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Abstract

This paper reviews the principle of Minimum Description Length (MDL) for problems of model

selection. By viewing statistical modeling as a means of generating descriptions of observed data, the

MDL framework discriminates between competing models based on the complexity of each description.

This approach began with Kolmogorov's theory of algorithmic complexity, matured in the literature on

information theory, and has recently received renewed interest within the statistics community. In the

pages that follow, we review both the practical as well as the theoretical aspects of MDL as a tool for

model selection, emphasizing the rich connections between information theory and statistics. At the

boundary between these two disciplines, we �nd many interesting interpretations of popular frequentist

and Bayesian procedures. As we will see, MDL provides an objective umbrella under which rather

disparate approaches to statistical modeling can co-exist and be compared.

We illustrate the MDL principle by considering problems in regression, nonparametric curve esti-

mation, cluster analysis, and time series analysis. Because model selection in linear regression is an

extremely common problem that arises in many applications, we present detailed derivations of several

MDL criteria in this context and discuss their properties through a number of examples. Our emphasis

throughout this paper is on the practical application of MDL, and hence we make extensive use of real

data sets. In writing this review, we tried to make the descriptive philosophy of MDL natural to a statis-

tics audience by examining classical problems in model selection. In the engineering literature, however,

MDL is being applied to ever more exotic modeling situations. As a principle for statistical modeling

in general, one strength of MDL is that it can be intuitively extended to provide useful tools for new

problems.
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1 Overview

The Principle of Parsimony or Occam's Razor implicitly motivates the process of data analysis and statistical

modeling, and is the soul of model selection. Formally, the need for model selection arises when investigators

have to decide among model classes based on data. These classes might be indistinguishable from the

standpoint of existing subject-knowledge or scienti�c theory, and the selection of a particular model class

implies the con�rmation or revision of a given theory. To implement the Parsimony Principle, one has to

quantify \parsimony" of a model relative to the available data. Applying this measure to a number of

candidates, we search for a concise model that provides a good �t to the data. Rissanen (1978) distills such

thinking in his Principle of Minimum Description Length (MDL):

Choose the model that gives the shortest description of data.

In this framework, a concise model is one that is easy to describe; while a good �t implies that the model

captures or describes the important features evident in the data.

MDL has its intellectual roots in the algorithmic or descriptive complexity theory of Kolmogorov, Chaitin

and Solomono� (Li and Vit�anyi, 1996). Later in life, Kolmogorov, the founder of axiomatic probability theory,

examined the relationship between mathematical formulations of randomness and their application to real-

world phenomena. He ultimately turned to algorithmic complexity as an alternative means of expressing

random events. A new characterization of probability emerged based on the length of the shortest binary

computer program that describes an object (or event).2 We refer to this quantity as the descriptive complexity

of the object. Up to a constant, it can be de�ned independent of any speci�c computing device, making

it a universal quantity (Kolmogorov, 1965, 1968; and Cover and Thomas, 1991). Because this descriptive

complexity is universal, it provides a useful way to think about probability and other problems that build

on fundamental notions of probability. In theory, it can also be used to de�ne inductive inference in general

(or statistical inference in particular) as the search for the shortest program for data.

Unfortunately, the descriptive complexity of Kolmogorov is not computable (cf. Cover and Thomas,

1991) and therefore impossible to use as a basis for inference given real data. Rissanen modi�es this concept

when proposing MDL, sidestepping computability issues. First, he restricts attention to only those descrip-

tions that correspond to probability models or distributions (in the traditional sense); and then opts to

emphasize the description length interpretation of these distributions rather than the actual �nite-precision

computations involved. In so doing, Rissanen derives a broad but usable principle for statistical modeling.

By considering only probability distributions as a basis for generating descriptions, Rissanen endows MDL

with a rich information-theoretic interpretation: description length can be thought of as the number of digits

in a binary string used to code the data for transmission. Formally, then, he equates the task of \describ-

ing" data with coding. Not surprisingly, the development of MDL borrows heavily from Shannon's work on

coding theory (Shannon, 1948). Because of the close ties, we will frequently use the terms code length and

description length interchangeably. As we will see, the connection between MDL and information theory

will provide us with new insights into familiar statistical procedures.

In Rissanen's formulation of MDL, any probability distribution is considered from a descriptive point of

view, that is, it is not necessarily the underlying data-generating mechanism (although it does not exclude

such a possibility). Thus MDL extends the more traditional random sampling approach to modeling. Many

probability distributions can be compared in terms of their descriptive power and if the data in fact follow one

of these models, then Shannon's celebrated source coding theorem (cf. Cover and Thomas, 1991) states that

this \true" distribution gives the minimum description length of the data (on average and asymptotically).

2A program can \describe" an object by \printing" or in some way exhibiting the object. Typically, an object is a binary

string, and exhibiting the string is nothing more than printing the individual 0's and 1's in order and stopping in �nite time.



An important precursor to Rissanen's MDL is Wallace and Boulton (1968), which applies the idea of

Minimum Message Length (MML) to clustering problems. While based on code length, MML exclusively

employs a two-part coding formulation that is most natural in parametric families (see Section 4.2; Wallace

and Freeman, 1987; and Baxter and Oliver, 1995). The original MML proposal stopped short of a framework

for addressing other modeling problems, and recent advances seem to focus mainly on parameter estimation.

In contrast, Rissanen formulated MDL as a broad principle governing statistical modeling in general. Two

other approaches to model selection, which are in
uential and important in their own right, are those of

Akaike (1974) and Schwarz (1978). In his derivation of AIC, A Information Criterion, Akaike (1974) gives

for the �rst time formal recipes for general model selection problems from the point of view of prediction.

It is fascinating to note the crucial role that the information-theoretic Kullback-Leibler divergence played in

the derivation of AIC, since we will see in this article that Kullback-Leibler divergence is indispensable in the

MDL framework. Schwarz (1978) takes a Bayesian approach to model selection deriving an approximation

to a Bayesian posterior when the posterior exists. This approximate Bayesian model selection criterion has

a form very similar to AIC and is termed the Bayesian Information Criterion, BIC.

MDL has connections to both frequentist and Bayesian approaches to statistics. If we view statistical

estimation in a parametric family as selecting models (or distributions) indexed by the parameters, MDL

gives rise to the Maximum Likelihood (ML) Principle of parameter estimation in classical statistics. It is

therefore a generalization of the Maximum Likelihood principle to model selection problems where ML is

known to fail. The performance of MDL criteria has been evaluated very favorably based on the random

sampling or frequentist paradigm (e.g. Hannan and Rissanen, 1982; Hannan, McDougall and Poskitt, 1989;

Wei, 1992; Speed and Yu, 1994; Lai and Lee, 1997; and Barron, Rissanen and Yu, 1998). Moreover, MDL

has close ties with the Bayesian approach to statistics. For example, BIC has a natural interpretation in

the MDL paradigm, and some forms of MDL coincide with Bayesian schemes (cf. Section 3). Because of

the descriptive philosophy, the MDL paradigm serves as an objective platform from which we can compare

Bayesian and non-Bayesian procedures alike.

The rest of the paper is organized as follows. Section 2 introduces basic coding concepts and explains the

MDL principle. In particular, we start with Kraft's inequality, which establishes the equivalence between

probability distributions and code lengths. We illustrate di�erent coding ideas through a simple example of

coding or compressing up-down indicators derived from daily statistics of the Dow-Jones Industrial Average.

