(F = 0)∑

F∈{0,1} p(G = 0|B = 0, F )p(F )
' 0.111 (8.33)

where the prior probabilityp(B = 0) has cancelled between numerator and denom-
inator. Thus the probability that the tank is empty hasdecreased(from 0.257 to
0.111) as a result of the observation of the state of the battery. This accords with our
intuition that finding out that the battery is flatexplains awaythe observation that the
fuel gauge reads empty. We see that the state of the fuel tank and that of the battery
have indeed become dependent on each other as a result of observing the reading
on the fuel gauge. In fact, this would also be the case if, instead of observing the
fuel gauge directly, we observed the state of some descendant of G. Note that the
probabilityp(F = 0|G = 0, B = 0) ' 0.111 is greater than the prior probability
p(F = 0) = 0.1 because the observation that the fuel gauge reads zero stillprovides
some evidence in favour of an empty fuel tank.

8.2.2 D-separation
We now give a general statement of the d-separation property(Pearl, 1988) for

directed graphs. Consider a general directed graph in whichA, B, andC are arbi-
trary nonintersecting sets of nodes (whose union may be smaller than the complete
set of nodes in the graph). We wish to ascertain whether a particular conditional
independence statementA ⊥⊥ B | C is implied by a given directed acyclic graph. To
do so, we consider all possible paths from any node inA to any node inB. Any such
path is said to beblockedif it includes a node such that either

(a) the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the
node is in the setC, or

(b) the arrows meet head-to-head at the node, and neither the node, nor any of its
descendants, is in the setC.

If all paths are blocked, thenA is said to be d-separated fromB byC, and the joint
distribution over all of the variables in the graph will satisfyA ⊥⊥ B | C.

The concept of d-separation is illustrated in Figure 8.22. In graph (a), the path
from a to b is not blocked by nodef because it is a tail-to-tail node for this path
and is not observed, nor is it blocked by nodee because, although the latter is a
head-to-head node, it has a descendantc because is in the conditioning set. Thus
the conditional independence statementa ⊥⊥ b | c doesnot follow from this graph.
In graph (b), the path froma to b is blocked by nodef because this is a tail-to-tail
node that is observed, and so the conditional independence propertya ⊥⊥ b | f will

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML



8.2. Conditional Independence 379

Figure 8.22 Illustration of the con-
cept of d-separation. See the text for
details.

f

e b

a

c

(a)

f

e b

a

c

(b)

be satisfied by any distribution that factorizes according to this graph. Note that this
path is also blocked by nodee becausee is a head-to-head node and neither it nor its
descendant are in the conditioning set.

For the purposes of d-separation, parameters such asα andσ2 in Figure 8.5,
indicated by small filled circles, behave in the same was as observed nodes. How-
ever, there are no marginal distributions associated with such nodes. Consequently
parameter nodes never themselves have parents and so all paths through these nodes
will always be tail-to-tail and hence blocked. Consequently they play no role in
d-separation.

Another example of conditional independence and d-separation is provided by
the concept of i.i.d. (independent identically distributed) data introduced in Sec-
tion 1.2.4. Consider the problem of finding the posterior distribution for the mean
of a univariate Gaussian distribution. This can be represented by the directed graphSection 2.3
shown in Figure 8.23 in which the joint distribution is defined by a priorp(µ) to-
gether with a set of conditional distributionsp(xn|µ) for n = 1, . . . , N . In practice,
we observeD = {x1, . . . , xN} and our goal is to inferµ. Suppose, for a moment,
that we condition onµ and consider the joint distribution of the observations. Using
d-separation, we note that there is a unique path from anyxi to any otherxj 6=i and
that this path is tail-to-tail with respect to the observed nodeµ. Every such path is
blocked and so the observationsD = {x1, . . . , xN} are independent givenµ, so that

p(D|µ) =

N∏

n=1

p(xn|µ). (8.34)

Figure 8.23 (a) Directed graph corre-
sponding to the problem
of inferring the mean µ of
a univariate Gaussian dis-
tribution from observations
x1, . . . , xN . (b) The same
graph drawn using the plate
notation.

