9.1.

K-means Clustering

We begin by considering the problem of identifying groups, or clusters, of data points
in a multidimensional space. Suppose we have a data set {x;,...,Xy } consisting
of N observations of a random D-dimensional Euclidean variable x. Qur goal is to
partition the data set into some number K of clusters, where we shall suppose for
the moment that the value of K is given. Intuitively, we might think of a cluster as
comprising a group of data points whose inter-point distances are small compared
with the distances to points outside of the cluster. We can formalize this notion by °
first introducing a set of D-dimensional vectors g, where & = 1,..., K, in which
it;, is a prototype associated with the &*® cluster. As we shall see shortly, we can
think of the p;, as representing the centres of the clusters. Our goal is then to find .
an assignment of data points to clusters, as well as a set of vectors {f;}, such that %
the sum of the squares of the distances of each data point o its closest vector P 1 1s
a minimum,

It is convenient at this point to define some notation to describe the assxgnment
of data points to clusters. For each data point x,,, we introduce a corresponding set .
of binary indicator variables r,,; € {0,1}, where k = 1,. .., K describing which
the K clusters the data point x,, is assigned to, so that if data point x,, is assig
cluster k then ry,p, = 1, and 7,,; = 0 for § # k. This is known as the 1-0f-K ¢o
scheme. We can then define an objective function, sometimes called a di

measure, given by
N K
T =3 " rarllxn — el
n=1 k=1 )

which represents the sum of the squares of the distances of each data p
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assigned vector g Our goal is to find values for the {r,,;} and the {3, } so as to
minimize J. We can do this through an iterative procedure in which each iteration
involves two successive steps corresponding to successive optimizations with respect
to the 7, and the p,,. First we choose some initial values for the g5, Then in the first
phase we minimize J with respect to the 7,5, keeping the p;, fixed. In the second
phase we minimize J with respect to the g, keeping ryy fixed. This two-stage
optimization is then repeated until convergence. We shall see that these two stages
of updating 7, and updating g+, correspond respectively to the E (expectation) and

‘M (maximization) steps of the EM algorithm, and to emphasize this we shall use the

terms E step and M step in the context of the X-means algorithm.

Consider first the determination of the r,5. Because J in (9.1) is a linear func-
tion of r,z, this optimization can be performed easily to give a closed form solution.
The terms involving different n are independent and so we can optimize for each
n separately by choosing r,y to be 1 for whichever value of & gives the minimum
value of [x, ~ x>, In other words, we simply assign the n'® data point to the
closest cluster centre. More formally, this can be expressed as

) . _ s . . 2 '
po— 1 ifk= ?Ll‘g ming [[x, — ;] ©.2)
0 otherwise.

Now consider the optimization of the gz, with the 7, held fixed. The objective

function J is a quadratic function of p,,, and it can be minimized by setting its

derivative with respect to g4, to zero giving

N
2> rnk(xn — ) =0 (9.3)
n=1
which we can casily solve for p,, to give
zn TnkXn
== (94
Hi zn Pk )

The denominator in this expression is equal to the number of points assigned fo

“cluster k&, and so this result has a simple interpretation, namely set 1, equal to the

mean of all of the data points x,, assigned to cluster k. For this reason, the procedure
is known as the K-means algorithm.

The two phases of re-assigning data points to clusters and re-computing the clus-
ter means are repeated in turn until there is no further change in the assignments {or
until some maximum number of iterations is exceeded), Because each phase reduces
the value of the objective function J, convergence of the algorithm is assured. How-
ever, it may converge to a local rather than global minimum of J. The convergence
properties of the K-means algorithm were studied by MacQueen (1967). _

The K-means algorithm is illustrated using the Old Faithful data set in Fig-
ure 9.1. For the purposes of this example, we have made a linear re-scaling of the
data, known as standardizing, such that each of the variables has zero mean and
unit standard deviation. For this example, we have chosen K = 2, and so in this
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Figure 9.1 Hlustration of the X-means algorithm using the re-scaled Old Failhful data set. (a) Green points -
denote the data set in a two-dimensional Euclidean space. The initial choices for centres i, and g, are shown -
by the red and blue crosses, respeclively. {b) In the initial E step, each data point is assigned either to the fed = .
cluster or to the blue cluster, according fo which cluster centre is nearer. This is equivalent to classifyingthe . " °
points according to which side of the perpendicular bisector of the two cluster centres, shown by the magenta - - -
fline, they lie on. (c) In the subsequent M step, each cluster cenire is re-computed to be the mean of the points
assigned to the corresponding cluster. {d)—{l) show successive E and M steps through to final convergence of

the algorithm. :
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(9.1} after each E step (blue points} 1000}
and M step (red points) of the K-
means afgorithm for the example |
shown in Figure 9.1. The algo- J
rithim has converged after the third
M step, and the final EM cyele pro-
duces no changes in either the as- 500}
signments or the prototype vectors.

H

case, the assignment of each data point to the nearest cluster centre is equivalent to a
classification of the data points according to which side they lie of the perpendicular
bisector of the two cluster centres. A plot of the cost function .J given by (9.1) for

" the Old Faithful example is shown in Figure 9.2.

Note that we have deliberately chosen poor initial values for the cluster centres
s0 that the algorithm takes several steps before convergence. In practice, a better
inifialization procedure would be to choose the cluster centres 11, to be equal to a
random subset of X data points. It is also worth noting that the K-means algorithm
itself is often used to initialize the parameters in a Gaussian mixture model before
applying the EM algorithm. '

A direct implementation of the K-means algorithm as discussed here can be
relatively slow, because in each E step it is necessary to compute the Euclidean dis-
tance between every prototype vector and every data point. Various schemes have
been proposed for speeding up the K -means algorithm, some of which are based on
precomputing a data structure such as a tree such that nearby points are in the same
subfree (Ramasubramanian and Paliwal, 1990; Moore, 2000). Other approaches
make vse of the triangle inequality for distances, thereby avoiding unnecessary dis-
tance calculations (Hodgson, 1998; Elkan, 2003).

So far, we have considered a batch version of K -means in which the whole data
set is used together to update the prototype vectors. We can also derive an on-line
stochastic algorithm (MacQueen, 1967) by applying the Robbins-Monre procedure
to the problem of finding the roots of the regression function given by the derivatives
of J in (9.1) with respect to g;,. This leads to a sequential update in which, for each
data point x,, in turn, we update the nearest prototype pt;, using

™ = R+ mn o — g ©.5)

where 7, is the learning rate parameter, which is typically made to decrease mono-
tonically as more data points are considered.