We emphasize that using a probability distribution for coding or description purposes does not require that

it actually generates our data. We revisit MDL at the end of Section 2 to connect it with the Maximum

Likelihood Principle and Bayesian statistics. We also de�ne the notion of a \valid" description length, in

the sense that valid coding schemes give rise to MDL selection rules that have provably good performance.

(This issue is explored in depth in Section 5.) Section 3 formally introduces di�erent forms of MDL such as

two-stage (or multi-stage in general), mixture, predictive, and normalized maximized likelihood.

Section 4 contains applications of MDL model selection criteria in linear regression models, curve estima-

tion, cluster analysis, and time series models. Our coverage on regression models is extensive. We compare

well-known MDL criteria, to BIC and AIC through both simulations and real applications. These studies

suggest an adaptive property of some forms of MDL, allowing them to behave like AIC or BIC, depend-

ing on which is more desirable in the given context (Hansen and Yu, 1999, further explores this property).

Cluster analysis is also considered in Section 4, where we apply MML (Wallace and Boulton, 1968). We end

this section by �tting an ARMA model to the Dow-Jones data sets, comparing predictive MDL (PMDL),

BIC and AIC for order selection.

Section 5 reviews theoretical results on MDL. They are the basis or justi�cation for di�erent forms of

MDL to be used in parametric model selection. In particular, we mention the remarkable pointwise lower

bound of Rissanen (1986a) on expected (coding) redundancy and its minimax counterpart of Clarke and
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Barron (1990). Both lower bounds are extensions of Shannon's source coding theorem to universal coding.

Section 5 ends with an analysis of the consistency and prediction error properties of MDL criteria in a simple

example.

2 Basic Coding Concepts and the MDL Principle

2.1 Probability and idealized code length

2.1.1 The discrete case

A code C on a set A is simply a mapping from A to a set of codewords. In this section, we will consider binary

codes so that each codeword is a string of 0's and 1's. Let A be a �nite set and let Q denote a probability

distribution on A. The fundamental premise of the MDL paradigm is that � log2Q, the negative logarithm

of Q, can be viewed as the code length of a binary code for elements or symbols in A.

Example 1 (Hu�man's Algorithm) Let A = fa; b; cg and let Q denote a probability distribution on

A with Q(a) = 1=2 and Q(b) = Q(c) = 1=4. Following Hu�man's algorithm (Cover and Thomas

1991, p. 92) we can construct a code for A by growing a binary tree from the end-nodes fa; b; cg. This
procedure is similar to the greedy algorithm used in agglomerative, hierarchical clustering (Jobson,

1992). First, we choose the two elements with the smallest probabilities, b and c, and connect them

with leaves 0 and 1, assigned arbitrarily, to form the intermediate node bc having node probability

1=4+1=4 = 1=2. We then iterate the process with the new set of nodes fa; bcg. Since there are only
two nodes left, we connect a and bc with leaves 0 and 1, again assigned arbitrarily, and reach the tree's

root. The tree obtained through this construction as well as the resulting code are given explicitly

in Figure 1. Let L be the code length function associated with this code so that L(a) = L(0) = 1,

L(b) = L(10) = 2, and L(c) = L(11) = 2. It is easy to see that in this case, our code length is given

exactly by L(x) = � log2Q(x) for all x 2 A. When we encounter ties in this process, Hu�man's

algorithm can produce di�erent codes depending on how we choose which nodes to merge. For

example, suppose that we start with a uniform distribution on A, Q(a) = Q(b) = Q(c) = 1=3. At

the �rst step in Hu�man's algorithm, if we join a and b, the resulting code is a ! 00, b ! 01 and

c! 1. On the other hand, if we begin by joining b and c we arrive at the same code as in Figure 1.

Fortunately, no matter how we handle ties, the expected length (under Q) of the resulting code is

always the same; that is, the expected value of L(x) computed under the distribution Q(x) will be

the same for all Hu�man codes computed for Q(x). �

Clearly, the Hu�man code constructed in our example is not unique because we can permute the labels

at each level in the tree. In addition, depending on how we settle ties between the merged probabilities at

each step in the algorithm, we can obtain di�erent codes with possibly di�erent lengths. This point was

illustrated in the example, where we also indicated that despite these di�erences, the expected length of the

Hu�man code (under the distribution Q) is always the same. An interesting feature of the code in Example 1

is that any string of 0's and 1's can be uniquely decoded without introducing separating symbols between the

codewords. The string 0001110, for example, must have come from the sequence aaacb. Given an arbitrary

code, if no codeword is the pre�x of any other, then unique decodability is guaranteed. Any code satisfying

this codeword condition is referred to as a pre�x code. By taking their codewords as endnodes of a binary

tree, all Hu�man codes are in this class.

In general, there is a correspondence between the length of a pre�x code and the quantity � log2Q for

a probability distribution Q on A. An integer-valued function L corresponds to the code length of a binary
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C : A ! f0; 1g� = strings of 0's and 1's

a ! 0

b ! 10

c ! 11

Figure 1: Constructing a Hu�man code in Example 1: In the lefthand panel we present the binary tree on

which the code is based; and on the right we exhibit the �nal mapping.

pre�x code if and only if it satis�es Kraft's inequalityX
x2A

2�L(x) � 1; (1)

see Cover and Thomas (1991) for a proof. Therefore, given a pre�x code C on A with length function L, we

can de�ne a distribution on A as follows,

Q(x) =
2�L(x)P
z2A 2�L(z)

for any x 2 A:

Conversely, for any distribution Q on A and any x 2 A, we can �nd a pre�x code with length function

L(x) = d� log2Q(x)e, the smallest integer greater than or equal to � log2Q(x). Despite our good fortune

in Example 1, Hu�man's algorithm does not necessarily construct a code with this property for every

distribution Q.3

Now, suppose that elements or symbols of A are generated according a known distribution P , or in

statistical terms, we observe data drawn from P . Given a code C on A with length function L, the expected

code length of C with respect to P is de�ned to be

LC =
X
x2A

P (x)L(x) : (2)

As we have seen, if C is a pre�x code, L is essentially equivalent to � log2Q for some distribution Q on A.
Shannon's Source Coding Theorem states that the expected code length (2) is minimized when Q = P , the

true distribution of our data.

Theorem 1 (Shannon's Source Coding Theorem) Suppose elements of A are generated according to

a probability distribution P . For any pre�x code C on A with length function L, the expected code length LC
is bounded below by H(P ), the entropy of P . That is,

LC � H(P ) � �
X
a2A

P (a) log2 P (a); (3)

where equality holds if and only if L = � log2 P .

3We can only guarantee that the length function L derived from Hu�man's algorithm is within 2 of d� log2 Qe. While slightly

more complicated, the Shannon-Fano-Elias coder produces a length function that satis�es L = d� log2 Qe exactly (Cover and

Thomas, 1991).
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The proof of the \if" part of this theorem follows from Jensen's inequality and the \only if" part is trivial.

Broadly, codes based on P remove redundancy from the data without any loss of information by assigning

short codewords to common symbols and long codewords to rare symbols.4 This is the same rationale behind

Morse Code in telegraphy.

