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We can readily extend the linear-Gaussian graphical moddle case in which
the nodes of the graph represent multivariate Gaussiaabtas. In this case, we can
write the conditional distribution for noden the form

p(xilpa;) =N [ x| Y Wix; +b;, 5, (8.19)

J€pa;

where nowW;; is a matrix (which is nonsquarexf; andx; have different dimen-
sionalities). Again it is easy to verify that the joint dibtition over all variables is
Gaussian.
Note that we have already encountered a specific example éhdrar-Gaussian
Section 2.3.6 relationship when we saw that the conjugate prior for themmeaf a Gaussian
variablex is itself a Gaussian distribution ovgar The joint distribution ovex and
w is therefore Gaussian. This corresponds to a simple twe-mgpdph in which
the node representing is the parent of the node representiagThe mean of the
distribution overu is a parameter controlling a prior, and so it can be viewed as a
hyperparameter. Because the value of this hyperparametgiteelf be unknown,
we can again treat it from a Bayesian perspective by intrindua prior over the
hyperparameter, sometimes calledyperprior, which is again given by a Gaussian
distribution. This type of construction can be extendedingiple to any level and is
an illustration of ehierarchical Bayesian modebf which we shall encounter further
examples in later chapters.

8.2. Conditional Independence

An important concept for probability distributions over hiple variables is that of
conditional independeng®awid, 1980). Consider three variablesh, and¢, and
suppose that the conditional distributionagfgivenb andc, is such that it does not
depend on the value &f so that

p(alb, c) = p(alc). (8.20)

We say that is conditionally independent dfgivenc. This can be expressed in a
slightly different way if we consider the joint distributicof « andb conditioned on
¢, which we can write in the form

pla,ble) = p(alb, c)p(blc)
= plale)p(ble). (8.21)

where we have used the product rule of probability togeth#r (8.20). Thus we
see that, conditioned an the joint distribution ofe andb factorizes into the prod-
uct of the marginal distribution of and the marginal distribution df (again both
conditioned orx). This says that the variablesandb are statistically independent,
givenc. Note that our definition of conditional independence vétjuire that (8.20),
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Figure 8.15 The first of three examples of graphs over three variables c
a, b, and ¢ used to discuss conditional independence
properties of directed graphical models.

Q
S

or equivalently (8.21), must hold for every possible valfie,@and not just for some
values. We shall sometimes use a shorthand notation foritgamal independence
(Dawid, 1979) in which

allble (8.22)

denotes that is conditionally independent éfgivenc and is equivalent to (8.20).

Conditional independence properties play an importaetirousing probabilis-
tic models for pattern recognition by simplifying both theusture of a model and
the computations needed to perform inference and learnidgnthat model. We
shall see examples of this shortly.

If we are given an expression for the joint distribution oseset of variables in
terms of a product of conditional distributions (i.e., thathematical representation
underlying a directed graph), then we could in principld tgbether any poten-
tial conditional independence property holds by repeapgdi@ation of the sum and
product rules of probability. In practice, such an approaohld be very time con-
suming. An important and elegant feature of graphical modethat conditional
independence properties of the joint distribution can lagl @irectly from the graph
without having to perform any analytical manipulations. eTdeneral framework
for achieving this is called-separationwhere the ‘d’ stands for ‘directed’ (Pearl,
1988). Here we shall motivate the concept of d-separatidrgare a general state-
ment of the d-separation criterion. A formal proof can beiiin Lauritzen (1996).

8.2.1 Three example graphs

We begin our discussion of the conditional independencpsgties of directed
graphs by considering three simple examples each involyiaghs having just three
nodes. Together, these will motivate and illustrate thedancepts of d-separation.
The first of the three examples is shown in Figure 8.15, anddiné distribution
corresponding to this graph is easily written down usinggaeeral result (8.5) to
give

p(a, b, c) = p(ale)p(blc)p(c). (8.23)
If none of the variables are observed, then we can investightthern andb are
independent by marginalizing both sides of (8.23) with ee$poc to give

p(a,b) = plale)p(ble)p(c). (8.24)

In general, this does not factorize into the produet)p(b), and so
all b|0 (8.25)
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Figure 8.16 As in Figure 8.15 but where we have conditioned on the ¢

Figure 8.17

value of variable c.