The K -means algorithm is based on the use of squared Euclidean distance as the
measure of dissimilarity between a data point and a prototype vector. Not only does
this limit the type of data variables that can be considered (it would be inappropriate
for cases where some or ail of the variables represent categorical labels for instance),
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but it can also make the determination of the cluster means nonrobust to outliers. We
can generalize the K -means algorithm by introducing a more general dissimilarity
measure V(x, x') between two vectors x and x’ and then minimizing the following
distortion measure :

_ N K
T=3 > Ve, ) ©.6)

n=1 k=i

which gives the K-medoids algorithm. The E step again involves, for given cluster
prototypes iy, assigning each data point to the cluster for which the dissimilarity to
the corresponding prototype is smallest. The computational cost of this is O(KN),
as is the case for the standard K-means algorithm. For a general choice of dissimi-
larity measure, the M step is potentially more complex than for /{-means, and so it
is common to restrict each cluster prototype to be equal to one of the data vectors as-
signed to that cluster, as this allows the algorithm to be implemented for any choice
of dissimilarity measure V(-,-) so long as it can be readily evaluated. Thus the M
step involves, for each cluster %, a discrete search over the Ny, points assigned to that
cluster, which requires O(NZ) evaluations of V(:, ). '

One notable feature of the K-means algorithm is that at each iteration, every
data point is assigned uniquely to one, and only one, of the clusters. Whereas some
data points will be much closer to a particular centre g, than to any other centre,
there may be other data points that lie roughly midway between cluster centres. In
the latter case, it is not clear that the hard assignment to the nearest cluster is the
most appropriate. We shall see in the next section that by adopting a probabilistic
approach, we obtain ‘soft’ assignments of data points to clusters in a way that reflects
the level of uncertainty over the most appropriate assignment. This probabilistic
formulation brings with it numerous benefits.

9.1.1 Image segmentation and compression

As an illustration of the application of the K-means algorithm, we consider
the related problems of image segmentation and image compression. The goal of
segmentation is to partition an image into regions cach of which has a reasonably
homogeneous visual appearance or which corresponds to objects or parts of objects
(Forsyth and Ponce, 2003). Each pixel in an image is a point in a 3-dimensional space
comprising the intensities of the red, blue, and green channels, and our segmentation
algorithm simply treats each pixel in the image as a separate data point. Note that
strictly this space is not Euclidean because the channel intensities are bounded by
the interval [0, 1]. Nevertheless, we can apply the K-means algorithm without diffi-
culty. We illustrate the result of ranning K-means to convergence, for any particular -
value of K, by re-drawing the image replacing each pixel vector with the {R, G, B }

" intensity triplet given by the centre g1, to which that pixel has been assigned. Results .

for various values of K are shown in Figure 9.3, We see that for a given value of K,
the algorithm is representing the image using a palette of only K colours. It should -
be emphasized that this use of K-means is not a particularly sophisticated approag
to image segmentation, not least because it takes no account of the spatial proxi_mit_jf_
of different pixels. The image segmentation problem is in general extremely difficul
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Qriginal image

Figure 9.3 Two examples of the application of the K-means clustering algorithm to image segmentation show-
ing the initial images together with their X-means segmentations obtained using various values of K. This
also illustrates of the use of vector quantrzauon for data compression, in which smaller values of K give higher
compression at the expense of poorer image quality.

and remains the subject of active research and is introduced here simply to illustrate
the behaviour of the & -means algorithm.

We can also use the result of a clustering algorithm to perform data compres-
sion. It is important to distinguish between lossless data compression, in which
the goal is to be able to reconstruct the original data exactly from the compressed
representation, and lossy data compression, in which we accept some errors in the
reconstruction in return for higher levels of compression than can be achieved in the
lossless case. We can apply the K-means algorithm to the problem of lossy data
compression as follows. For each of the NV data points, we store only the identity
k of the clhister to which it is assigned. We also store the values of the K clus-
ter centres ps;,, which typically requires significantly less data, provided we choose
K <« N. Each data point is then approximated by its neavest centre g2, New data
points can similarly be compressed by first finding the nearest p¢;, and then storing
the label k instead of the original data vector. This framework is often called vector
guantization, and the vectors p,, are called code-book vectors.




430 9. MIXTURE MODELS AND EM

The image segmentation problem discussed above also provides an iltustration
of the use of clustering for data compression. Suppose the original image has N
pixels comprising { R, G B} values each of which is stored with 8 bits of precision.
Then to transmit the whole image directly would cost 24N bits. Now suppose we
first run K -means on the image data, and then instead of (ransmitting the original
pixel intensity vectors we transimit the identity of the nearest vector y1,. Because
there are K such vectors, this requires log, K bits per pixel. We must also transmit
the K code book vectors p,,, which requires 24K bits, and so the total number of
bits required to transmit the image is 24K + N log, K (rounding up to the nearest
integer). The original image shown in Figure 9.3 has 240 x 180 = 43, 200 pixels
and so requires 24 x 43, 200 = 1,036, 800 bits to transmit directly. By comparison,
the compressed images require 43, 248 bits (K = 2), 86,472 bits (K = 3), and
173, 040 bits (K = 10), respectively, to transmit. These represent compression ratios
compared to the original image of 4.2%, 8.3%, and 16.7%, respectively. We see that
there is a trade-off between degree of compression and image quality, Note that our
aim in this example is to illustrate the K -means algorithm. If we had been aiming to
produce a good image compressor, then it would be more fruitful to consider small
blocks of adjacent pixels, for instance 5 x 5, and thereby exploit the correlations that
exist in natural images between nearby pixels.




9.2.

Mixtures of Gaussians

Tn Section 2.3.9 we motivated the Gaussian mixture model as.a simple linear super-
position of Gaussian components, aimed at providing a richer class of density mo
els than the single Gaussian. We now turn to a formulation of Gaussian mixtures
terms of discrete latent variables. This will provide us with a deeper insight into this
important distribution, and will also serve to motivate the expectation-maximiza
algorithm. .