By applying Hu�man's algorithm to the distribution P , we obtain a code that is nearly optimal in

expected code length. Cover and Thomas (1991) prove that the Hu�man code for P has an expected

length no greater than H(P ) + 1. We must emphasize, however, that any distribution Q de�ned on A, not
necessarily the data-generating or true distribution P , can be used to encode data from A. In most statistical
applications, the true distribution P is rarely known, and to a large extent, this paper is concerned with

codes built from various approximations to P .

Ultimately, the crucial aspect of the MDL framework is not found in the speci�cs of a given coding

algorithm, but rather in the code length interpretation of probability distributions. For simplicity, we will

refer to LQ = � log2Q as the code length of (the code corresponding to) a distribution Q, whether or not it

is an integer. The unit is a bit, which stands for binary digit and is attributed to John W. Tukey. (Later in

the paper, we will also use the unit nat when a natural logarithm is taken.)

Example 2 (Code length for �nitely many integers) Consider the �nite collection of integers A =

f1; 2; 3; : : : ; Ng and let Q denote the uniform distribution on A, so that Q(k) = 1=N for all k 2 A.
Let c log2N be the integer part of log2N . By applying Hu�man's algorithm in this setting, we

obtain a uniform code with length function that is not greater than c log2N for all k, but is equal to

c log2N for at least two values of k. While we know from Shannon's Source Coding Theorem that

an expected code length of such a code is optimal only for a true uniform distribution, this code is

a reasonable choice when very little is known about how the data were generated. This is simply a

restatement of Laplace's Principle of Indi�erence which is often quoted to justify the assignment of

uniform priors for a Bayesian analysis in discrete problems. �

Example 3 (Code length for natural numbers) Elias (1975) and Rissanen (1983) construct a code

for the natural numbers A = f1; 2; 3; : : :g starting with the property that the code length function

decreases with a 2 A. The rate of decay is then taken to be as small as possible, subject to the

constraint that the length function must still satisfy Kraft's inequality. Rissanen argues that the

resulting pre�x code is \universal" in the sense that it achieves essentially the shortest coding of

large, natural numbers. Its length function is given by

log�2 n :=
X
j>1

max(log
(j)
2 n; 0) + log2 c0; (4)

where log
(j)
2 (�) is the jth composition of log2, e.g., log

(2)
2 n = log2 log2 n; and

c0 :=
X
n>1

2� log�2 n = 2:865 : : :

�

2.1.2 The continuous case

Suppose that our data is no longer restricted to a �nite set, but instead range over an arbitrary subset of

the real line. Let f denote the data-generating or true density. Given another density q de�ned on A, we
4We provide a formal de�nition of redundancy in Section 5.
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can construct a code for our data by �rst discretizing A and then applying, say, Hu�man's algorithm. In

most statistical applications, we are not interested in A, but rather its Cartesian product An corresponding

to an n-dimensional continuous data sequence xn = (x1; : : : ; xn). Then, if we discretize A into equal cells

of size �, the quantity � log2(q(x
n) � �n) = � log2 q(x

n) � n log2 � can be viewed as the code length of a

pre�x code for the data sequence xn. We say that � is the precision of the discretization, and for �xed � we

refer to � log2 q(x
n) as an idealized code length. In Section 3.1, we will return to discretization issues arising

in modeling problems.

From a straightforward generalization of Shannon's Source Coding Theorem to continuous random vari-

ables, it follows that the best code for a data string xn is based on its true or generating density f(xn). In

this case, the lower bound on the expected code length is the di�erential entropy

H(f) = �
Z

log2 f(x
n)f(xn)dxn: (5)

2.2 A simple example

In this section, we consider coding a pair of long, binary strings. We not only illustrate several di�erent

coding schemes, but we also explore the role of postulated probability models Q in building good codes. This

is a valuable exercise, whether or not it is appropriate to believe that these strings are actually generated by a

speci�c probabilistic mechanism. Although our emphasis will be on coding for compression purposes, we have

framed the following example so as to highlight the natural connection between code length considerations

and statistical model selection. Each of the coding schemes introduced here will be discussed at length in

the next section when we take up modeling issues in greater detail.

Example 4 (Code length for �nite, binary strings) For the 6430-day trading period between July,

1962 and June, 1988, we consider two time series derived from the Dow-Jones Industrial Average

(DJIA). Let Pt denote the logarithm of the index at day t and de�ne the daily return, Rt, and the

intra-day volatility, Vt, to be

Rt = Pt � Pt�1 and Vt = 0:9Vt�1 + 0:1R2
t ; (6)

where V0 is the unconditional variance of the series Pt. The data for this example were taken from

the URL http://ssdc.ucsd.edu/ssdc/NYSE.Date.Day.Return.Volume.Vola.text, where one can also

�nd references for the de�nitions (6).

Consider two \up and down" indicators derived from the daily return and intra-day volatility series.

The �rst takes the value 1 if the return Rt on a given day was higher than that for the previous

day Rt�1 (an \up"), and 0 otherwise (a \down"). In terms of the original (logged) DJIA series

Pt, we assign the value 1 if Pt � 2Pt�1 + Pt�2 � 0, so that our �rst indicator is derived from a

moving average process. The second variable is de�ned similarly, but instead tracks the volatility

series, making it a function of another moving average process. This gives us two binary strings of

length n = 6430� 1 = 6429. There are 3181 or 49.49% 1s or ups in the return di�erence indicator

string, compared with 2023 or 31.47% 1's in the volatility di�erence string. In Figure 2, we present

the last 1,000 observations from each series. To coordinate with our construction of binary strings,

we have plotted daily di�erences so that ups correspond to positive values and downs to negative

values. In the panels below these plots, we have greyscale maps representing the average number of

up's calculated in ten-day intervals (black representing ten consecutive trading days for which the

given series increased; white indicating a period of ten down's). The activity clearly evident at the

right in these plots corresponds to the stock market crash of October 19, 1987. As one might expect,
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Figure 2: Di�erences of the volatility and return series. The last 1000 The horizontal line in each plot

corresponds to y = 0. The greyscale maps represent the average number of up's calculated in ten-day intervals

(black representing ten consecutive trading days for which the given series increased; while indicating a period

of ten down's).

the intra-day volatility jumped dramatically, while the overall return was down sharply from the

previous day.

Using these strings, we will describe three coding algorithms, each assuming that the length of the

string, n = 6429, is known to both sender and receiver. Imagine, for example, that a �nancial

�rm in San Francisco needs to transmit this up-and-down information to its branch in San Diego.

Clearly, each string can be transmitted directly without any further coding, requiring n = 6429 bits.

By entertaining di�erent probability distributions, however, we might be able to decrease the code

length needed to communicate these sequences.

Two-stage Coding. Suppose the sender uses a Bernoulli(p) model to send the series. Then p has

to be estimated from the series and sent �rst. Let k be the number of ups in the series, so that there

are only n di�erent p = k=n's one could send. Employing the uniform coding scheme of Example 2,

this takes log2 n = 6429 or 13 bits. Once p is known to both sender and receiver it can be used in

the next stage of coding. For example, suppose we view a string xn = (x1; : : : ; xn) 2 f0; 1gn as n

iid observations from the Bernoulli distribution with p = k=n. From the form of this distribution,

it is easy to see that we can encode every symbol in the string at a cost of � log2(k=n) bits for a

1 and � log2(1 � k=n) bits for a 0. Therefore, transmitting each sequence requires an additional

�k log2(k=n)� (n� k) log2(1� k=n) bits after p is known, giving us a total code length of

log2 n+ [�k log2(k=n)� (n� k) log2(1� k=n)]: (7)

Under this scheme, we pay 6441 (> 6429) bits to encode the ups and downs of the return series,

but only 5789 (< 6429) bits for the volatility series. Therefore, relative to sending this information

directly, we incur an extra cost of 0.2% on the return string, but save 10% on the volatility string.