Q
S

where() denotes the empty set, and the symbiiomeans that the conditional inde-
pendence property does not hold in general. Of course, itho&/for a particular
distribution by virtue of the specific numerical values asated with the various
conditional probabilities, but it does not follow in geneiram the structure of the
graph.

Now suppose we condition on the varialsleas represented by the graph of
Figure 8.16. From (8.23), we can easily write down the coowét! distribution of
a andb, giveng, in the form

p(a,b,c)
p(c)
= p(alc)p(blc)

pla;ble) =

and so we obtain the conditional independence property
allb|ec.

We can provide a simple graphical interpretation of thisiltelsy considering
the path from node to nodeb via c. The nodec is said to betail-to-tail with re-
spect to this path because the node is connected to the ttalile two arrows, and
the presence of such a path connecting nedasdb causes these nodes to be de-
pendent. However, when we condition on nedas in Figure 8.16, the conditioned
node ‘blocks’ the path froma to b and causes andb to become (conditionally)
independent.

We can similarly consider the graph shown in Figure 8.17. johe distribu-
tion corresponding to this graph is again obtained from @uregal formula (8.5) to
give

p(a,b,c) = p(a)p(cla)p(blc). (8.26)

First of all, suppose that none of the variables are obsergdin, we can test to
see ifa andb are independent by marginalizing oveto give

pa,b) = p(a) Y plcla)p(ble) = p(a)p(bla).

The second of our three examples of 3-node a c b

graphs used to motivate the conditional indepen- < ) ,< ) ,< )
dence framework for directed graphical models.
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Figure 8.18 As in Figure 8.17 but now conditioningon nodec. a c b

Figure 8.19

O—@—0O

which in general does not factorize ini¢a)p(b), and so
all b|0 (8.27)

as before.
Now suppose we condition on nodgeas shown in Figure 8.18. Using Bayes’
theorem, together with (8.26), we obtain

pla;ble) =

p(a)p(cla)p(ble)
p(c)
= p(ale)p(blc)

and so again we obtain the conditional independence propert
allbd]|e

As before, we can interpret these results graphically. Tdaen is said to be
head-to-tailwith respect to the path from nodeto nodeb. Such a path connects
nodese andb and renders them dependent. If we now obsenas in Figure 8.18,
then this observation ‘blocks’ the path framto b and so we obtain the conditional
independence property L b | c.

Finally, we consider the third of our 3-node examples, shbwyithe graph in
Figure 8.19. As we shall see, this has a more subtle behathaur the two
previous graphs.

The joint distribution can again be written down using oung&l result (8.5) to
give

p(a, b, ¢) = p(a)p(b)p(cla, b). (8.28)

Consider first the case where none of the variables are adaseMarginalizing both
sides of (8.28) over we obtain

p(a,b) = p(a)p(b)

The last of our three examples of 3-node graphs usedto ¢ b
explore conditional independence properties in graphi-

cal models. This graph has rather different properties

from the two previous examples.
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Figure 8.20 As in Figure 8.19 but conditioning on the value of node ¢ b

Exercise 8.10

c. In this graph, the act of conditioning induces a depen-
dence between a and b.

and soa andb are independent with no variables observed, in contrastadwo
previous examples. We can write this result as

allb|0. (8.29)

Now suppose we condition of) as indicated in Figure 8.20. The conditional
distribution ofa andb is then given by

p(a, b, c)
p(c)
p(a)p(b)p(cla, b)
p(c)

p(a,ble) =

which in general does not factorize into the produ(t)p(b), and so

all b]ec.

Thus our third example has the opposite behaviour from thetfiro. Graphically,
we say that node is head-to-headwvith respect to the path from to b because it
connects to the heads of the two arrows. When nodeunobserved, it ‘blocks’
the path, and the variablesandb are independent. However, conditioning on
‘unblocks’ the path and rendessandb dependent.

