
Appears in Proceedings of the 15th International Conference on Machine Learning, ICML ’98.

Ridge Regression Learning Algorithm
in Dual Variables

C. Saunders, A. Gammerman and V. Vovk
Royal Holloway, University of London

Egham, Surrey, TW20 0EX, UK
{craig,alex,vovk}@dcs.rhbnc.ac.uk

Abstract

In this paper we study a dual version of the
Ridge Regression procedure. It allows us to
perform non-linear regression by construct-
ing a linear regression function in a high di-
mensional feature space. The feature space
representation can result in a large increase
in the number of parameters used by the al-
gorithm. In order to combat this “curse of
dimensionality”, the algorithm allows the use
of kernel functions, as used in Support Vector
methods. We also discuss a powerful family
of kernel functions which is constructed using
the ANOVA decomposition method from the
kernel corresponding to splines with an infi-
nite number of nodes. This paper introduces
a regression estimation algorithm which is
a combination of these two elements: the
dual version of Ridge Regression is applied
to the ANOVA enhancement of the infinite-
node splines. Experimental results are then
presented (based on the Boston Housing data
set) which indicate the performance of this
algorithm relative to other algorithms.

1 INTRODUCTION

First of all, let us formulate regression estimation prob-
lem. Suppose we have a set of vectors1 x1, . . . , xT , and
we also have a supervisor which gives us a real value
yt, for each of the given vectors. Our problem is to
construct a learning machine which when given a new

1We will use subscripts to indicate a particular vector
(e.g. xt is the tth vector), and superscripts to indicate a
particular vector element (e.g xi is the ith element of the
vector x).

set of examples, minimises some measure of discrep-
ancy between its prediction ŷt and the value of yt. The
measure of loss which we are using, average square loss
(L), is defined by

L =
1
l

l∑
t=1

(yt − ŷt)2,

where yt are the supervisor’s answers, ŷt are the pre-
dicted values, and l is the number of vectors in the test
set.

Least Squares and Ridge Regression are classical sta-
tistical algorithms which have been known for a long
time. They have been widely used, and recently some
papers such as Drucker et al. [2] have used regres-
sion in conjunction with a high dimensional feature
space. That is the original input vectors are mapped
into some feature space, and the algorithms are then
used to construct a linear regression function in the
feature space, which represents a non-linear regression
in the original input space. There is, however, a prob-
lem encountered when using these algorithms within
a feature space. Very often we have to deal with a
very large number of parameters, and this leads to se-
rious computational difficulties that can be impossible
to overcome. In order to combat this “curse of dimen-
sionality” problem, we describe a dual version of the
Least Squares and Ridge Regression algorithms, which
allows the use of kernel functions. This approach is
closely related to Vapnik’s kernel method as used in
the Support Vector Machine. Kernel functions repre-
sent dot products in a feature space, which allows the
algorithms to be used in a feature space without having
to carry out computations within that space. Kernel
functions themselves can take many forms and partic-
ular attention is paid to a family of kernel functions
which are constructed using ANOVA decomposition
(Vapnik [10]; see also Wahba [11, 12]). There are two



major objectives of this paper:

1. To show how to use kernel functions to overcome
the curse of dimensionality in the above men-
tioned algorithms.

2. To demonstrate how ANOVA decomposition ker-
nels can be constructed, and evaluate their perfor-
mance compared to polynomial and spline kernels,
on a real world data set.

Results from experiments performed on the well known
Boston housing data set are then used to show that the
Least Squares and Ridge Regression algorithms per-
form well in comparison with some other algorithms.
The results also show that the ANOVA kernels, which
only consider a subset of the input parameters, can im-
prove on results obtained on the same kernel function
without the ANOVA technique applied. In the next
section we present the dual form of Least Squares and
Ridge Regression.

2 RIDGE REGRESSION IN DUAL
VARIABLES

Before presenting the algorithms in dual variables, the
original formulation of Least Squares and Ridge Re-
gression is stated here for clarity.

Suppose we have a training set (x1, y1), . . . , (xT , yT ),
where T is the number of examples, xt are vectors
in IRn (n is the number of attributes) and yt ∈ IR,
t = 1, . . . , T . Our comparison class consists of the
linear functions y = w · x, where w ∈ IRn.