From a modeling point of view, we could say that an iid Bernoulli model is postulated for compression

or coding of a given string and that the Bernoulli probability p is estimated by k=n. The �rst term
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in (7) is the code length for sending k or the estimated p, while the second term is the code length for

transmitting the actual string using the Bernoulli model or encoder. The success of the probability

model is determined by whether there is a reduction in code length relative to the n bits required

without a model. From the second term in (7), we expect some improvement provided k=n is not

too close to 1=2, and this saving should increase with n. When k = n=2, however,

�k log2(k=n)� (n� k) log2(1� k=n) = n ;

and the Bernoulli model does not help. Considering our daily up-and-down information, we were able

to decrease the code length for transmitting the volatility string by about 10% because the proportion

of 1's in this sequence is only 0:31. For the return string, on the other hand, the proportion of ups

is close to 1=2, so that the second term in (7) is 6428, just one bit shy of n = 6429. After adding the

additional 13 bit cost to transmit p, the Bernoulli encoder is outperformed by the simple listing of

0's and 1's.

Mixture Coding (with a uniform prior). If we assume that each binary string consists of

iid observations, then by independence we obtain a joint distribution on xn which can be used to

construct a coder for our daily up-and-down information. Suppose, for example, that we postulate

an iid Bernoulli model, but rather than estimate p, we assign it a uniform prior density on [0; 1]. We

can then apply the resulting mixture distribution to encode arbitrary binary strings. If, for example,

a sequence xn = (x1; : : : ; xn) consists of k 1's and (n� k) 0's, then

m(xn) =

Z 1

0

pk(1� p)n�kdp =
�(k + 1)�(n� k + 1)

�(n+ 2)
=

k!(n� k)!

(n+ 1)!
;

where m is used to denote a \mixture." Therefore, the code length of this (uniform) mixture code is

� log2m(xn) = � log2 k!(n� k)! + log2(n+ 1)!: (8)

In terms of our original binary series, by using this mixture code we incur a cost of 6434 bits to

transmit the return string and 5782 bits for the volatility binary string. While consistent with our

results for two-stage coding, we have saved 7 bits on both sequences. So far, however, we have yet

to design a coding scheme that costs less than n = 6429 bits for the return indicators.

Although many mixture codes can be created by making di�erent choices for the prior density

assigned to p, the distribution m(�) is only guaranteed to have a closed form expression for a family

of so-called conjugate priors. In general, numerical or Monte Carlo methods might be necessary to

evaluate the code length of a mixture code.

Predictive Coding. Imagine that the up-and-down information for the return series was to be

sent to San Diego on a daily basis, and assume that the sender and receiver have agreed to use a �xed

code on f0; 1g. For simplicity, suppose they have decided on a Bernoulli encoder with p = 1=2. Each

day, a new indicator is generated and sent to San Diego at a cost of � log2(1=2) = 1 bit. For the

following 6429 days, this would total 6429 bits. (This is equivalent to simply listing the data without

introducing a model.) Such a coding scheme could not be very economical if, on average, the number

of \up days" was much smaller than the number of \down days" or vice versa. If instead we postulate

an iid Bernoulli model with an unknown probability p, then all the previous information, known to

both sender and receiver, can be used to possibly improve the code length needed to transmit the

sequence. Suppose that over the past t� 1 days, kt�1 ups or 1's have been accumulated. At day t,
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a new Bernoulli coder can be used with the Laplace estimator p̂t�1 = (kt�1 + 1)=(t + 1), avoiding

di�culties when kt�1 = 0 or t� 1. At the outset, sender and receiver agree to take p0 = 1=2. If on

day t we see an increase in the return of the DJIA, then the Bernoulli coder with p = p̂t�1 is used
at a cost of Lt(1) = � log2 p̂t�1 bits. Otherwise, we transmit a 0, requiring Lt(0) = � log2(1� p̂t�1)
bits5. For a string xn = (x1; :::; xn) with k 1's and (n� k) 0's, the total code length over 6429 days

is

nX
t=1

Lt(xt):

Equivalently, a joint probability distribution on f0; 1gn has been constructed predictively:

q(xn) =

nY
t=1

p̂xtt�1(1� p̂t�1)1�xt ; (9)

where

� log2 q(x
n) =

nX
t=1

Lt(xt):

Rewriting (9), we �nd

� log2 q(x
n) = �

nX
t=1

[xt log2 p̂t�1 + (1� xt) log2(1� p̂t�1)]

= �
X
t:xt=1

log2 p̂t�1 �
X

t:xt=0

log2(1� p̂t�1)

= �
X
t:xt=1

log2(kt�1 + 1)�
X

t:xt=0

log2(t� kt�1) +
nX
t=1

log2(t+ 1)

= � log2 k!� log2(n� k)! + log2(n+ 1)!

which is exactly the same expression as (8), the code length derived for the uniform mixture code (an

unexpected equivalence that we will return to shortly). Although the bits are counted di�erently,

the code lengths are the same. Therefore, from the previous example, the predictive code lengths are

6434 bits and 5782 bits for the return and volatility strings, respectively. In some sense, the predictive

coder is designed to learn about p from the past up-and-down information, and hence improves the

encoding of the next day's indicator. This form of coding enjoys intimate connections with machine

learning (with its focus on accumulative prediction error; see Haussler, Kearns and Schapire, 1994)

and the prequential approach of P. Dawid (1984, 1991). Clearly, predictive coding requires an

ordering of the data which is very natural in on-line transmission and time series models, but

conceptually less appealing in other contexts like multivariate regression. As in this case, however,

when a proper Bayes estimator is used in the predictive coder, the ordering can sometimes disappear

5This accounting makes use of so-called \fractional bits." In practical terms, it is not possible to send less than a single bit of

information per day. If we delay transmission by several days, however, we can send a larger piece of the data at a much lower

cost. When the delay is n days, this \predictive" method is equivalent to the batch scheme used in mixture coding (sending

the entire data string at once). We have chosen to sidestep this important practical complication and instead present predictive

coding as if it could be implemented on a daily basis. The broad concept is important here as it is similar to other frameworks

for statistical estimation, including P. Dawid's prequential analysis.
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Figure 3: Autocorrelation functions for the di�erences of the volatility and return series. With 6429 points,

the usual con�dence intervals barely appear as distinct from the solid line y = 0.

in the �nal expression for code length. A proof of this somewhat surprising equivalence between

predictive and mixture code lengths can be found, for example, in Yu and Speed (1992) for a general

multinomial model.