Recall from (2.188) that the Gaussian mixture distributi
linear superposition of Gaussians in the form

on can be written as

K
px) = Y meN (el T

k=1

Let us introduce a K -dimensional binaty random variable z having a 1-of-K 1ep.
sentation in which a particular element Zx is equal to 1 and all other elements.
equal to 0. The vatues of z therefore satisfy zx € {0,1} and Sz =1 and
see that there are K possible states for the vector z according to which elemen
nonzero. We shall define the joint distribution p(x,z) in terms of a margin
tribution p(z) and a conditional distribution p(x}z), corresponding to the graphi

model in Figure 9.4. The marginal distribution over z is specified in terms

mixing coefficients T, such that

plz = 1) =7k
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Figure 9.4 Graphical represeniation of a mixture model, in which z
the joint distribution is expressed in the form p(x,z) =
p(z)p(x|z).
X
where the parameters {7} must satisfy
0<me <1 (9.8)
together with
K
dom=1 (9.9)
k=1

Exercise 9.3

in order to be valid probabilities. Because z uses a 1-of-& representation, we can
also write this distribution in the form

K
p(z) =[] =i (9.10)
k=1

Similarly, the conditional distribution of x given a particular value for z is a Gaussian
p(xler = 1) = N (x|, )

which can also be written in the form

K
pxlz) = [T Mg, Bh)™. 9.11)

k=1

The joint distribution is given by p{z)p(x|z), and the marginal distribution of x is
then obtained by summing the joint distribution over all possible states of # to give

id
p(x) = p(R)p(xlz) = Y meN (xlp, ) (0.12)
k4 k=1

where we have made use of (9.10) and (9.11). Thus the marginal distribution of x is
a Gaussian mixture of the form (9.7). If we have several observations x;,..., Xy,
then, because we have represented the marginal distribution in the form p(x) =
>, p(x, z), it follows that for every observed data point x,, there is a corresponding
latent variable z,,. :

We have therefore found an equivalent formulation of the Gaussian mixture in-
volving an explicit latent variable. It might seem that we have not gained much
by doing so. However, we are now able to work with the joint distribution p(x, z)
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instead of the marginal distribution p(x), and this will lead to significant simplifica-
tions, most notably through the introduction of the expectation-maximization (EM)
algorithm.

Another quantity that will play an important role is the conditional probability
of z given x. We shall use y{z;) to denote p{z, = 1|x), whose value can be found
using Bayes’ theorem

plzr = D)p(x|zr, = 1)

Zp(zj- = Dp(xlz = 1)

=
ﬂk-’v(xllu’k) Ek‘)

wa(xzuj, 3)

j=t

¥(zr) = plzx = 1x)

(9.13)

We shall view 1, as the prior probability of z; = 1, and the quantity y(z;) as the
corresponding posterior probability once we have observed x. As we shall see later,
fy(zk) can also be viewed as the responsibility that component k takes for ‘explain-
ing’ the observation x.

We can use the technique of ancestral sampling to generate random samples
distributed according to the Gaussian mixture model. To do this, we first generate a
value for z, which we denote Z, from the marginal distribution p(z) and then generate
a value for x from the conditional distribution p(x{Z). Techniques for sampling from
standard distributions are discussed in Chapter 11. We can depict samples from the
joint distribution p(x, =) by ploiting points at the corresponding values of x and
then colouring them according to the value of z, in other words according to which
Ganssian component was responsible for generating them, as shown in Figure 9.5(a).
Similarly samples from the marginal distribution p(x) are obtained by taking the
samples from the joint distribution and ignoring the values of z. These are illustrated
in Figure 9.5(b) by plotting the x values without any coloured labels.

We can also use this synthetic data set to illustrate the ‘responsibilities’ by evai-
uating, for every data point, the posterior probability for each component in the
mixture distribution from which this data set was generated. In particular, we can - !
represent the value of the responsibilities y(z,x) associated with data point x, by ..
plotting the corresponding point using proportions of red, blue, and green ink given
by v(#ak) for k = 1,2, 3, respectively, as shown in Figure 9.5(c). So, for instance, .
a data point for which y(2,1) = 1 will be coloured red, whereas one for which
¥(2n2) = ¥{#n3) = 0.5 will be coloured with equal proportions of blue and green
ink and so will appear cyan. This should be compared with Figure 9.5(a) in whi
the data points were labelled using the true identity of the component from whic
they were generated.

9.2.1 Maximum likelihood

Suppose we have a data set of observations {x1,...,%xn}, and we w1sh to m
this data using a mixture of Gaussians. We can represent this data set as '
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0.5

0 0.5 1 . 0 0.5 1 0 0.5 i

Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. {a) Samples
from the joint distribution p{z)p(x|z} in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. {c) The same samples in which the colours represent the
value of the responsibilities (z,x) associated with data point x,,, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by vy{z.x) for k = 1,2, 3, respectively

matrix X in which the n** row is given by x}-. Similarly, the corresponding latent
variables will be denoted by an N x K matrix Z with rows z-. If we assume that
the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.1.d. data set using the graphical representation
shown in Figure 9.6, From (9.7) the log of the likelihood function is given by

(I

N K
Inp(Xim, p, 3) = Ziﬂ {Z?Tk»’v(xnl#k, Ek)} : (.14

n=1 k=1

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by 3 = i1, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the 5*" component, has its mean #; exactly equal to one of the data

A T S

: Figure 9.6 Graphical representation of a Gaussian mixture model
4 for a set of N Li.d. data points {x,}, with corresponding
: latent points {z,}, wheren=1,...,N
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Figure 9.7

Section 10.1

singularities arise.

llustration of how singularities in the L
likelihood function arise with mixtures
of Gaussians. This should be com- p{z)
pared with the case of a single Gaus-
stan shown in Figure 1.14 for which no

3]

points so that pt; = x;, for some value of n. This data point will then contribute a
term in the likelihood function of the form

N(Xn]Xn, o*?I) = L 1

(212 o5

If we consider the limit o; — 0, then we see that this term goes to infinity and

so the log likelihood function will also go to infinity. Thus the maximization of

the log likelihood function is not a well posed problem because such singularities

will always be present and will occur whenever one of the Gaussian components
‘collapses’ onto a specific data point. Recall that this problem did not arise in the

case of a single Gaussian distribution. To understand the difference, note that if a
single Gaussian collapses onto a data point it will contribute multiplicative factors

to the likelihood function arising from the other data points and these factors will go

to zero exponentially fast, giving an overall likelihood that goes to zero rather than
infinity. However, once we have (at least) two components in the mixture, one of -

the components can have a finite variance and therefore assign finite probability to

all of the data points while the other component can shrink onto one specific data
point and thereby contribute an ever increasing additive value to the log likelihood.

