
Appendix C. Properties of Matrices

In this appendix, we gather together some useful properties and identities involving
matrices and determinants. This is not intended to be an introductory tutorial, and
it is assumed that the reader is already familiar with basic linear algebra. For some
results, we indicate how to prove them, whereas in more complex cases we leave
the interested reader to refer to standard textbooks on the subject. In all cases, we
assume that inverses exist and that matrix dimensions are such that the formulae
are correctly defined. A comprehensive discussion of linear algebra can be found in
Golub and Van Loan (1996), and an extensive collection of matrix properties is given
by Lütkepohl (1996). Matrix derivatives are discussed in Magnus and Neudecker
(1999).

Basic Matrix Identities

A matrix A has elements Aij where i indexes the rows, and j indexes the columns.
We use IN to denote the N × N identity matrix (also called the unit matrix), and
where there is no ambiguity over dimensionality we simply use I. The transpose
matrix AT has elements (AT)ij = Aji. From the definition of transpose, we have

(AB)T = BTAT (C.1)

which can be verified by writing out the indices. The inverse of A, denoted A−1,
satisfies

AA−1 = A−1A = I. (C.2)

Because ABB−1A−1 = I, we have

(AB)−1 = B−1A−1. (C.3)

Also we have (
AT

)−1
=
(
A−1

)T
(C.4)
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which is easily proven by taking the transpose of (C.2) and applying (C.1).
A useful identity involving matrix inverses is the following

(P−1 + BTR−1B)−1BTR−1 = PBT(BPBT + R)−1. (C.5)

which is easily verified by right multiplying both sides by (BPBT + R). Suppose
that P has dimensionality N ×N while R has dimensionality M ×M , so that B is
M ×N . Then if M � N , it will be much cheaper to evaluate the right-hand side of
(C.5) than the left-hand side. A special case that sometimes arises is

(I + AB)−1A = A(I + BA)−1. (C.6)

Another useful identity involving inverses is the following:

(A + BD−1C)−1 = A−1 − A−1B(D + CA−1B)−1CA−1 (C.7)

which is known as the Woodbury identity and which can be verified by multiplying
both sides by (A + BD−1C). This is useful, for instance, when A is large and
diagonal, and hence easy to invert, while B has many rows but few columns (and
conversely for C) so that the right-hand side is much cheaper to evaluate than the
left-hand side.

A set of vectors {a1, . . . ,aN} is said to be linearly independent if the relation∑
n αnan = 0 holds only if all αn = 0. This implies that none of the vectors

can be expressed as a linear combination of the remainder. The rank of a matrix is
the maximum number of linearly independent rows (or equivalently the maximum
number of linearly independent columns).

Traces and Determinants

Trace and determinant apply to square matrices. The trace Tr(A) of a matrix A
is defined as the sum of the elements on the leading diagonal. By writing out the
indices, we see that

Tr(AB) = Tr(BA). (C.8)

By applying this formula multiple times to the product of three matrices, we see that

Tr(ABC) = Tr(CAB) = Tr(BCA) (C.9)

which is known as the cyclic property of the trace operator and which clearly extends
to the product of any number of matrices. The determinant |A| of an N × N matrix
A is defined by

|A| =
∑

(±1)A1i1A2i2 · · ·ANiN
(C.10)

in which the sum is taken over all products consisting of precisely one element from
each row and one element from each column, with a coefficient +1 or −1 according
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to whether the permutation i1i2 . . . iN is even or odd, respectively. Note that |I| = 1.
Thus, for a 2 × 2 matrix, the determinant takes the form

|A| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21. (C.11)

The determinant of a product of two matrices is given by

|AB| = |A||B| (C.12)

as can be shown from (C.10). Also, the determinant of an inverse matrix is given by∣∣A−1
∣∣ =

1
|A| (C.13)

which can be shown by taking the determinant of (C.2) and applying (C.12).
If A and B are matrices of size N × M , then∣∣IN + ABT

∣∣ =
∣∣IM + ATB

∣∣ . (C.14)

A useful special case is ∣∣IN + abT
∣∣ = 1 + aTb (C.15)

where a and b are N -dimensional column vectors.

Matrix Derivatives

Sometimes we need to consider derivatives of vectors and matrices with respect to
scalars. The derivative of a vector a with respect to a scalar x is itself a vector whose
components are given by (

∂a
∂x

)
i

=
∂ai

∂x
(C.16)

with an analogous definition for the derivative of a matrix. Derivatives with respect
to vectors and matrices can also be defined, for instance(

∂x

∂a

)
i

=
∂x

∂ai
(C.17)

and similarly (
∂a
∂b

)
ij

=
∂ai

∂bj
. (C.18)

The following is easily proven by writing out the components

∂

∂x

(
xTa

)
=

∂

∂x

(
aTx

)
= a. (C.19)
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Similarly
∂

∂x
(AB) =

∂A
∂x

B + A
∂B
∂x

. (C.20)

The derivative of the inverse of a matrix can be expressed as

∂

∂x

(
A−1

)
= −A−1 ∂A

∂x
A−1 (C.21)

as can be shown by differentiating the equation A−1A = I using (C.20) and then
right multiplying by A−1. Also

∂

∂x
ln |A| = Tr

(
A−1 ∂A

∂x

)
(C.22)

which we shall prove later. If we choose x to be one of the elements of A, we have

∂

∂Aij
Tr (AB) = Bji (C.23)

as can be seen by writing out the matrices using index notation. We can write this
result more compactly in the form

∂

∂A
Tr (AB) = BT. (C.24)

With this notation, we have the following properties

∂

∂A
Tr
(
ATB

)
= B (C.25)

∂

∂A
Tr(A) = I (C.26)

∂

∂A
Tr(ABAT) = A(B + BT) (C.27)

which can again be proven by writing out the matrix indices. We also have

∂

∂A
ln |A| =

(
A−1

)T
(C.28)

which follows from (C.22) and (C.26).