The Least Squares method recommends computing
w = w0 which minimizes

LT (w) =
T∑

t=1

(yt − w · xt)2

and using w0 for labeling future examples: if a new
example has attributes x, the predicted label is w0 · x.

The Ridge Regression procedure is a slight modifica-
tion on the least squares method and replaces the ob-
jective function LT (w) by

a‖w‖2 +
T∑

t=1

(yt − w · xt)2,

where a is a fixed positive constant.

We now derive a “dual version” for Ridge Regression
(RR); since we allow a = 0, this includes Least Squares

(LS) as a special case. In this derivation we partially
follow Vapnik [8]. We start with re-expressing our
problem as: minimize the expression

a‖w‖2 +
T∑

t=1

ξ2
t (1)

under the constraints

yt − w · xt = ξt, t = 1, . . . , T. (2)

Introducing Lagrange multipliers αt, t = 1, . . . , T , we
can replace our constrained optimization problem by
the problem of finding the saddle point of the function

a‖w‖2 +
T∑

t=1

ξ2
t +

T∑
t=1

αt (yt − w · xt − ξt) . (3)

In accordance with the Kuhn—Tucker theorem, there
exist values of Lagrange multipliers α = αKT for which
the minimum of (3) equals the minimum of (1), under
constraints (2). To find the optimal w and ξ, we will do
the following; first, minimize (3) in w and ξ and then
maximize it in α. Notice that for any fixed values of
α the minimum of (3) (in w and ξ) is less than or
equal to the value of the optimization problem (1)–
(2), and equality is attained when α = αKT. By doing
this, we will therefore find the solution to our original
constrained minimization problem (1)–(2).

Differentiating (3) in w, we obtain the condition

2aw −
T∑

t=1

αtxt = 0,

i.e.,

w =
1
2a

T∑
t=1

αtxt. (4)

(Lagrange multipliers are usually interpreted as re-
flecting the importance of the corresponding con-
straints, and equation (4) shows that w is proportional
to the linear combination of xt, each of which is taken
with a weight proportional to its importance.) Substi-
tuting this into (3), we obtain

1
4a

T∑
s,t=1

αsαt(xs · xt) +
T∑

t=1

ξ2
t

+
1
2a

(
T∑

t=1

αtxt

)
·

(
−

T∑
t=1

αtxt

)
+

T∑
t=1

ytαt −
T∑

t=1

αtξt



= − 1
4a

T∑
s,t=1

αsαt(xs ·xt)+
T∑

t=1

ξ2
t +

T∑
t=1

ytαt−
T∑

t=1

αtξt.

(5)
Differentiating (5) in ξt, we obtain

ξt =
αt

2
, t = 1, . . . , T (6)

(i.e., the importance of the tth constraint is pro-
portional to the corresponding residual); substitution
into (5) gives

− 1
4a

T∑
s,t=1

αsαt(xs · xt)−
1
4

T∑
t=1

α2
t +

T∑
t=1

ytαt. (7)

Denoting K as the T × T matrix of dot products

Ks,t = xs · xt,

and differentiating in αt, we obtain the condition

− 1
2a

Kα− 1
2
α + y = 0,

which is equivalent to

α = 2a(K + aI)−1y.

Recalling (4), we obtain that the prediction y given by
the Ridge Regression procedure on the new unlabeled
example x is

w · x =

(
1
2a

T∑
t=1

αtxt

)
· x =

1
2a

α · k = y′(K + aI)−1k,

where k = (k1, . . . , kT )′ is the vector of the dot prod-
ucts:

kt := xt · x, t = 1, . . . , T.

Lemma 1 RR’s prediction of the label y of a new un-
labeled example x is

y′(K + aI)−1k, (8)

where K is the matrix of dot products of the vectors
x1, . . . , xT in the training set,

Ks,t = K(xs, xt), s = 1, . . . , T, t = 1, . . . , T,

k is the vector of dot products of x and the vectors in
the training set,

kt := K(xt, x), t = 1, . . . , T,

and K(x, x′) = x ·x′ is simply a function which returns
the dot product of the two vectors, x and x′.