There is one more subtlety associated with this third exartit we need to
consider. First we introduce some more terminology. We bayodey is ade-
scendanf nodex if there is a path fromx to y in which each step of the path
follows the directions of the arrows. Then it can be shown #hlaead-to-head path
will become unblocked if either the nodar, any of its descendants observed.

In summary, a tail-to-tail node or a head-to-tail node Isaagyath unblocked
unless it is observed in which case it blocks the path. Byreshta head-to-head
node blocks a path if it is unobserved, but once the nodepaatiieast one of its
descendants, is observed the path becomes unblocked.

Itis worth spending a moment to understand further the uaddsehaviour of the
graph of Figure 8.20. Consider a particular instance of sughaph corresponding
to a problem with three binary random variables relatindieftiel system on a car,
as shown in Figure 8.21.  The variables are calledepresenting the state of a
battery that is either charged (= 1) or flat (B = 0), F' representing the state of
the fuel tank that is either full of fuel{ = 1) or empty ¢ = 0), andG, which is
the state of an electric fuel gauge and which indicates efthe( G = 1) or empty
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B F B F B F

G G G

Figure 8.21 An example of a 3-node graph used to illustrate the phenomenon of ‘explaining away’. The three
nodes represent the state of the battery (B), the state of the fuel tank (F) and the reading on the electric fuel
gauge (G). See the text for details.

(G = 0). The battery is either charged or flat, and independendyfilel tank is
either full or empty, with prior probabilities

p(B=1) = 0.9
p(F=1) = 009.

Given the state of the fuel tank and the battery, the fuel gaagds full with proba-
bilities given by

p(G=1B=1,F=1) = 0.8
p(G=1B=1,F=0) = 0.2
p(G=1B=0,F=1) = 0.2
p(G=1B=0,F=0) = 0.1

so this is a rather unreliable fuel gauge! All remaining [abilities are determined
by the requirement that probabilities sum to one, and so we a@omplete specifi-
cation of the probabilistic model.

Before we observe any data, the prior probability of the faak being empty
isp(F = 0) = 0.1. Now suppose that we observe the fuel gauge and discover that
it reads empty, i.e.(7 = 0, corresponding to the middle graph in Figure 8.21. We
can use Bayes’ theorem to evaluate the posterior probabflithe fuel tank being
empty. First we evaluate the denominator for Bayes’ theggien by

> > p(G=0[B,F)p(B)p(F) = 0.315 (8.30)
Be{0,1} Fe{0,1}
and similarly we evaluate
p(G=0F=0)= > p(G=0B,F=0)p(B) =081 (8.31)
Be{0,1}
and using these results we have

p(G =0|F = 0)p(F =0)
p(G =0)

p(F =0|G=0)= ~ 0.257 (8.32)
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and sop(F = 0|G = 0) > p(F = 0). Thus observing that the gauge reads empty
makes it more likely that the tank is indeed empty, as we wntldgtively expect.
Next suppose that we also check the state of the battery ashdhiat it is flat, i.e.,

B = 0. We have now observed the states of both the fuel gauge arivhttezy, as
shown by the right-hand graph in Figure 8.21. The posteriobability that the fuel
tank is empty given the observations of both the fuel gaugktaa battery state is
then given by

p(G=0|B=0,F =0)p(F =0)
ZFG{O,l} p(G =0|B=0,F)p(F)

where the prior probability(B = 0) has cancelled between numerator and denom-
inator. Thus the probability that the tank is empty liesreasedfrom 0.257 to
0.111) as a result of the observation of the state of the batterg ddctords with our
intuition that finding out that the battery is flatplains awayhe observation that the
fuel gauge reads empty. We see that the state of the fuel tahthat of the battery
have indeed become dependent on each other as a result ofinhgbe reading
on the fuel gauge. In fact, this would also be the case ifgabtof observing the
fuel gauge directly, we observed the state of some descentléh Note that the
probabilityp(F = 0|G = 0, B = 0) ~ 0.111 is greater than the prior probability
p(F' = 0) = 0.1 because the observation that the fuel gauge reads zenrstildes
some evidence in favour of an empty fuel tank.

p(F=0/G=0,B=0)= ~0.111 (8.33)