In the time-series context, predictive coding o�ers us the ability to easily adapt to non-stationarity

in the data source, a tremendous advantage over the other schemes discussed so far. For example,

suppose that we only use the number of ups encountered in the last 1000 days to estimate p in a

Bernoulli model for the next day's indicator. When applied to the volatility di�erence indicator

series, we save only 3 bits over the 5782 needed for the simple predictive coder, implying that this

string is fairly stationary. To explore the possible dependence structure in the volatility di�erence

indicator string, we postulated a �rst-order Markov model, estimating the transition probabilities

from the indicators for the last 1000 days. Under this scheme, we incur a cost of 5774 bits. Such a

small decrease is evidence that there is little dependence in this string, and that the biggest saving in

terms of code length comes from learning the underlying probability p in an iid Bernoulli model. This

is because the volatility di�erence series Vt � Vt�1 exhibits very little correlation structure, despite

of the fact that volatility series itself is an exponentially-weighted moving average. In Figure 3 we

plot the autorcorrelation function for each of the di�erenced volatility and return series. In terms of

the derived up-and-down indicators, the volatility string has a �rst-order autocorrelation of �0:02,
practically non-existent.

The indicator string derived from the return series, however, is a di�erent story. As with the volatility

string, estimating p based on the previous 1000 days' data does not result in a smaller code length,

suggesting little non-stationarity. However, there is considerably more dependence in the return

string. While the underlying series Rt has little autocorrelation structure, the di�erences Rt �Rt�1
exhibit a large dependence at a lag of 1 (see Figure 3). The �rst-order autocorrelation in the return

di�erence indicator string is �0:42, indicating that our Markov model might be more e�ective here

than for the volatility string. In fact, by postulating a �rst-order Markov model (estimating transition

probabilities at time t from all the previous data), we reduce the code length to 6181, a 4% or 253

bit saving over the 6434 bits required for the simple predictive coder. By instead estimating the

transition probabilities from the last 1000 days of data, we can produce a further decrease of only

10 bits, con�rming our belief that the return di�erence indicator string is fairly stationary. Under
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this coding strategy, we are �nally able to transmit the return string using fewer that n = 6429 bits.

In general, predictive coding can save in terms of code length even when we are considering an

iid model. When dependence or non-stationarity are present, we can experience even greater gains

by directly modeling such e�ects, say through a Markov model. Of course, with some e�ort the

two-stage and mixture coding schemes can also incorporate these features, and we should see similar

code length reductions when the data support the added structure. �

2.3 The MDL principle

In the previous two sections we motivated the code length interpretation of probability distributions and

illustrated the use of models for building good codes. While our focus was on compression, motivation for the

MDL principle can be found throughout Example 4: probability models for each binary string were evaluated

on the basis of their code length. In statistical applications, postulated models help us make inferences about

data. The MDL principle in this context suggests choosing the model that provides the shortest description

of our data. For the purpose of this paper, the act of describing data is formally equivalent to coding.

Therefore, when applying MDL, our focus is on casting statistical modeling as a means of generating codes,

the resulting code lengths providing a metric by which we can compare competing models. As we found

in Example 4, we can compute a code length without actually exhibiting a code (i.e., generating the map

between data values and code words), making the implementation details somewhat unimportant.

As a broad principle, MDL has rich connections with more traditional frameworks for statistical estima-

tion. In classical parametric statistics, for example, we want to estimate the parameter � of a given model

(class)

M = ff(xnj�) : � 2 � � R
kg

based on observations xn = (x1; : : : ; xn). The most popular estimation technique in this context is derived

from the Maximum Likelihood Principle (ML) pioneered by R. A. Fisher (cf. Edwards, 1972). Estimates

�̂n are chosen so as to maximize f�(x
n) over � 2 �. As a principle, ML is backed by �̂n's asymptotic

e�ciency in the repeated-sampling paradigm (under some regularity conditions) and its attainment of the

Cramer-Rao information lower bound in many exponential family examples (in the �nite sample case). From

a coding perspective, assume that both sender and receiver know which member f� of the parametric family

M generated a data string xn (or equivalently, both sides know �). Then Shannon's Source Coding Theorem

states that the best description length of xn (in an average sense) is simply � log f�(x
n), because on average

the code based on f� achieves the entropy lower bound (5). In modeling applications like those discussed in

Example 4, however, we had to transmit � because the receiver did not know its value in advance. Adding

in this cost, we arrive at a code length

� log f�(x
n) + L(�)

for the data string xn. Now, if each parameter value requires the same �xed number of bits to transmit,

or rather L(�) is constant, then the MDL principle seeks a model that minimizes � log f�(x
n) among all

densities in the family. (This is the case if we transmit each value of � with a �xed precision.) Obviously

minimizing � log2 f�(x
n) is the same as maximizing f�(x

n), so that MDL coincides with ML in parametric

estimation problems. Therefore, in this setting MDL enjoys all of the desirable properties of ML mentioned

above.

It is well known, however, that maximum likelihood breaks down when we are forced to choose among

nested classes of parametric models. This occurs most noticeably in variable selection for linear regression.

The simplest and most illustrative selection problem of this type can be cast as an exercise in hypothesis

testing:

11



Example 5 Assume xn = (x1; : : : ; xn) are n iid observations N(�; 1) for some � 2 R
1 , and we want

to test the hypothesis H0 : � = 0 versus H1 : � 6= 0. Equivalently, we want to choose between the

models

M0 = fN(0; 1)g and M1 = fN(�; 1) : � 6= 0g

on the basis of xn. In this case, if we maximize the likelihoods of both models and choose the

one with the larger maximized likelihood then M1 is always chosen unless �xn = 0, an event with

probability 0 even when M0 is true. �

Notice that ML has no problem with the estimation of � if we merge the two model classesM0 andM1. It is

clear that the formulation of the model selection problem is responsible for the poor performance of ML. To

be fair, the ML principle was developed only for a single parametric family, and hence it is not guaranteed

to yield a sensible selection criterion.

The Bayesian approach to statistics has a natural solution to this selection problem. After assigning a

prior probability distribution to each model class, the Bayesian appeals to the posterior probabilities of these

classes to select a model (see, for example, Bernardo and Smith, 1994). Given the formulation of the above

problem, the assignment of priors is a subjective matter, which in recent years has been made increasingly

on the basis of computational e�ciency. Some attempts have been made to reduce the level of subjectivity

required from such an analysis, producing \automatic" or \quasi-automatic" Bayesian procedures (O'Hagan,

1995; and Berger and Pericchi, 1996). A simple solution involves the use of BIC, an approximation to

the posterior distribution on model classes derived by Schwarz (1978). While based on the assumption

that proper priors have been assigned to each class, this approximation e�ectively eliminates any explicit

dependence on prior choice. The resulting selection rule takes on the form of a penalized log-likelihood,

� log f�̂n(x
n) + k

2 logn, where �̂n is the ML estimate of the k-dimensional parameter �.

To repair ML in this context, recall that Fisher �rst derived the likelihood principle within a single

parametric family, starting from a Bayesian framework and placing a uniform prior on the parameter space

(Edwards, 1972). Let LM denote the description length of a data string xn based on a single family or model

(class) M. Because MDL coincides with ML when choosing among members of M, we can think of 2�LM

as the \likelihood" of the class given xn. Now, applying Fisher's line of reasoning to models, we assign a

uniform prior on di�erent families and maximize the newly de�ned \likelihood." This yields the principle of

MDL for model selection.