Eigenvector Equation

For a square matrix A of size M × M , the eigenvector equation is defined by

Aui = λiui (C.29)
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for i = 1, . . . , M , where ui is an eigenvector and λi is the corresponding eigenvalue.
This can be viewed as a set of M simultaneous homogeneous linear equations, and
the condition for a solution is that

|A − λiI| = 0 (C.30)

which is known as the characteristic equation. Because this is a polynomial of order
M in λi, it must have M solutions (though these need not all be distinct). The rank
of A is equal to the number of nonzero eigenvalues.

Of particular interest are symmetric matrices, which arise as covariance ma-
trices, kernel matrices, and Hessians. Symmetric matrices have the property that
Aij = Aji, or equivalently AT = A. The inverse of a symmetric matrix is also sym-
metric, as can be seen by taking the transpose of A−1A = I and using AA−1 = I
together with the symmetry of I.

In general, the eigenvalues of a matrix are complex numbers, but for symmetric
matrices the eigenvalues λi are real. This can be seen by first left multiplying (C.29)
by (u�

i )
T, where � denotes the complex conjugate, to give

(u�
i )

T Aui = λi (u�
i )

T ui. (C.31)

Next we take the complex conjugate of (C.29) and left multiply by uT
i to give

uT
i Au�

i = λ�
i u

T
i u�

i . (C.32)

where we have used A� = A because we consider only real matrices A. Taking
the transpose of the second of these equations, and using AT = A, we see that the
left-hand sides of the two equations are equal, and hence that λ�

i = λi and so λi

must be real.
The eigenvectors ui of a real symmetric matrix can be chosen to be orthonormal

(i.e., orthogonal and of unit length) so that

uT
i uj = Iij (C.33)

where Iij are the elements of the identity matrix I. To show this, we first left multiply
(C.29) by uT

j to give
uT

j Aui = λiuT
j ui (C.34)

and hence, by exchange of indices, we have

uT
i Auj = λjuT

i uj . (C.35)

We now take the transpose of the second equation and make use of the symmetry
property AT = A, and then subtract the two equations to give

(λi − λj)uT
i uj = 0. (C.36)

Hence, for λi �= λj , we have uT
i uj = 0, and hence ui and uj are orthogonal. If the

two eigenvalues are equal, then any linear combination αui + βuj is also an eigen-
vector with the same eigenvalue, so we can select one linear combination arbitrarily,
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and then choose the second to be orthogonal to the first (it can be shown that the de-
generate eigenvectors are never linearly dependent). Hence the eigenvectors can be
chosen to be orthogonal, and by normalizing can be set to unit length. Because there
are M eigenvalues, the corresponding M orthogonal eigenvectors form a complete
set and so any M -dimensional vector can be expressed as a linear combination of
the eigenvectors.

We can take the eigenvectors ui to be the columns of an M × M matrix U,
which from orthonormality satisfies

UTU = I. (C.37)

Such a matrix is said to be orthogonal. Interestingly, the rows of this matrix are also
orthogonal, so that UUT = I. To show this, note that (C.37) implies UTUU−1 =
U−1 = UT and so UU−1 = UUT = I. Using (C.12), it also follows that |U| = 1.

The eigenvector equation (C.29) can be expressed in terms of U in the form

AU = UΛ (C.38)

where Λ is an M × M diagonal matrix whose diagonal elements are given by the
eigenvalues λi.

If we consider a column vector x that is transformed by an orthogonal matrix U
to give a new vector

x̃ = Ux (C.39)

then the length of the vector is preserved because

x̃Tx̃ = xTUTUx = xTx (C.40)

and similarly the angle between any two such vectors is preserved because

x̃Tỹ = xTUTUy = xTy. (C.41)

Thus, multiplication by U can be interpreted as a rigid rotation of the coordinate
system.

From (C.38), it follows that

UTAU = Λ (C.42)

and because Λ is a diagonal matrix, we say that the matrix A is diagonalized by the
matrix U. If we left multiply by U and right multiply by UT, we obtain

A = UΛUT (C.43)

Taking the inverse of this equation, and using (C.3) together with U−1 = UT, we
have

A−1 = UΛ−1UT. (C.44)
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These last two equations can also be written in the form

A =
M∑
i=1

λiuiuT
i (C.45)

A−1 =
M∑
i=1

1
λi

uiuT
i . (C.46)

If we take the determinant of (C.43), and use (C.12), we obtain

|A| =
M∏
i=1

λi. (C.47)

Similarly, taking the trace of (C.43), and using the cyclic property (C.8) of the trace
operator together with UTU = I, we have

Tr(A) =
M∑
i=1

λi. (C.48)

We leave it as an exercise for the reader to verify (C.22) by making use of the results
(C.33), (C.45), (C.46), and (C.47).

A matrix A is said to be positive definite, denoted by A � 0, if wTAw > 0 for
all values of the vector w. Equivalently, a positive definite matrix has λi > 0 for all
of its eigenvalues (as can be seen by setting w to each of the eigenvectors in turn,
and by noting that an arbitrary vector can be expanded as a linear combination of the
eigenvectors). Note that positive definite is not the same as all the elements being
positive. For example, the matrix (

1 2
3 4

)
(C.49)

has eigenvalues λ1 � 5.37 and λ2 � −0.37. A matrix is said to be positive semidef-
inite if wTAw � 0 holds for all values of w, which is denoted A 	 0, and is
equivalent to λi � 0.