8.2.2 D-separation

We now give a general statement of the d-separation profieeigrl, 1988) for
directed graphs. Consider a general directed graph in whijch, andC are arbi-
trary nonintersecting sets of nodes (whose union may belanthén the complete
set of nodes in the graph). We wish to ascertain whether é&pkait conditional
independence statemefitll. B | C'is implied by a given directed acyclic graph. To
do so, we consider all possible paths from any nod# in any node inB. Any such
path is said to bélockedif it includes a node such that either

(a) the arrows on the path meet either head-to-tail or taibtbat the node, and the
node is in the sef’, or

(b) the arrows meet head-to-head at the node, and neither thee nodany of its
descendants, is in the g€t

If all paths are blocked, theA is said to be d-separated fraBby C, and the joint
distribution over all of the variables in the graph will sfi§iA 1l B | C.

The concept of d-separation is illustrated in Figure 8.22graph (a), the path
from a to b is not blocked by nod¢g because it is a tail-to-tail node for this path
and is not observed, nor is it blocked by nadbecause, although the latter is a
head-to-head node, it has a descenddntcause is in the conditioning set. Thus
the conditional independence statement. b | ¢ doesnot follow from this graph.

In graph (b), the path from to b is blocked by nod¢g because this is a tail-to-tail
node that is observed, and so the conditional independenperttya 1L b | f will
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Figure 8.22 lllustration of the con-
cept of d-separation. See the text for

details.

Section 2.3

Figure 8.23

(a) (b)

be satisfied by any distribution that factorizes accordintipis graph. Note that this
path is also blocked by nodebecause is a head-to-head node and neither it nor its
descendant are in the conditioning set.

For the purposes of d-separation, parameters suchasd o2 in Figure 8.5,
indicated by small filled circles, behave in the same was asmkd nodes. How-
ever, there are no marginal distributions associated witth $iodes. Consequently
parameter nodes never themselves have parents and sdaltipaiugh these nodes
will always be tail-to-tail and hence blocked. Consequettiey play no role in
d-separation.

Another example of conditional independence and d-separit provided by
the concept of i.i.d. (independent identically distrili)telata introduced in Sec-
tion 1.2.4. Consider the problem of finding the posteriotridigtion for the mean
of a univariate Gaussian distribution. This can be represtoy the directed graph
shown in Figure 8.23 in which the joint distribution is definey a priorp(u) to-
gether with a set of conditional distributiopér,, |;1) forn = 1,..., N. In practice,
we observeD = {z,,..., 2y} and our goal is to infer. Suppose, for a moment,
that we condition o and consider the joint distribution of the observationsngs
d-separation, we note that there is a unique path fromwang any others;.; and
that this path is tail-to-tail with respect to the observed&u.. Every such path is
blocked and so the observatiobs= {z1, ..., zy} are independent given so that

N
p(Dlu) = ] plaalp). (8:34)

n=1

(@) Directed graph corre- H
sponding to the problem
of inferring the mean p of
a univariate Gaussian dis-
tribution from observations
Z1,...,xn. (b) The same
graph drawn using the plate
notation.

(b)
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Figure 8.24 A graphical representation of the ‘naive Bayes’

Section 3.3

8. GRAPHICAL MODELS

model for classification.  Conditioned on the
class label z, the components of the observed
vector x = (z1,...,zp)T are assumed to be
independent.

However, if we integrate over, the observations are in general no longer indepen-
dent

0 N
p(D) = / p(Dl)p() d £ [ plan). (5.35)

n=1

Herep is a latent variable, because its value is not observed.

Another example of a model representing i.i.d. data is tla@lgin Figure 8.7
corresponding to Bayesian polynomial regression. Heratibehastic nodes corre-
spond to{t, }, w andz. We see that the node fev is tail-to-tail with respect to
the path fron¥ to any one of the nodes and so we have the following conditional
independence property

T t, | w. (8.36)

Thus, conditioned on the polynomial coefficierts the predictive distribution for
1is independent of the training dafa,, ...,tx}. We can therefore first use the
training data to determine the posterior distribution ahercoefficientsy and then
we can discard the training data and use the posterioritivh for w to make
predictions oft for new input observations.