µ

x1 xN

(a)

xn

N

N

µ

(b)

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML



380 8. GRAPHICAL MODELS

Figure 8.24 A graphical representation of the ‘naive Bayes’
model for classification. Conditioned on the
class label z, the components of the observed
vector x = (x1, . . . , xD)T are assumed to be
independent.

z

x1 xD

However, if we integrate overµ, the observations are in general no longer indepen-
dent

p(D) =

∫ ∞

0

p(D|µ)p(µ) dµ 6=
N∏

n=1

p(xn). (8.35)

Hereµ is a latent variable, because its value is not observed.
Another example of a model representing i.i.d. data is the graph in Figure 8.7

corresponding to Bayesian polynomial regression. Here thestochastic nodes corre-
spond to{tn}, w and t̂. We see that the node forw is tail-to-tail with respect to
the path from̂t to any one of the nodestn and so we have the following conditional
independence property

t̂ ⊥⊥ tn | w. (8.36)

Thus, conditioned on the polynomial coefficientsw, the predictive distribution for
t̂ is independent of the training data{t1, . . . , tN}. We can therefore first use the
training data to determine the posterior distribution overthe coefficientsw and then
we can discard the training data and use the posterior distribution for w to make
predictions of̂t for new input observationŝx.Section 3.3

A related graphical structure arises in an approach to classification called the
naive Bayesmodel, in which we use conditional independence assumptions to sim-
plify the model structure. Suppose our observed variable consists of aD-dimensional
vectorx = (x1, . . . , xD)T, and we wish to assign observed values ofx to one ofK
classes. Using the 1-of-K encoding scheme, we can represent these classes by aK-
dimensional binary vectorz. We can then define a generative model by introducing
a multinomial priorp(z|µ) over the class labels, where thekth componentµk of µ

is the prior probability of classCk, together with a conditional distributionp(x|z)
for the observed vectorx. The key assumption of the naive Bayes model is that,
conditioned on the classz, the distributions of the input variablesx1, . . . , xD are in-
dependent. The graphical representation of this model is shown in Figure 8.24. We
see that observation ofz blocks the path betweenxi andxj for j 6= i (because such
paths are tail-to-tail at the nodez) and soxi andxj are conditionally independent
givenz. If, however, we marginalize outz (so thatz is unobserved) the tail-to-tail
path fromxi to xj is no longer blocked. This tells us that in general the marginal
densityp(x) will not factorize with respect to the components ofx. We encountered
a simple application of the naive Bayes model in the context of fusing data from
different sources for medical diagnosis in Section 1.5.

If we are given a labelled training set, comprising inputs{x1, . . . ,xN} together
with their class labels, then we can fit the naive Bayes model to the training data
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8.2. Conditional Independence 381

using maximum likelihood assuming that the data are drawn independently from
the model. The solution is obtained by fitting the model for each class separately
using the correspondingly labelled data. As an example, suppose that the probability
density within each class is chosen to be Gaussian. In this case, the naive Bayes
assumption then implies that the covariance matrix for eachGaussian is diagonal,
and the contours of constant density within each class will be axis-aligned ellipsoids.
The marginal density, however, is given by a superposition of diagonal Gaussians
(with weighting coefficients given by the class priors) and so will no longer factorize
with respect to its components.

The naive Bayes assumption is helpful when the dimensionality D of the input
space is high, making density estimation in the fullD-dimensional space more chal-
lenging. It is also useful if the input vector contains both discrete and continuous
variables, since each can be represented separately using appropriate models (e.g.,
Bernoulli distributions for binary observations or Gaussians for real-valued vari-
ables). The conditional independence assumption of this model is clearly a strong
one that may lead to rather poor representations of the class-conditional densities.
Nevertheless, even if this assumption is not precisely satisfied, the model may still
give good classification performance in practice because the decision boundaries can
be insensitive to some of the details in the class-conditional densities, as illustrated
in Figure 1.27.

We have seen that a particular directed graph represents a specific decomposition
of a joint probability distribution into a product of conditional probabilities. The
graph also expresses a set of conditional independence statements obtained through
the d-separation criterion, and the d-separation theorem is really an expression of the
equivalence of these two properties. In order to make this clear, it is helpful to think
of a directed graph as a filter. Suppose we consider a particular joint probability
distributionp(x) over the variablesx corresponding to the (nonobserved) nodes of
the graph. The filter will allow this distribution to pass through if, and only if, it can
be expressed in terms of the factorization (8.5) implied by the graph. If we present to
the filter the set of all possible distributionsp(x) over the set of variablesx, then the
subset of distributions that are passed by the filter will be denotedDF , for directed
factorization. This is illustrated in Figure 8.25. Alternatively, we can use the
graph as a different kind of filter by first listing all of the conditional independence
properties obtained by applying the d-separation criterion to the graph, and then
allowing a distribution to pass only if it satisfies all of these properties. If we present
all possible distributionsp(x) to this second kind of filter, then the d-separation
theorem tells us that the set of distributions that will be allowed through is precisely
the setDF .