In Example 4, however, we presented several di�erent coding schemes that can be used to de�ne the

description length LM of a given model class M. While many more are possible, not all of them are usable

for statistical model selection. As our emphasis is on a coding interpretation, we would like to know under

what general conditions these schemes provide us with \valid" description lengths based onM (in the sense

that they yield selection rules with provably good performance). At an intuitive level, we should select a code

that adequately represents the knowledge contained in a given model class, a notion that we make precise in

Section 5. When characterizing the statistical properties of MDL criteria, Rissanen's (1986a) pointwise lower

bound on the redundancy for parametric families is a landmark. Roughly, the expected redundancy of a

code corresponds to the price one must pay for not knowing which member of the model class generated the

data xn. Rissanen (1986a) demonstrates that for a regular parametric family of dimension k, this amounts

to at least k
2 logn extra bits. Any code length that achieves this lower bound quali�es (to �rst order in the

parametric case) as a valid description length of the model class given a data string xn, and the associated

model selection criteria have good theoretical properties.

An alternative measure for studying description length comes from a minimax lower bound on redun-

dancy derived by Clarke and Barron (1990). Both the pointwise and minimax lower bounds not only make
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compelling the use of MDL in statistical model selection problems, but also extend Shannon's Source Coding

Theorem to so-called universal coding where the source or true distribution is only known to belong to a

parametric family. A more rigorous treatment of this theoretical material is presented in Section 5. It fol-

lows from these results that � log f�̂n(x
n) + k

2 logn (modular a constant term) is a valid code length for our

parametric family introduced at the beginning of this section. We recognize this expression as BIC. More

careful asymptotics yields a tighter bound on redundancy that can only be met if Je�reys' prior is integrable

in the particular family under study (see Barron et al., 1998).

The appearance of BIC as a valid code length and the more re�ned result about Je�reys' prior are

just two of a number of connections between MDL and Bayesian statistics. Among the various forms of

MDL presented in Example 4, mixture coding bears the closest direct resemblance to a Bayesian analysis.

For example, both frameworks can depend heavily on the assignment of priors, and both are subject to

the requirement that the corresponding marginal (or predictive) distribution of a data string is integrable.

When this integrability condition is not met, the Bayesian is left with an indeterminant Bayes factor; and

the connection with pre�x coding is lost (as Kraft's inequality is violated).6 Both schemes also bene�t from

\realistic" priors, although the classes entertained in applications tend to be quite di�erent.7 In terms of

loss functions, since MDL minimizes the mixture code length, it coincides with a Maximum A Posteriori

(MAP) estimate derived using 0-1 loss. MDL parts company with Bayesian model selection in the treatment

of hyperparameters that accompany a prior speci�cation. Rissanen (1989) proposes a (penalized) maximum

likelihood approach that we will examine in detail in Section 4.1.1 for ordinary regression problems. Also,

given Kraft's inequality, MDL technically allows for sub-distributions. In applications involving discrete

data, it is often the case that the only available coding scheme does not sum to one, or equivalently is not

Kraft-tight.

In addition to mixture MDL, we have applied both two-stage and predictive coding schemes to the

indicator series from Example 4. In the next section, we will introduce one more code based on the so-called

normalized maximized likelihood. While these forms do not have explicit Bayesian equivalents, they can be

thought of as building a marginal density over a model class or parametric family that is independent of the

parameters. Hence, when the code for the model class corresponds to a proper distribution, or is Kraft-tight,

one can borrow Bayesian tools for the assessment of uncertainty among candidate models. (This type of

analysis has not been explored in the MDL literature.) In general, MDL formally shares many aspects of

both frequentist and Bayesian approaches to statistical estimation. As Rissanen has commented in several

of his papers, MDL provides an objective and welcome platform from which to compare (possibly quite

disparate) model selection criteria. We are con�dent that the rich connections between information theory

and statistics will continue to produce new forms of MDL as the framework is applied to more and more

challenging problems.

3 Di�erent Forms of Description Length based on a Model

In this section, we formally introduce several coding schemes that provide valid description lengths of a

data string based on classes of probability models, in that sense that they achieve the universal coding

lower bound to the log n order (cf. Section 5). The description lengths discussed here will be used in our

implementation of MDL for the model selection problems in Sections 4 and 5. Three of these schemes

6This situation is most commonly encountered under the assignment of so-called weak prior information that leaves the

marginal distribution improper. For example, as improper priors are speci�ed only up to a multiplicative constant, the associated

Bayes factor (a ratio of predictive or marginal densities) inherits an unspeci�ed constant.
7MDL has found wide application in various branches of engineering. For the most part, Rissanen's reasoning is followed

\in spirit" to derive e�ective selection criteria for the problem at hand. New and novel applications of MDL include generating

codes for trees for wavelet denoising (Saito, 1994; and Moulin, 1996).
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were introduced in Example 4 for compression purposes. In that case, probability models helped us build

codes that could be employed to communicate data strings with as few bits as possible. The only necessary

motivation for enlisting candidate models was that they provided short descriptions of the data. In statistical

applications, however, probability distributions are the basis for making inference about data, and hence play

a more re�ned role in modeling. In this section we follow the frequentist philosophy that probability models

(approximately) describe the mechanism by which the data are generated.

Throughout this section, we will focus mainly on a simple parametric model class M consisting of a

family of distributions indexed by a parameter � 2 R
k . Keep in mind, however, that the strength of the

MDL principle is that it can be successfully applied in far less restrictive settings. Let xn = (x1; x2; : : : ; xn)

denote a data string, and recall our model class

M = ff(xnj�) : � 2 � � R
kg:

For convenience, we will consider coding schemes for data transmission, so that when deriving code or

description lengths for xn based onM, we can assume that M is known to both sender and receiver. If this

were not the case, we would also have to encode information about M, adding to our description length.

Finally, we will calculate code lengths using the natural logarithm log, rather than log2 as we did in the

previous section. The unit of length is now referred to as a nat.

In the next few pages, we revisit the three coding schemes introduced brie
y in Example 4. We derive each

in considerably more generality and apply them to the hypothesis testing problem of Example 4. Building

on this framework, in Section 4 we provide a rather extensive treatment of MDL for model selection in

ordinary linear regression. A rigorous justi�cation of these procedures is postponed to Section 5. There, we

demonstrate that in the simple case of a parametric family, these coding schemes give rise to code lengths

that all achieve (to �rst order) both Rissanen's pointwise lower bound on redundancy as well as the minimax

lower bound to be covered in Section 5 (Clarke and Barron, 1990). This implies that these schemes produce

valid description lengths, each yielding a usable model selection criterion via the MDL principle.

3.1 Two-stage Description Length

To a statistical audience, the two-stage coding scheme is perhaps the most natural method for devising a

pre�x code for a data string xn. We �rst choose a member of the class M and then use this distribution

to encode xn. Because we are dealing with a parametric family, this selection is made via an estimator �̂n
after which a pre�x code is built from f�̂n . Ultimately, the code length associated with this scheme takes

the form of a penalized likelihood, the penalty being the cost to encode the estimated parameter values �̂n.

Stage 1: The description length L(�̂n) for the estimated member �̂n of the model class.