This is illustrated in Figure 9.7. These singularities provide another example of the
severe over-fitting that can occur in a maximum likelihood approach. We shall see

that this difficulty does not occur if we adopt a Bayesian approach. For the moment,
however, we simply note that in applying maximum likelihood to Gaussian mixture
models we must take steps to avoid finding such pathological solutions and instead

seek local maxima of the likelihood function that are well behaved. We can hope to
avoid the singularities by using suitable heuristics, for instance by detecting when a
Gaussian component is collapsing and resetting its mean to a randomly chosen value :
while also resetting its covariance to some large value, and then continuing w1th the s
optimization. PR

A further issue in finding maximum likelihood solutions arises from the fact

that for any given maximum likelihood solution, a K-component mixture will have
a total of K1 equivalent solutions corresponding to the K! ways of assigning K-
sets of parameters to K components. In other words, for any given (nondegen.erate)
point in the space of parameter values there will be a further K'!-- 1 additional po
all of which give rise to exactly the same distribution. This problem is known

9.15)
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identifiability (Casella and Berger, 2002) and is an important issue when we wish to
interpret the parameter values discovered by a madel. Identifiability will also arise
when we discuss models having continuous latent variables in Chapter 12, However,
for the purposes of finding a good density model, it is irrelevant because any of the
equivalent solutions is as good as any other,

- Maximizing the log likelihood function (9.14) for a Gaussian mixture model
turns out to be a more complex problem than for the case of a single Gaussian. The
difficulty arises from the presence of the summation over & that appears inside the
logarithm in (9.14), so that the logarithm function no longer acts directly on the
Gaussian. If we set the derivatives of the log likelihood to zero, we will no longer
obtain a closed form solution, as we shall see shortly.

One approach is to apply gradient-based optimization techniques (Fletcher, 1987;
Nocedal and Wright, 1999; Bishop and Nabney, 2008). Although gradient-based
techniques are feasible, and indeed will play an important role when we discuss
mixture density networks in Chapter 5, we now consider an alternative approach
known as the EM algorithm which has broad applicability and which will lay the
foundations for a discussion of variational inference techniques in Chapter 10.

9.2.2 EM for Gaussian mixtures

An elegant and powerful method for finding maximum likelihood solutions for
models with latent variables is called the expectation-maximization algorithm, or EM
algorithm (Dempster ef al., 1977; McLachian and Xrishnan, 1997). Later we shall
give a general treatment of BEM, and we shall also show how EM can be generalized
to obtain the variational inference framework. Initially, we shall motivate the EM
algorithm by giving a relatively informal treatment in the context of the Gaussian
mixture model. We emphasize, however, that EM has broad applicability, and indeed
it will be encountered in the context of a variety of different models in this book.

Let us begin by writing down the conditions that must be satisfied at a maximum
of the likelihood function, Setting the derivatives of In p(X|m, 2, 33} in (9.14) with
respect to the means g, of the Gaussian components to zero, we obtain

N
ﬂkN(xnll-"k: EA:)
0=— Ylxn — 9.16
2 S N Gl 5] O 1) 16

Y(znw)
where we have made use of the form (2.43) for the Gaussian distribution, Note that
the posterior probabilities, or responsibilities, given by (9.13) appear naturally on

the right-hand side. Multiplying by E;l (which we assume to be nonsingular) and
rearranging we obtain

n=1

N |
1
= F gv(fnk)xn ©.17)

where we have defined

N
Ne =" ¥zms). (9.18)
n=1
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We can interpret Ny, as the effective number of points assigned to cluster k. Note
carefully the form of this solution. We see that the mean g, for the k" Gaussian
component is obtained by taking a weighted mean of all of the points in the data set,
in which the weighting factor for data point x,, is given by the posterior probablhty
7(znr) that component k was responsible for generating x,.

If we set the derivative of In p(X |, 1, 33) with respect to 33, to zero, and follow
a similar line of reasoning, making use of the result for the maximum likelihood
solution for the covariance matrix of a single Gaussian, we obtain

N .
) .
g = A ;7(31‘&/@)(}{:1 — o }(xn — ﬂk)_T (9.19)

which has the same form as the corresponding result for a single Gaussian fitied to
the data set, but again with each data point weighted by the corresponding poste-
rior probability and with the denominator given by the effective number of points
associated with the corresponding component.

Finally, we maximize Inp(X|sm, i, ) with respect to the mixing coefficients
a1,. Here we must take account of the constraint (5.9), which requires the mixing
coefficients to sum to one. This can be achieved using a Lagrange multiplier and
maximizing the following quantity

K
Inp(X|m, 12, ) + A (Z m — 1) (9.20)
k=1
which gives
N

'Ej WjN(XnFF"j: 34)

where again we see the aispearance of the responsibilities. If we now multiply both

nw=1

sides by m;, and sum over k making use of the constraint (9.9), we find A = —N.
Using this to eliminate A and rearranging we obtain
Ny
—k 9.22
Te = 7 (9.22)

so that the mixing coefficient for the k% component is given by the average respon-
s1b111ty which that component takes for expldining the data points.

It is worth emphasizing that the results (9.17), (9.19), and (9.22} do not con-
stitute a closed-form solution for the parameters of the mixture model because the
responsibilities y(z, )} depend on those parameters in a complex way through (9.13).
However, these results do suggest a simple iterative scheme for finding a solution to

the maximum likelihood problem, which as we shall see turns out to be an instance = .

of the EM algorithm for the particular case of the Gaussian mixture model. ='W
first choose some initial values for the means, covariances, and mixing coefficients.
Then we alternate between the following two updates that we shall call the E
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Figure 9.8 llustration of the EM algorithm using the Old Faitinful set as used for the ilustration of the K-means

algorithm in Figure 9.1. See the fext for details.