A related graphical structure arises in an approach to ifilzst#on called the
naive Bayesnodel, in which we use conditional independence assungptmseim-
plify the model structure. Suppose our observed variabigists of aD-dimensional
vectorx = (z1,...,2p)T, and we wish to assign observed values @b one of K
classes. Using the 1-df- encoding scheme, we can represent these classe&by a
dimensional binary vectar. We can then define a generative model by introducing
a multinomial priorp(z|u) over the class labels, where thé componeni;, of
is the prior probability of clas€§y, together with a conditional distribution(x|z)
for the observed vectat. The key assumption of the naive Bayes model is that,
conditioned on the class the distributions of the input variables, . . ., zp are in-
dependent. The graphical representation of this modebwslin Figure 8.24. We
see that observation afblocks the path betweern andz; for j # i (because such
paths are tail-to-tail at the nodg and sox; andx; are conditionally independent
givenz. If, however, we marginalize out (so thatz is unobserved) the tail-to-tail
path fromz; to x; is no longer blocked. This tells us that in general the maigin
densityp(x) will not factorize with respect to the componentsofWe encountered
a simple application of the naive Bayes model in the contéxXtising data from
different sources for medical diagnosis in Section 1.5.

If we are given a labelled training set, comprising inpiss, . . ., xy } together
with their class labels, then we can fit the naive Bayes manéhe training data
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using maximum likelihood assuming that the data are drawlependently from

the model. The solution is obtained by fitting the model fochealass separately
using the correspondingly labelled data. As an examplg@smthat the probability
density within each class is chosen to be Gaussian. In tlsis, ¢he naive Bayes
assumption then implies that the covariance matrix for €aahssian is diagonal,
and the contours of constant density within each class witbhis-aligned ellipsoids.
The marginal density, however, is given by a superpositiodiagonal Gaussians
(with weighting coefficients given by the class priors) andwll no longer factorize

with respect to its components.

The naive Bayes assumption is helpful when the dimensign&liof the input
space is high, making density estimation in the fifdimensional space more chal-
lenging. It is also useful if the input vector contains botbcdete and continuous
variables, since each can be represented separately ygingpsiate models (e.g.,
Bernoulli distributions for binary observations or Gaass for real-valued vari-
ables). The conditional independence assumption of thigetrie clearly a strong
one that may lead to rather poor representations of the-ctasditional densities.
Nevertheless, even if this assumption is not preciselygfiadi, the model may still
give good classification performance in practice becalsdeleision boundaries can
be insensitive to some of the details in the class-conditidensities, as illustrated
in Figure 1.27.

We have seen that a particular directed graph represen¢sisplecomposition
of a joint probability distribution into a product of conidibal probabilities. The
graph also expresses a set of conditional independeneengtats obtained through
the d-separation criterion, and the d-separation thecsegaily an expression of the
equivalence of these two properties. In order to make tleiarclt is helpful to think
of a directed graph as a filter. Suppose we consider a patigoiht probability
distributionp(x) over the variables corresponding to the (nonobserved) nodes of
the graph. The filter will allow this distribution to passdiigh if, and only if, it can
be expressed in terms of the factorization (8.5) impliedhgygraph. If we present to
the filter the set of all possible distributiopéx) over the set of variables, then the
subset of distributions that are passed by the filter will eeadedDF, for directed
factorization This is illustrated in Figure 8.25.  Alternatively, we caseuthe
graph as a different kind of filter by first listing all of thereditional independence
properties obtained by applying the d-separation criteta the graph, and then
allowing a distribution to pass only if it satisfies all of #eeproperties. If we present
all possible distributiong(x) to this second kind of filter, then the d-separation
theorem tells us that the set of distributions that will Hevaéd through is precisely
the setDF.

It should be emphasized that the conditional independeragepties obtained
from d-separation apply to any probabilistic model desmtiby that particular di-
rected graph. This will be true, for instance, whether thieabdes are discrete or
continuous or a combination of these. Again, we see thatticpkar graph is de-
scribing a whole family of probability distributions.