3 LINEAR REGRESSION IN
FEATURE SPACE

When K(xi, xj) is simply a function which returns the
dot product of the given vectors, formula (8) corre-
sponds to performing linear regression within the input
space IRn defined by the examples. If we want to con-
struct a linear regression in some feature space, we first
have to choose a mapping from the original space X
to a higher dimensional feature space F (φ : X → F ).
In order to use Lemma 1 to construct the regression in
the feature space, the function K must now correspond
to the dot product φ(xi) · φ(xj). It is not necessary to
know φ(x) as long as we know K(xi, xj) = φ(xi)·φ(xj).
The question of which functions K correspond to a dot
product in some feature space F is answered by Mer-
cer’s theorem and addressed by Vapnik [9] in his dis-
cussion of support vector methods. As an illustration
of the idea, an example of a simple kernel function
is presented here. (See Girosi [4].) Suppose there is
a mapping function φ which maps a two-dimensional
vector into 6 dimensions:

φ : (x1, x2) 7→ ((x1)2, (x2)2,
√

2x1,
√

2x2,
√

2x1x2, 1),

then dot products in F take the form

(φ(x) · φ(y))

= (x1)2(y1)2 + (x2)2(y2)2 + 2x1y1

+2x2y2 + 2x1y1x2y2 + 1

= ((x · y) + 1)2.

One possible kernel function is therefore ((x · y) + 1)2.
This can be generalised into a kernel function of the
form

K(x, y) = ((x · y) + 1)d,

and more than 2 dimensions.

The use of kernel functions allows us to construct a
linear regression function in a high dimensional feature
space (which corresponds to a non-linear regression in
the input space) avoiding the curse of having to carry
out computations in the high dimensional space. In
particular, kernel functions are a way to combat the
curse of dimensionality problems such as those faced in
Drucker et al. [2], where a regression function was also
constructed in a feature space, but computations were
carried out in the high dimensional space, leading to
huge number of parameters for non-trivial problems.

For more information on the kernel technique, see Vap-
nik [8, 10, 9] and Wahba [11].



4 MULTIPLICATIVE KERNELS

Before indicating how ANOVA decomposition can be
used to form kernels, a brief description is needed of
the family of kernels to which the ANOVA decompo-
sition can be applied, this being the family of multi-
plicative kernels. This refers to the set of kernels where
the multi-dimensional case is calculated as the prod-
uct of the one-dimensional case. That is, if the one-
dimensional case is k(xi, yi), then the n-dimensional
case is

Kn(x, y) =
n∏

i=1

k(xi, yi).

One such kernel (to which the ANOVA decomposition
is applied here) is the spline kernel with an infinite
number of nodes (see Vapnik [8, 10] and Kimeldorf
and Wahba [5]). A spline approximation which has an
infinite number of nodes can be defined on the interval
(0, a), 0 < a < ∞, as the expansion

f(x) =
∫ a

0

a(t)(x− t)d
+dt +

d∑
i=0

aix
i,

where ai, i = 0, . . . , d, are unknown values, and a(t)
is an unknown function which defines the expansion.
This can be considered as an inner product, and the
kernel which generates splines of dimension d with an
infinite number of nodes can be expressed as

kd(x, y) =
∫ a

0

(x− t)d
+(y − t)d

+dt +
d∑

r=0

xryr.

Note that when t > min(x, y) the function under the
integral sign will have value zero. It is therefore suffi-
cient only to consider the interval (0,min(x, y)), which
makes the formula above equivalent to

kd(x, y) =
d∑

r=0

(
d
r

)
2d− r + 1

min(x, y)2d−r+1|x− y|r

+
d∑

r=0

xryr.

In particular, for the case of linear splines (d = 1) we
have :

k1(x, y) = 1 + xy +
1
2
|y − x|min(x, y)2 +

min(x, y)3

3
.

5 ANOVA DECOMPOSITION
KERNELS

The ANOVA decomposition kernels are inspired by
their namesake in statistics, which analyses different
subsets of variables. The actual decomposition can be
adapted to form kernels (as in, e.g., Vapnik [10]) which
involve different subsets of the attributes of the exam-
ples up to a certain size. There are two main reasons
for choosing to use ANOVA decomposition. Firstly,
the different subsets which are considered may group
together like variables, which can lead to greater pre-
dictive power. Also, by only considering some subsets
of the input parameters, ANOVA decomposition re-
duces the VC dimension of the set of functions that
you are considering, which can avoid overfitting your
training data.