Section 9.4

and the M step, for reasons that will become apparent shortly. In the expectation
step, or E step, we use the current values for the parameters to evaluate the posterior
probabilities, or responsibilities, given by (9.13). We then use these probabilities in
the maximization step, or M step, to re-estimate the means, covariances, and mix-
ing coefficients using the results (9.17), (9.19), and (9.22). Note that in so doing
we first evaluate the new means using (9.17) and then use these new values to find
the covariances using (9.19), in keeping with the corresponding result for a single
Gaussian distribution. We shall show that each update to the parameters resulting
from an E step followed by an M step is guaranteed to increase the log likelihood
function. In practice, the algorithm is deemed to have converged when the change
in the log likelihood function, or alternatively in the parameters, falls below some
threshold, We illustrate the EM algorithm for a mixture of two Gaussians applied to
the rescaled Old Faithful data set in Figure 9.8,  Here a mixture of two Gaussians
is used, with centres initialized using the same values as for the K-means algorithm
in Figure 9.1, and with precision matrices initialized to be proportional to the unit
matrix. Plot (a} shows the data points in green, together with the initial configura-
tion of the mixture model in which the one standard-deviation contours for the two
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Gaussian components are shown as blue and red circles. Plot {b) shows the result
of the initial E step, in which each data point is depicted using a proportion of blue
ink equal to the posterior probability of having been generated from the blue com-
ponent, and a corresponding proportion of red ink given by the posterior probability
of having been generated by the red component. ‘Thus, points that have a significant
probability for belonging to either cluster appear purple. The situation after the first
M step is shown in plot (c), in which the mean of the blue Gaussian has moved to
the mean of the data set, weighted by the probabilities of each data point belonging
to the blue cluster, in other words it has moved io the centre of mass of the blue ink.
Similarly, the covariance of the blue Gaussian is set equal to the covariance of the
blue ink. Analogous results hold for the red component. Plots (d), (e), and (f) show
the tesults after 2, 5, and 20 complete cycles of EM, respectively. In plot (f) the
algorithm is close to convergence.

Note that the EM algorithm takes many more iterations to reach {approximate)
convergence compared with the K-means algorithm, and that each cycle requires
significantly more computation. It is therefore common to run the K -means algo-
sithm in order to find a suitable initialization for a Gaussian mixture model that is
subsequently adapted using EM. The covariance matrices can conveniently be ini-
tialized to the sample covariances of the clusters found by the K-means algorithm,
and the mixing coefficients can be set to the fractions of data points assigned to the
respective clusters. As with gradient-based approaches for maximizing the log like-
lihood, techniques must be employed to avoid singularities of the likelihood function
in which a Gaussian component collapses onto a particular data point. It should be
emphasized that there will generally be multiple local maxima of the log likelihood
function, and that EM is not guaranteed to find the largest of these maxima. Because
the EM algorithm for Gaussian mixtures plays such an important role, we summarize

it below.

EM for Gaussian Mixiures

Given a Gaussian mixture model, the goal is to maximize the likelihood function
with respect to the parameters (comprising the means and covariances of the
components and the mixing coefficients).

1. Initialize the means pi;,, covariances X, and mixing coefficients 7, and
evaluate the initial value of the log likelihood.

2. E step. Evaluate the responsibilities using the current parameter values

V() = ;’“N(X”l‘”' w3k) (9.23)

> N (el 2g)

j=1
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3. M step. Re-estimale the parameters using the current responsibilities

N
new  __ 15
Y= ;v(znk)x.n (9.24)
N
new  __ 1 new newy T
e nzl'r(znk) (Kn — 02) (30 — 2" (9.25)
e = % (9.26)

where

N |
Ne =Y ¥(zak)- ©.27)
n=1

4. Evaluate the log likelihood

N K '
lnp(ler, 2) ﬂ') = Zln {ZWkN(Xni.u'k: Ek)} {928)

n=1 k=1

and check for convergence of either the parameters or the log likelihood. If
the convergence criterion i$ not satisfied return to step 2.




9.3. An Alternative View of EM

In this section, we present a complementary view of the EM algorithm that 1ecog-
nizes the key role played by latent variables. We discuss this approach first of all
in an abstract setting, and then for illustzation we consider once again the case of
Gaussian mixtures.
The goal of the EM algorithm is to find maximum Kikelhood solutions for mod-
els having latent variables. We denote the set of all observed data by X, in which the
- '™ row represents x7, and similarly we denote the set of all Iatent variables by Z,
with a corresponding row z,r. The set of all model parameters is denoted by 8, and
so the log likelihood function is given by

Inp(X]6) = In { > p(X, z;a)} . (9.29)
Z

Note that our discussion will apply equally well to continuous latent variables simply
by replacing the sum over Z with an integral.

A key observation is that the summation over the latent variables appears inside
the logarithm. Even if the joint distribution p(X, Z]6) belongs to the exponential




AR e e N e Rt s e e

e

440

Section 9.4

9. MIXTURE MODELS AND EM

family, the marginal distribution p(X18) typically does not as a result of this sum-
mation. The presence of the sum prevents the logarithm from acting directly on the
joint distribution, resulting in complicaied expressions for the maximum likelihood
solution, '

Now suppose that, for each observation in X, we were told the corresponding
value of the latent variable Z. We shall call {X, Z} the complete data set, and we
shall refer to the actual observed data X as incomplete, as illustrated in Figure 9.5.
The likelihood function for the complete data set simply takes the form In p(X, Z|6),
and we shall suppose that maximization of this complete-data log likelihood function
is straightforward.

In practice, however, we are not given the complete data set {X, Z}, but only
the incomplete data X. Our state of knowledge of the values of the latent variables
in Z is given only by the posterior distribution p(Z|X, 8). Because we cannot use
the complete-data log likelihood, we consider instead its expected value under the
posterior distribution of the latent variable, which corresponds (as we shall see) to the
E step of the EM algorithm, In the subsequent M step, we maximize this expeclation,
If the current estimate for the parameters is denoted #°', then a pair of successive
E and M steps gives rise to a revised estimate 8%, The algorithm is initialized by
choosing some starting value for the parameters #;. The use of the expectation may
seem somewhat arbitrary. However, we shall see the motivation for this choice when
we give a deeper treatment of EM in Section 9.4.

In the B step, we use the current parameter values 8¢ to find the posterior
distribution of the latent variables given by p(Z[X, 8°'®). We then use this posterior
distribution to find the expectation of the complete-data log likelihood evaluated for
some general parameter value @. This expectation, denoted Q(6, 9"“), is given by

Q0,6 =" p(Z|X, 8°) Inp(X, Z|0). (9.30)
z N

In the M step, we determine the revised parameter estimate 8" by maximizing this
function

6™ = arg max Q(8, °%). 9.31) -
: a

Note that in the definition of Q(6,8°'), the logarithm acts directly on the joint
distribution p(X, Z}), and so the corresponding M-step maximization will, by sup-
position, be tractable,

The general EM algorithm is summarized below. It has the property, as we shall
show later, that each cycle of EM will increase the incomplete-data log likelihood- B

(unless it is already at a Iocal maximum).