In the �rst stage of this coding scheme, we communicate an estimate �̂n (obtained by, say, ML or some Bayes

procedure). This can be done by �rst discretizing a compact parameter space with precision �m = 1=
p
n

(m for the model) for each member of �, and then transmitting �̂n with a uniform encoder. Rissanen (1983,

1989) shows that this choice of precision is optimal in regular parametric families. The intuitive argument

is that 1=
p
n represents the magnitude of the estimation error in �̂n and hence there is no need to encode

the estimator with greater precision. In general, our uniform encoder should re
ect the convergence rate of

the estimator we choose for this stage. Assuming the standard parametric rate 1=
p
n, we will pay a total of

�k log 1p
n
= k

2 logn nats to communicate an estimated parameter �̂n of dimension k.

Although the uniform encoder is a convenient choice, we can take any continuous distribution w on the

parameter space and build a code for �̂n by again discretizing with the same precision �m = 1=
p
n:

L(�̂n) = � logw([�̂n]�m) +
k

2
logn;
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where [�̂n]�m is �̂n truncated to precision �m. In the MDL paradigm, the distribution w is introduced as

an ingredient in the coding scheme and not as a Bayesian prior. However, if we have reason to believe

that a particular prior w re
ects the likely distribution of the parameter values, choosing w for description

purposes is certainly consistent with Shannon's Source Coding Theorem. It is clear that both recipes lead

to description lengths with the same �rst order term

L(�̂n) � k

2
logn;

where k is the Euclidean dimension of the parameter space.

Stage 2: The description length of data based on the transmitted distribution.

In the second stage of this scheme, we encode the actual data string xn = (x1; : : : ; xn) using the distribution

indexed by [�̂n]�m . For continuous data, we follow the prescription in Section 2.1.2, discretizing the selected

distribution with precision �d (d for the data). In this stage, we can take �d to be machine precision. The

description length for coding xn is then

� log f(x1; : : : ; xnj[�̂n]�m)� n log �d:

When the likelihood surface is smooth as in regular parametric families, the di�erence

log f(x1; : : : ; xnj[�̂n]�m)� log f(x1; : : : ; xnj�̂n)

is of a smaller order of magnitude than the model description length k
2 logn. In addition, the quantity

n log �d is constant for all the models in M. Hence we often take

� log f(x1; : : : ; xnj�̂n);

the negative of the maximized log-likelihood for the MLE �̂n , as the simpli�ed description length for a data

string xn based on f(�j�̂n).
Combining the code or description lengths from the two stages of this coding scheme, we �nd that for

regular parametric families of dimension k, the (simpli�ed) two-stage MDL criterion takes the form of BIC

� log f(x1; : : : ; xnj�̂n) + k

2
logn: (10)

Again, the �rst term represents the number of nats needed to encode the date sequence xn given an estimate

�̂n, while the second term represents the number of nats required to encode the k components of �̂n to

precision 1=
p
n. It is worth noting that the simpli�ed two-stage description length is valid even if one

starts with a 1=
p
n-consistent estimator other than the MLE, even though traditionally only MLE has been

used. This is because only the rate of a 1=
p
n-estimator is re
ected in the logn term. In more complicated

situations such as the clustering analysis presented in Section 4, more than two stages of coding might be

required.

Example 4 (continued) Because M0 = fN(0; 1)g consists of a single distribution, we know from

Shannon's Source Coding Theorem that the cost for encoding xn = (x1; : : : ; xn) is

L0(x
n) =

1

2

nX
t=1

x2t +
n

2
log(2�):

Next, consider encoding xn via a two-stage scheme based on the class

M1 = fN(�; 1) : � 6= 0g
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If we estimate � by the MLE �̂n = �xn, the two-stage description length (10) takes the form

L1(x
n) =

1

2

nX
t=1

(xt � �xn)
2 +

n

2
log(2�) +

1

2
logn: (11)

Therefore, following the MDL principle, we choose M0 over M1 based on the data string xn, if

j�xnj <
p
log(n)=n:

In this case, the MDL criterion takes the form of a likelihood ratio test whose signi�cance level

shrinks to zero as n tends to in�nity. �

3.2 Mixture MDL and Stochastic Information Complexity

The mixture form of description length naturally lends itself to theoretical studies of MDL. In Section 5,

we highlight connections between this form and both minimax theory and the notion of channel capacity

in communication theory (Cover and Thomas, 1991). Since mixture MDL involves integrating over model

classes, it can be hard to implement in practice. To get around such di�culties, it can be shown that a

�rst-order approximation to this form coincides with the two-stage MDL criterion derived above. The proof

of this fact (Clarke and Barron, 1990) mimics the original derivation of BIC as an approximate Bayesian

model selection criterion (Schwarz, 1978, and Kass and Raftery, 1995). An alternative approximation yields

yet another form of description length known as Stochastic Information Complexity (SIC). As we will see,

mixture MDL shares many formal elements with Bayesian model selection because the underlying analytical

tools are the same. However, the philosophies behind each approach are much di�erent. In the next section,

we will see how these di�erences translate into methodology in the context of ordinary linear regression.

The name \mixture" for this form reveals it all. We base our description of a data string xn on a

distribution that is obtained by taking a mixture of the members in the family with respect to a probability

density function w on the parameters:

m(xn) =

Z
f�(x

n)w(�)d�: (12)

Again, we introduce w not as a prior in the Bayesian sense, but rather as a device for creating a distribution

for the data based on the model class M. Given a precision �d, we follow Section 2.1.2 and obtain the

description length

� logm(xn) = � log

Z
f(x1; : : : ; xnj�)w(�)d� + n log �d:

Ignoring the constant term, we arrive at

� log

Z
f(x1; : : : ; xnj�)w(�)d�: (13)

This integral has a closed form expression when f(�j�) is an exponential family and w is a conjugate prior, as

was the case in Example 4. When choosing between two models, the mixture form of MDL is equivalent to

a Bayes factor (Kass and Raftery, 1995) based on the same priors. A popular method for calculating Bayes

factors involves the use of Markov chain Monte Carlo (George and McCulloch, 1997), which can therefore

be applied to obtain the description length of mixture codes.
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Figure 4: Comparing the penalties imposed by BIC and the mixture form of MDL for � = 0:5 and � = 2.

The sample size n ranges from 1 to 50.

Example 4 (continued) If we put a Gaussian prior w = N(0; �) on the mean parameter � inM1 (note

that � is the variance), we �nd

� logm(xn) =
n

2
log(2�) +

1

2
log det(In + �Jn) +

1

2
x0n(In + �Jn)

�1xn (14)

where In is the n � n identity matrix, and Jn is the n � n matrix of 1's. Simplifying the above

expression, we arrive at

1

2

X
t

x2t �
1

2

n

1 + 1=(n�)
�x2n +

n

2
log(2�) +

1

2
log(1 + n�) (15)

Comparing this to the description length for the two-stage encoder (11), we �nd a di�erence in the

penalty

1

2
log(1 + n�) (16)

which (to �rst order) is asymptotically the same as that associated with BIC, 1
2 logn. Depending

on the value of the prior variance � , the quantity (16) represents either a heavier (� > 1) or a lighter

(� < 1) penalty. In Figure 4 we present a graphical comparison for two values of � .