Given a one-dimensional kernel k, the ANOVA kernels
are defined as follows:

K1(x, y) =
∑

1≤k≤n

k(xk, yk),

K2(x, y) =
∑

1≤k1<k2≤n

k(xk1 , yk1)k(xk2 , yk2),

. . . ,

Kn(x, y) = k(xk1 , yk1) . . . k(xkn , ykn).

From Vapnik [10] the following recurrent procedure
can be used when calculating the value of Kn(x, y).
Let

Ks(x, y) =
n∑

i=1

(k(xi, yi))s

and K0(x, y) = 1; then

Kp(x, y) =
∑

1≤k1<k2<···<kp≤n

k(xk1 , yk1) . . . k(xkp , ykp),

Kp(x, y) =
1
p

p∑
s=1

(−1)s+1Kp−s(x, y)Ks(x, y).

For the purposes of this paper, when using kernels pro-
duced by ANOVA decomposition, only the order p is
considered:

K(x, y) = Kp(x, y).

An alternative method of using ANOVA decomposi-
tion would be to consider order p and all lower orders
(as in Stitson [7]), i.e.,

K(x, y) =
p∑

i=1

Ki(x, y).



6 EXPERIMENTAL RESULTS

Experiments were conducted on the Boston Housing
data set2. This is a well known data set for testing
non-linear regression methods; see, e.g., Breiman [1]
and Saunders [6]. The data set consists of 506 cases
in which 12 continuous variables and 1 binary vari-
able determine the median house price in a certain
area of Boston in thousands of dollars. The continuous
variables represent various values pertaining to differ-
ent locational, economic and structural features of the
house. The prices lie between $5000 and $50,000 in
units of $1000. Following the method used by Drucker
et al. [2], the data set was partitioned into a train-
ing set of 401 cases, a validation set of 80 cases and
a test set of 25 cases. This partitioning was carried
out randomly 100 times, in order to carry out 100 tri-
als on the data. For each trial the Ridge Regression
algorithm was applied using:

• a kernel which corresponds to a spline approxima-
tion with an infinite number of nodes,

• the same kernel but with the ANOVA decompo-
sition technique applied,

• and polynomial kernels.

For each kernel the set of parameters (the order of
spline/degree of polynomial and the value of coeffi-
cient a) was selected which gave the smallest error on
the validation set, and then the error on the test set
was measured. This experiment was then repeated us-
ing a support vector machine (SVM), with the same
kernels and exactly the same 100 training files (see
Stitson [7] for full details). As an illustration of the
number of parameters which were considered by the
Ridge Regression Algorithm (and the SVM), consider
the polynomial kernel which was outlined earlier, us-
ing a degree of 5. This maps the input vectors into a
high dimensional feature space which is equivalent to
evaluating 135 = 371, 293 different parameters.

The results obtained from the experiments are shown
in Table 1. The measure of error used for the tests
was the average squared error. For each of the 100
test files, the algorithm was run and the square of the
difference between the predicted and actual value was
taken. This was then averaged over the 25 test cases.
This produces an average error for each of the 100 test

2Available by anonymous FTP from:
ftp://ftp.ics.uci.com/pub/
machine-learning-databases/housing.

files, and an average of these were taken, which pro-
duces the final error which is quoted in the 3rd column
of the table. The variance measure in the table is the
average squared difference, between the squared error
measured on each sample and the average squared er-
ror.

There are two additional results which should be noted
here. One is from Breiman [1] using bagging with av-
erage squared error of 11.7, and one from Drucker et
al. [2] using Support Vector regression with polynomial
kernels with average squared error of 7.2. The result
obtained by Drucker et al. is slightly better than the
one obtained here using a similar machine; this may
be, however, due to the random selection of the train-
ing, validation and testing sets.

7 COMPARISONS

In this section we will give a comparison of the results
of this paper with the known results.

7.1 SV MACHINES

In this subsection we describe in more detail the con-
nection of the approach of this paper with the Support
Vector Machine.

Our optimization problem (minimizing (1) under con-
straints (2)) is essentially a special case of the following
general optimization problem: minimize the expres-
sion

1
2
‖w‖2 +

C

k

(
T∑

t=1

(ξ∗t )k +
T∑

t=1

(ξt)k

)
(9)

under the constraints

yt − w · xt ≤ ε + ξ∗t , t = 1, . . . , T, (10)

w · xt − yt ≤ ε + ξt, t = 1, . . . , T ; (11)

ε > 0 and k ∈ {1, 2} are some constants. This opti-
mization problem (along with a similar problem cor-
responding to Huber’s loss function) is considered in
Vapnik [10], Chapter 11 (Vapnik, however, considers
more general regression functions of the form w · x + b
rather than w · x; the difference is minor because we
can always add an extra attribute which is always 1 to
all examples).