The General EM Algorithm 3

Given a joint distribution p(X, Z|6) over observed variables X and latent vari-
ables 7, governed by parameters 8, the goal is to maximize the likelihood f Iic-
tion p(X{8) with respect to 8. o

1. Choose an initial setting for the parameters 8°'¢.
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2. E step Bvaluate p(Z|X, 8°%).

3, M step Evaluate 8"°" given by
6" = arg max Q(0,0°%) (9.32)
8 ‘

where
(8,6 = p(Z|X, 0°) Inp(X, Z16). (9.33)
Z

4. Check for convergence of either the log likelihood or the parameter values.
Tf the convergence criterion is not satisfied, then let

901d — gnew (9.34)

and return to step 2.

The EM algorithm can also be used to find MAP (maximum posterior) solutions
for models in which a prior p(@) is defined over the parameters. In this case the E
step remains the same as in the maximum likelihood case, whereas in the M step the
quantity to be maximized is given by Q(9, 6°%) + Inp(@). Suitable choices for the
prior will remove the singularities of the kind illustrated in Figure 9.7.

Here we have considered the use of the EM algorithm to maximize a likelihood
function when there are discrete latent variables. However, it can also be applied
when the unobserved variables correspond to missing values in the data set. The
distribution of the observed values is obtained by taking the joint distribution of ait

* the variables and then marginalizing over the missing ones. EM can then be used

to maximize the corresponding likelihood function. We shall show an example of
the application of this technique in the context of principal component analysis in
Figure 12.11. This will be a valid procedure if the data values are missing af random,
meaning that the mechanism causing values to be missing does not depend on the
unobserved values. In many situations this will not be the case, for instance if a
sensor fails to return a value whenever the quantity it is measuring exceeds some
threshold.

9.3.1 Gaussian mixtures revisited

We now consider the application of this latent variable view of EM to the spe-
cific case of a Gaussian mixture model, Recall that our goal is to maximize the log
likelihood function (9.14), which is computed using the observed data set X, and we
saw that this was more difficult than for the case of a single Gaussian distribution
due to the presence of the summation over k that occurs inside the logarithm. Sup-
pose then that in addition to the observed data set X, we were also given the values
of the corresponding discrete variables Z. Recall that Figure 9.5(a) shows a ‘com-
plete’ data set (i.e., one that includes labels showing which component generated
each data point) while Figure 9.5(b) shows the corresponding ‘incomplete’ data set.
The graphical model for the complete data is shown in Figure 9.9,
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Figure 9.9 This shows the same graph as in Figure 9.6 except that -
we now suppose that the discrete varlables z, are ob-
served, as well as the data variables x,.

Now consider the problem of maximizing the likelihood for the complete data
set { X, Z}. From (9.10) and (9.11), this likelihood function takes the form

N K
p(X, Zips, By w) = [ [ [T M (xenlpss, ) (9.35)

n=1 k:=-1
where 2,5, denotes the k™ component of z,. Taking the logarithm, we obtain

N K
Inp(X,Z|p, 2, 7) = E Zz”k {Inm +In N (xn g, S} - (9.36)

n=1 k=1

Comparison with the log likelihood function (9.14) for the incomplete data shows
that the summation over & and the logarithm have been interchanged. The loga-
rithm now acts directly on the Gaussian distribution, which itself is a member of
the exponential family. Not surprisingly, this leads to a much simpler solution to
the maximum likelihood problem, as we now show. Consider first the maximization
with respect to the means and covariances. Because z, is a K-dimensional vec-
tor with all elements equal to 0 except for a single element having the value 1, the
complete-data log likelihood function is simply a sum of K independent contribu- .
tions, one for cach mixture component. Thus the maximization with respeci to &
mean or a covariance is exactly as for a single Gaussian, except that it involves only
the subset of data points that are ‘assigned’ to that component. For the maximization
with respect to the mixing coefficients, we note that these are coupled for different -
values of k by virtue of the summation constraint (9.9). Again, this can be enforced .
using a Lagrange multiplier as before, and leads to the result :

the corresponding components. .
Thus we see that the complete-data log likelihood function can be ma
trivially in closed form. In practice, however, we do not have values for th
variables so, as discussed earlier, we consider the expectation, with respe
posterior distribution of the latent variables, of the complete-data log like
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Using (9.10) and (9.11) together with Bayes’ theorem, we sec that this posterior
distribution takes the form

N K
P(ZIX, 1, 3, w) oc [ ] [T eV Gonlize, )™ 9.38)

n=1 k=1

and hence factorizes over n so that under the posterior distribution the {z,} are
independent. This is-easily verified by inspection of the directed graph in Figure 9.6
and making use of the d-separation criterion. The expected value of the indicator
variable z,; under this posterior distribution is then given by

Z Znk [ﬂ'kN(xn!ﬂka Zk)}znk

E[an] = s z
D N Gealisy, 2] ™

_ TN (%n | e, D) = Y(Znk) (9.39)

K
ZWjN(Xn][.Lj, =)

j=1

which is just the responsibility of component & for data point x,,. The expected value
of the complete-data log likelihood function is therefore given by

N K
Ezllnp(X, Zl, B,m)] = Y 0> vlznk) {Inme + N (Xn] g, Tk} (9:40)

n=1 k=1

We can now proceed as follows. First we choose some initial values for the param-
old and use these to evaluate the responsibilities (the E step).
We then keep the responsibilities fixed and maximize (9.40) with respect to pty, 3ig
and 7, (the M step). This leads to closed form solutions for g%, X" and "%
given by (9.17), (9.19), and (9.22) as before. This is precisely the EM algorithm for
Gaussian mixtures as derived earlier. We shall gain more insight into the role of the
expected complete-data log likelihood function when we give a proof of convergence
of the EM algorithm in Section 9.4,

9.3.2 Relation to K-means

Comparison of the K -means algorithm with the EM algorithm for Gaussian
mixtures shows that there is a close similarity,. Whereas the K-means algorithm
performs a hard assignment of data points to clusters, in which each data point is
associated uniquely with one cluster, the EM algorithm makes a soff assignment
based on the posterior probabilities. In fact, we can derive the K-means algorithm
as a particular lirnit of EM for Gaussian mixtures as follows.