At one extreme we have a fully connected graph that exhilbitsomditional in-
dependence properties at all, and which can represent asybejoint probability
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Figure 8.25 We can view a graphical model (in this case a directed graph) as a filter in which a prob-

ability distribution p(x) is allowed through the filter if, and only if, it satisfies the directed
factorization property (8.5). The set of all possible probability distributions p(x) that pass
through the filter is denoted DF. We can alternatively use the graph to filter distributions
according to whether they respect all of the conditional independencies implied by the
d-separation properties of the graph. The d-separation theorem says that it is the same
set of distributions DF that will be allowed through this second kind of filter.

distribution over the given variables. The g&F will contain all possible distrib-
utionsp(x). At the other extreme, we have the fully disconnected graph,one
having no links at all. This corresponds to joint distriloms which factorize into the
product of the marginal distributions over the variablesipasing the nodes of the
graph.

Note that for any given graph, the set of distributidng will include any dis-
tributions that have additional independence properte®bd those described by
the graph. For instance, a fully factorized distributiotl aiways be passed through
the filter implied by any graph over the corresponding setaoiables.

We end our discussion of conditional independence pragsebly exploring the
concept of aMarkov blanketor Markov boundary Consider a joint distribution
p(x1,...,xp) represented by a directed graph haviighodes, and consider the
conditional distribution of a particular node with variabk; conditioned on all of
the remaining variables;_;. Using the factorization property (8.5), we can express
this conditional distribution in the form

p(X1,...,Xp)
P(Xz‘\x{j#}) -
/p(xl, .o, xp)dx;
T »(xeloae)
k

[ T ptxelpa)
k

in which the integral is replaced by a summation in the caslsofete variables. We
now observe that any factp(xy|pa;, ) that does not have any functional dependence
on x; can be taken outside the integral owgr and will therefore cancel between
numerator and denominator. The only factors that remaihbeilthe conditional
distributionp(x;|pa;) for nodex; itself, together with the conditional distributions
for any nodes;, such that node; is in the conditioning set gf(xx|pa; ), in other
words for whichx; is a parent okj. The conditionap(x;|pa;) will depend on the
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Figure 8.26 The Markov blanket of a node x; comprises the set

8.3.

of parents, children and co-parents of the node. It
has the property that the conditional distribution of
x;, conditioned on all the remaining variables in the
graph, is dependent only on the variables in the

Markov blanket. Li

parents of node;, whereas the conditionajgx|pa;,) will depend on the children

of x; as well as on theo-parentsin other words variables corresponding to parents
of nodex;, other than nodg;. The set of nodes comprising the parents, the children
and the co-parents is called the Markov blanket and is itist! in Figure 8.26. We
can think of the Markov blanket of a nodg as being the minimal set of nodes that
isolatesx; from the rest of the graph. Note that it is not sufficient tduie only the
parents and children of nodg because the phenomenon of explaining away means
that observations of the child nodes will not block paths®do-parents. We must
therefore observe the co-parent nodes also.

Markov Random Fields

Section 8.2

We have seen that directed graphical models specify a faatmm of the joint dis-
tribution over a set of variables into a product of local atindal distributions. They
also define a set of conditional independence properti¢sthst be satisfied by any
distribution that factorizes according to the graph. We toow to the second ma-
jor class of graphical models that are described by undicegtaphs and that again
specify both a factorization and a set of conditional indefsnce relations.

A Markov random fieldalso known as aarkov networkor an undirected
graphical modelKindermann and Snell, 1980), has a set of nodes each of which
corresponds to a variable or group of variables, as well ast @fslinks each of
which connects a pair of nodes. The links are undirected,ishthey do not carry
arrows. In the case of undirected graphs, it is conveniebéegpn with a discussion
of conditional independence properties.

8.3.1 Conditional independence properties

In the case of directed graphs, we saw that it was possibéstavhether a par-
ticular conditional independence property holds by apgya graphical test called
d-separation. This involved testing whether or not the patinnecting two sets of
nodes were ‘blocked’. The definition of blocked, howeverswsamewhat subtle
due to the presence of paths having head-to-head nodes. gt ask whether it
is possible to define an alternative graphical semanticpriaipability distributions
such that conditional independence is determined by sigwaleh separation. This
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