Our problem (1)–(2) corresponds to the problem (9)–
(11) with k = 2, ε = 0 and C = 1/a. Vapnik [10] gives
a dual statement of his, and a fortiori our, problem; he
does not reach, however, the closed-form expression (8)



Table 1: Experimental Results on the Boston Housing Data

METHOD KERNEL SQUARED ERROR VARIANCE
Ridge Regression Polynomial 10.44 18.34
Ridge Regression Splines 8.51 11.19
Ridge Regression ANOVA Splines 7.69 8.27
SVM [7] Polynomial 8.14 15.13
SVM Splines 7.87 12.67
SVM Anova Splines 7.72 9.44

(because he was mainly interested in positive values of
ε).

As we mentioned before, our derivation of formula (8)
follows [8]. The dual Ridge Regression is also known in
traditional statistics, but statisticians usually use some
clever matrix manipulations rather than the Lagrange
method. Our derivation (modelled on Vapnik’s) gives
some extra insight: see, e.g., equations (4) and (6). For
an excellent survey of connections between Support
Vector Machine and the work done in statistics we
refer the reader to Wahba [11, 12] and Girosi [4].

7.2 KRIEGING

Formula (8) is well known in the theory of Krieging;
in this subsection we will explain the connection for
readers who are familiar with Krieging. Consider the
Bayesian setting where:

• the vector w of weights is distributed according to
the normal distribution with mean 0 and covari-
ance matrix 1

2aI;

• yt = w ·xt + εt, t = 1, . . . , T , where εt are random
variables distributed normally with mean 0 and
variance 1

2 .

Then the optimization problem (1) under the con-
straints (2) becomes the problem of finding the pos-
terior mode (which, because of our normality assump-
tion, coincides with the posterior mean) of w; there-
fore, formula (8) gives the mean value of the random
variable w ·x (which is the “clean version” of the label
y = w · x + ε of the next example). Notice that the
random variables y1, . . . , yT , w · x are jointly normal
and the covariances between them are

cov(ys, yt) = cov(w ·xs+εs, w ·xt+εt) =
1
2a

(xs ·xt)+
1
2

and

cov(yt, w · x) = cov(w · xt + εt, w · x) =
1
2a

(xt · x).

In accordance with the Krieging formula the best pre-
diction for w · x will be

y′
(

1
2a

K +
1
2
I

)−1( 1
2a

k

)
= y′(K + aI)−1k,

which coincides with (8).

8 CONCLUSIONS

A formula for Ridge Regression (which included Least
Squares as a special case) in dual variables was de-
rived using the method of Lagrange multipliers. This
was then used to perform linear regression in a feature
space. Therefore, we once more showed how the prob-
lem of learning in a very high dimensional space can
be solved by using kernel functions. This allowed the
algorithm to overcome the “curse of dimensionality”
and run efficiently, even though a very large number
of parameters were being considered. Experimental re-
sults show that Ridge Regression performs well. The
results also indicate that applying ANOVA decompo-
sition to a kernel can achieve better results than using
the same kernel without the technique applied. Both
Ridge Regression and the Support Vector method gave
a smaller error when using ANOVA splines compared
to the other spline kernel.

A weak part of our experimental section is that,
though the Boston housing data is a useful benchmark,
we have not applied our algorithm to a wider range of
practical problems. This is what we plan to do next.

In order to confirm that ANOVA kernels can outper-
form kernels in their orginal form, the ANOVA de-
composition technique should be applied to other mul-
tiplicative kernels. The technique of applying kernel
functions to overcome problems of high dimensional-
ity should also be investigated futher, to see if it can
be applied to any other algorithms which prove com-
putationally difficult or impossible when faced with a
large number of parameters.



We feel that a very interesting direction of developing
the results of this paper would be to combine the dual
version of Ridge Regression with the ideas of Gam-
merman et al. [3] to obtain a measure of confidence
for predictions output by our algorithms. We expect
that in this case simple closed-form formulas can be
obtained.
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