Consider a Gaussian mixtore model in which the covariance mairices of the
mixture components are given by €I, where € is a variance parameter that is shared
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by-all of the components, and I is the identity matrix, so that

1 1
x| pty, p) = (%—6)1/5 exp {—%”X - J“k”z} . (941

We now consider the EM algorithm for a mixture of K Gaussians of this form in
which we treat ¢ as a fixed constant, instead of a parameter to be re-estimated. From
(9.13) the posterior probabilities, or responsibilities, for a particular data point x,,,
are given by

T €Xp {——'”Xn - ”kii2/2e} . (942)
>0 exp { —llxn — 512/ 2¢}
If we consider the limit € — 0, we see that in the denominator the term for which
lI%n — p2;[1? is smallest will go to zero most slowly, and hence the responsibilities
Y Znk )} for the data point x,, all go to zero except for term 7, for which the responsi-
bility (#,;) will go to unity. Note that this holds independently of the vatues of the
7, 50 long as none of the 7, is zero. Thus, in this limit, we obtain a hard assignment
of data points to clusters, just as in the K -means algorithm, so that y(za} — Tni
where 7,z is defined by (8.2). Each data point is thereby assigned to the cluster
having the closest mean,

The EM re-estimation equation for the py,, given by (9.17), then reduces to the
K-means result (9.4). Note that the re-estimation formula for the mixing coefficients
(9.22) simply re-sets the value of 7y, to be equal to the fraction of data points assigned
to cluster &, although these parameters no longer play an active role in the algorithm,

Finally, in the limit ¢ — 0 the expected complete-data log likelihood, given by
{9.40), becomes

Y(znk) =

N K
1
Ezllnp(X, Zjg, 3, )] — ~3 Z Zrnkﬁxn — i |f* + const. (9.43)

n=1 k=1

Thus we see that in this limit, maximizing the expected complete-data log likelihood
is equivalent to minimizing the distortion measure J for the K-means algonthm
given by (9.1).

Note that the K -means algorithm does not estimate the covariances of the clus-
ters but only the cluster means. A hard-assignment version of the Gaussian mixture
model with general covariance matrices, known as the ellipfical K -means algorithm,
has been considered by Sung and Poggio (1594).

9.3.3 Mixtures of Bernoulli distributions

So far in this chapter, we have focussed on distributions over continuous vari- -
ables described by mixtures of Gaussians. As a further example of mixture mod—.'-_ _
elling, and to illustrate the EM algorithm in a different context, we now discuss mix-:
tures of discrete binary variables described by Bernoulli distributions. This model
is also known as latent class analysis (Lazarsfeld and Henry, 1968; Mcl achlan and
Peel, 2000). As well as being of practical importance in its own right, our d
sion of Bernoulli mixtures will also lay the foundation for a consideration of hidde
Markov models over discrete variables.
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Consider a set of D binary variables x;, where ¢ = 1,..., D, each of which is
governed by a Bernoulli distribution with parameter £, so that

D
p(xp) = [ [ s (@ — )9 (9.44)

i=1

where x = (z1,...,2p)T and o = {p1,...,pp)T. We sce that the individual
variables ; are independent, given . The mean and covariance of this distribution
are easily seen to be

Ejx] = p (9.45)
covfx] = diag{u(1— i)} (9.46)

Now let us consider a finite mixture of these distributions given by

K
plxl, ) =Y mip(xlpy) (9.47)
k=1
where p4 = {#’1: N TR LT ?ﬂ-I{}s and
D
plxliy) = [ [ it — )50, (9.48)

i=1

The mean and covariance of this mixture distribution are given by

K
Efx] = > mey C(9.49)
£ ‘
Ki
covix] = ch {3 + pyppf b — EJE[x]T (9.50)
k=1

where 3, = diag {ur;(1 — tx;)}. Because the covariance matrix cov(x] is no
longer diagonal, the mixture distribution can capture correlations between the vari-
ables, unlike a single Bernoulli distribution,

If we are given a data set X = {x1,...,xy} then the log likelihood function
for this model is given by

N K
Inp(X|p,m) =Y In {Zﬂ'kp(xnl_uk)} : (9.51)

n=1 k=1

Again we see the appearance of the summation inside the logarithm, so that the
maximum likelihood solution no longer has closed form.

We now derive the EM algorithm for maximizing the likelihood function for
the mixture of Bernoulli distributions. To do this, we first introduce an explicit latent
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variable z associated with each instance of X. As in the case of the Gaussian mixture,
z = (21,...,2r)" is a binary K-dimensional variable having a single component
equal to 1, with all other components equal to 0. We can then write the conditional
distribution of x, given the latent variable, as

K .
p(xlz, 1) = [ [ pxl)™ (9.52)
k=l

while the prior distribution for the latent variables is the same as for the mixture of
Gaussians model, so that

K
plalw) = [ [ = (9.53)
k=1

If we form the product of p(x|z, p} and p(z|m) and then marginalize over z, then we
recover (9.47).

In order to derive the EM algorithm, we first write down the complete-data log
likelihood function, which is given by

N
Inp(X, Zlp, 7)) = ZZznk {In?rk

n=1 k=1

5 ,
+ Z [zniIn pps + (1 — Tni) In(1 F"ké)]} (9.54)

i=1

where X = {x, } and Z = {z,}. Next we take the expectation of the complete-data
log likelihood with respect to the posterior distribution of the latent variables to give

N K
Ez{lnp(X, Zlp,m)] =Y > v(zns) {hlﬂ’k

n=1 k=1
D
+ Z {CL'm' ln,U:ki + (1 — $m;) In(l s ;U'ki)]} (9.55)
i=1

where y{zn1) = El2,4] is the posterior probability, or responsibility, of component
k given data point x,,. In the E step, these responsibilities are evaluated using Bayes’
theorem, which takes the form

> Zak [rap (x| pig,))

Znk
> [rip(alie)]™
Zng

Wkp(xnlu‘k) (9_56)

ij(xniﬂj)
=1

V(zne) = Elzae] =

g
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If we consider the sum over n in (9.55), we see that the responsibilities enter
only through two terms, which can be written as

- N
Ny = > y(zr) ©57)
n=I
1 N
X, = N_gg'}'(znk)xn (9.58)

where Np, is the effective nember of data points associated with component k. In the
M step, we maximize the expected complete-data log likelihood with respect to the
parameters p;, and «. If we set the derivative of (9.55) with respect to p;, equal to
zero and rearrange the terms, we obtain

My = X (9.59)

We see that this sets the mean of component &k equal to a weighted mean of the
data, with weighting coefficients given by the responsibilities that component k& takes
for data points. For the maximization with respect to g, we need to introduce a
Lagrange multiplier to enforce the constraint ), 7% = 1. Following analogous
steps to those used for the mixture of Gaussians, we then obtain

Ny

= (9.60)

Rk
which represents the intuitively reasonable result that the mixing coefficient for com-
ponent k is given by the effective fraction of points in the data set explained by that
component.