It should be emphasized that the conditional independence properties obtained
from d-separation apply to any probabilistic model described by that particular di-
rected graph. This will be true, for instance, whether the variables are discrete or
continuous or a combination of these. Again, we see that a particular graph is de-
scribing a whole family of probability distributions.

At one extreme we have a fully connected graph that exhibits no conditional in-
dependence properties at all, and which can represent any possible joint probability
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p(x) DF

Figure 8.25 We can view a graphical model (in this case a directed graph) as a filter in which a prob-
ability distribution p(x) is allowed through the filter if, and only if, it satisfies the directed
factorization property (8.5). The set of all possible probability distributions p(x) that pass
through the filter is denoted DF . We can alternatively use the graph to filter distributions
according to whether they respect all of the conditional independencies implied by the
d-separation properties of the graph. The d-separation theorem says that it is the same
set of distributions DF that will be allowed through this second kind of filter.

distribution over the given variables. The setDF will contain all possible distrib-
utionsp(x). At the other extreme, we have the fully disconnected graph,i.e., one
having no links at all. This corresponds to joint distributions which factorize into the
product of the marginal distributions over the variables comprising the nodes of the
graph.

Note that for any given graph, the set of distributionsDF will include any dis-
tributions that have additional independence properties beyond those described by
the graph. For instance, a fully factorized distribution will always be passed through
the filter implied by any graph over the corresponding set of variables.

We end our discussion of conditional independence properties by exploring the
concept of aMarkov blanketor Markov boundary. Consider a joint distribution
p(x1, . . . ,xD) represented by a directed graph havingD nodes, and consider the
conditional distribution of a particular node with variablesxi conditioned on all of
the remaining variablesxj 6=i. Using the factorization property (8.5), we can express
this conditional distribution in the form

p(xi|x{j 6=i}) =
p(x1, . . . ,xD)∫
p(x1, . . . ,xD) dxi

=

∏

k

p(xk|pak)

∫ ∏

k

p(xk|pak) dxi

in which the integral is replaced by a summation in the case ofdiscrete variables. We
now observe that any factorp(xk|pak) that does not have any functional dependence
on xi can be taken outside the integral overxi, and will therefore cancel between
numerator and denominator. The only factors that remain will be the conditional
distributionp(xi|pai) for nodexi itself, together with the conditional distributions
for any nodesxk such that nodexi is in the conditioning set ofp(xk|pak), in other
words for whichxi is a parent ofxk. The conditionalp(xi|pai) will depend on the
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8.3. Markov Random Fields 383

Figure 8.26 The Markov blanket of a node xi comprises the set
of parents, children and co-parents of the node. It
has the property that the conditional distribution of
xi, conditioned on all the remaining variables in the
graph, is dependent only on the variables in the
Markov blanket. xi

parents of nodexi, whereas the conditionalsp(xk|pak) will depend on the children
of xi as well as on theco-parents, in other words variables corresponding to parents
of nodexk other than nodexi. The set of nodes comprising the parents, the children
and the co-parents is called the Markov blanket and is illustrated in Figure 8.26. We
can think of the Markov blanket of a nodexi as being the minimal set of nodes that
isolatesxi from the rest of the graph. Note that it is not sufficient to include only the
parents and children of nodexi because the phenomenon of explaining away means
that observations of the child nodes will not block paths to the co-parents. We must
therefore observe the co-parent nodes also.

8.3. Markov Random Fields

We have seen that directed graphical models specify a factorization of the joint dis-
tribution over a set of variables into a product of local conditional distributions. They
also define a set of conditional independence properties that must be satisfied by any
distribution that factorizes according to the graph. We turn now to the second ma-
jor class of graphical models that are described by undirected graphs and that again
specify both a factorization and a set of conditional independence relations.

A Markov random field, also known as aMarkov networkor an undirected
graphical model(Kindermann and Snell, 1980), has a set of nodes each of which
corresponds to a variable or group of variables, as well as a set of links each of
which connects a pair of nodes. The links are undirected, that is they do not carry
arrows. In the case of undirected graphs, it is convenient tobegin with a discussion
of conditional independence properties.

8.3.1 Conditional independence properties

In the case of directed graphs, we saw that it was possible to test whether a par-Section 8.2
ticular conditional independence property holds by applying a graphical test called
d-separation. This involved testing whether or not the paths connecting two sets of
nodes were ‘blocked’. The definition of blocked, however, was somewhat subtle
due to the presence of paths having head-to-head nodes. We might ask whether it
is possible to define an alternative graphical semantics forprobability distributions
such that conditional independence is determined by simplegraph separation. This
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