Note that in contrast to the mixture of Gaussians, there are no singularities in
which the likelihood function goes to infinity. This can be seen by noting that the
likelihood function is bounded above because 0 < p(xn|gt,) < 1. There exist
singularities at which the likelihood function goes to zero, but these will not be
found by EM provided it is not initialized to a pathological starting point, because
the EM algorithm always increases the value of the liketihood function, until a local
maximum is found. We illustrate the Bernoulli mixture model in Figure 9.10 by
using it to model handwritten digits. Here the digit images have been turned into
binary vectors by setting all elements whose values exceed 0.5 to 1 and setting the
remaining elements to . We now fit a data set of N = 600 such digits, comprising
the digits “2’, *3’, and ‘4’, with a mixture of K = 3 Bernoulli distributions by
running 10 iterations of the EM algorithm. The mixing coefficients were initialized
to 7, = 1/K, and the parameters y;; were set to random values chosen uniformly in
the range (0.25, 0.75) and then normalized to satisfy the constraint that } . pip; = 1.
We see that a mixture of 3 Bernoulli distributions is able to find the three clusters in
the data set corresponding fo the different digits.

The conjugate prior for the parameters of a Bernoulli distribution is given by
the beta distribution, and we have seen that a beta prior is equivalent to introducing
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Figure 9.10 [flustration of the Bernoulli mixiure model in which the top row shows examples from the digits data
set after converting the pixe! vatues from grey scale to binary using a threshold of 0.5. On the bottom row the first
three images show the parameters fux; for each of the three components in the mixture model. As a comparison,
we also fit the same data set using a single multivariate Bernoulli distribution, again using maximumn likelihood.
This amounts to simply averaging the counts in each pixel and is shown by the right-most image on the bottom

[OW.

Secrion 2.1.1 additional effective observations of x. We can similarly introduce priors into the
Bernoulli mixture model, and use EM to maximize the posterior probability distri-

Exercise 9.18 butions.
It is straightforward to extend the analysis of Bernoulli mixtures to the case of
Exercise 9.19 multinomial binary variables having M > 2 states by making use of the discrete dis-
fribution (2.26). Again, we can introduce Dirichlet priors over the model parameters

if desired.

9.3.4 EM for Bayesian linear regression

As a third example of the application of EM, we return to the evidence ap-
proximation for Bayesian linear regression. In Section 3.5.2, we obtained the re-
estimation equations for the hyperparameters o and £ by evaluation Of the evidence
and then setting the derivatives of the resulting expression to zero. We now turn to
an alternative approach for finding o and 8 based on the EM algorithm. Recall that
our goal is to maximize the evidence function p(t]e, B} given by (3.77) with respect
to o and . Because the parameter vector w is marginalized out, we can regard it as
a latent variable, and hence we can optimize this marginal likelihood function using
EM. In the E step, we compute the posterior distribution of w given the current set-
ting of the parameters & and 3 and then use this to find the expected complete-data
log likelihood. In the M step, we maximize this quantity with respect to o and B. We
have already derived the posterior distribution of w because this is given by (3.49)-
The complete-data log likelihood function is then given by '

Inp(t, wle, B) = Inp(tjw, 8) + In p(wia) (961)
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where the likelihood p{tjw, 58) and the prior p(w|c) are given by (3.10) and (3.52),
respectively, and y(x, w) is given by (3.3). Taking the expectation with respect to
the posterior distribution of w then gives

E[lnp{t, wle, 8)] = “ﬂ; In (%) —%IE [WTW] + %{ In (%)
,5 N
—5 Y B[t~ w79, (9.62)
n=1

Setting the derivatives with respect to e to zero, we obtain the M step re-estimation
equation
M M

EfwTw]  mbmy + T(Sy)’ ©63)

oy =

An analogous result holds for 5.

Note that this re-estimation equation takes a slightly different form from the
corresponding result (3.92) derived by direct evaluation of the evidence function,
However, they each involve computation and inversion (or eigen decomposition) of
an M x M matrix and hence will have comparable computational cost per iteration.

These two approaches to determining o should of course converge to the same
result (assuming they find the same local maximum of the evidence function). This

can be verified by first noting that the quantity -y is defined by

M
y=M-a) ﬁm& = M — oT(Sw). (9.64)
i=1 :

At a stationary pointlof the evidence function, the re-estimation equation (3.92) will
be self-consistently satisfied, and hence we can substitute for -y to give

omymy =v =M — oTr{Sn) (9.65)

and solving for & we obtain (9.63), which is precisely the EM re-estimation equation.

As a final example, we consider a closely related model, namely the relevance
vector machine for regression discussed in Section 7.2.1. There we used direct max-
imization of the marginal likelihood to derive re-estimation equations for the hyper-
parameters « and 3. Here we consider an alternative approach in which we view the
weight vector w as a latent variable and apply the EM algorithm. The E step involves
finding the posterior distribution over the weights, and this is given by (7.81). In the
M step we maximize the expected complete-data log likelihood, which is defined by

Ew fInp(t|X, w, B)p(wlc)] (9.66)

where the expectation is taken with respect to the posterior distribution computed
using the ‘old’ parameter values. To compute the new parameter values we maximize
with respect to ¢ and J to give
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1 .
P 9.
% mf + By (©.67)
(ﬂnew)ﬁl — Ht - li’mN“z +16_1 Zi Vi
N
These re-estimation equations are formally equivalent to those obtained by direct
maxmization,

(9.68)
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