�

An analytical approximation to the mixture m(�) in (12) is obtained by Laplace's expansion when w

is smooth (Rissanen, 1989). Essentially, we arrive at a two-stage description length which we will call the

Stochastic Information Complexity:

SIC(xn) = � log f(xnj�̂n) + 1

2
log det(�̂n); (17)
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where �̂n is the MLE and �̂n is the Hessian matrix of � log f(xnj�) evaluated at �̂n. For iid observations

from a regular parametric family and as n!1,

1

2
log det(�̂n) =

1

2
log det(nI(�̂n))(1 + o(1)) =

k

2
logn(1 + o(1)): (18)

Here, I(�) is the Fisher information matrix of a single observation. The middle term in this chain of equalities,

1

2
log det(nI(�̂)); (19)

can be interpreted as the number of nats needed to encode the k estimated parameter values if we discretize

the jth parameter component with a precision SE(�̂j) = 1=
p
nIjj (�) (provided the estimated parameters

are either independent or the discretization is done after transforming the parameter space so that the

information matrix under the new parameterization is diagonal). It is obviously sensible to take into account

the full estimation error when discretizing, and not just the rate. The �nal equality in (18) tells us that in the

limit, SIC is approximately BIC or two-stage MDL. For �nite sample sizes, however, SIC's penalty term

is usually not as severe as BIC's, and hence in some situations, SIC outperforms BIC. Rissanen (1989,

pp. 151, Table 6) illustrates this di�erence by demonstrating that SIC outperforms two-stage MDL when

selecting the order in an AR model with n = 50. In Section 4, we will present many more such comparisons

in the context of ordinary linear regression.

3.3 Predictive Description Length

Any joint distribution q(�) of xn = (x1; : : : ; xn) can be written in its predictive form

q(xn) =
nY
t=1

q(xtjx1; : : : ; xt�1):

Conversely, given a model class M, it is a simple matter to obtain a joint distribution for xn given a series

of predictive distributions. In many statistical models, each of the conditionals f�(xj jx1; : : : ; xj�1) share
the same parameter �.8 For iid data generated from a parametric family M, this is clearly the case. Other

applications where this property holds include time series, regression and generalized linear models. Suppose

that for each t, we form an estimate �̂t�1 from the �rst (t� 1) elements of xn. Then, the expression

q(x1; : : : ; xn) =
Y
t

f�̂t�1(xtjx1; : : : ; xt�1) (20)

represents a joint distribution based on the model class M that is free of unknown parameters. The cost of

encoding a data string xn using (20) is

� log q(x1; : : : ; xn) = �
X
t

log f�̂t�1(xtjx1; : : : ; xt�1): (21)

The MDL model selection criterion based on this form of description is called PMDL for its use of the

predictive distribution (20) and PMDL is especially useful for time series models (cf. Hannan and Rissanen,

1982; Hannan, McDougall and Poskitt, 1989; Huang, 1990).

By design, predictive MDL is well suited for time series analysis, where there is a natural ordering of

the data; on-line estimation problems in signal processing; and on-line data transmission applications like

the binary string example discussed Section 2. At a practical level, under this framework both sender and

8Typically, f(x1) = f0(x1) will not depend on �, however.
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receiver start with a pre-determined encoder f0 to transmit the �rst data point x1. This accounts for the

leading term in the summation (21). At time t, because the previous (t� 1) points are known at each end

of the channel, the distribution f�̂t�1(xtjx1; : : : ; xt�1) is also known. This is the tth term in the summation

(21). By using the predictive distributions to sequentially update the code, both the encoder and decoder

are in e�ect learning about the true parameter value, and hence can do a better job of coding the data string

(provided that one member of the model class actually generated the data).

Example 4 (continued) If we take the initial density f0 as N(0; 1) and set

�̂t�1 = �xt�1 =
t�1X
i=1

xi=(t� 1)

(with �x0 = 0) based on M1, then

� log q(xn) = �
nX
t=1

log f�̂t�1(xtjxt�1)

=
n

2
log(2�) +

1

2

nX
t=1

(xt � �xt�1)2: (22)

�

The reasoning we followed in deriving PMDL is identical to the prequential approach to statistics

advocated by Dawid (1984, 1991). The form (21) appeared in the literature on Gaussian regression and time

series analysis as the predictive least squares criterion long before the development of MDL, and early work

on PMDL focused mainly on these two applications. The interested reader is referred to Rissanen (1986b),

Hemerly and Davis (1989), Hannan and Kavalieris (1984), Hannan, McDougall and Poskitt (1989), Hannan

and Rissanen (1982), Gerencs�er (1994), Wei (1992), and Speed and Yu (1994). The recent results of Qian,

Gabor and Gupta (1996) extend the horizon of this form of MDL to generalized linear models.

In Section 4, we will illustrate the application of PMDL to the (di�erenced) daily return series studied in

Example 3. In this case we will work with the \raw" data rather than the binary up-and-down string treated

earlier. Although in special cases such as multinomial the ordering disappears when a Bayes estimator is

used for the prediction, in general PMDL depends on a sensible ordering of the data. It is not clear how

useful it will be in, say, multivariate regression problems. To get around this problem, Rissanen (1986b)

suggests repeatedly permuting the data before applying PMDL, and then averaging the predictive code

lengths. In Section 4, we avoid these complications and only discuss PMDL in the context of time series

data.

3.4 Other Forms of Description Length

The MDL principle o�ers one the opportunity to develop many other forms of description length, in addition

to the three discussed above. In Section 5, we present some of the theoretical validation required for new

coding schemes or equivalently new MDL criteria. For example, weighted averages or mixtures of the three

common forms will give rise to new description lengths that all achieve the pointwise and minimax lower

bounds on redundancy, and hence can all be used for model selection. Further investigation is required to

determine how to choose these weights in di�erent modeling contexts.

Recently, Rissanen (1996) developed an MDL criterion based on the normalized maximum likelihood

coding scheme of Shtarkov (1987) (cf. Barron et al., 1998). For a 
avor of how it was derived, we apply

NML (for normalized maximized likelihood) to the binary, DJIA up-and-down indicators introduced in

Section 2.
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Example 3 (continued) Normalized Maximized Likelihood Coding. As was done in the two-

stage scheme, we �rst transmit k. Then, both sender and receiver know that the indicator sequence

must be among the collection of strings of size n with exactly k 1's. This group of sequences is

known as the type class T (n; k). Under the iid Bernoulli model, each string in the type class is

equally likely, and we can employ a uniform code on T (n; k) for communicating its elements. When

applied to the return string, the NML code requires log2
n!

k!(n�k)! or 6421 bits, giving us a total code
length of 6434 bits when we add the cost of encoding k. This represents a saving of 7 bits over the

two-stage encoder described in Section 2, where xn was transmitted using an iid Bernoulli encoder

with p̂n = k=n in the second stage. �

In general, the NML description of a data string works by restricting the second stage of coding to a

data region identi�ed by the parameter estimate. In the example above, this meant coding the return string

as an element of T (n; k) rather than f0; 1gn. Rissanen (1996) formally introduces this scheme for MDL

model selection, and discusses its connection with minimax theory. We will see another application of this

code when we take up ordinary linear regression in the next section.

4 Applications of MDL in Model Selection

4.1 Linear Regression Models

Regression analysis is a tool to investigate the dependence of a random variable y on a collection of potential

predictors x1; : : : ; xM . Associate with each predictor xm a binary variable, 
m, and consider models given

by

y =
X

m=1

�mxm + �; (23)

where � has a Gaussian distribution with mean zero and unknown variance �2. The vector 
 = (
1; : : : ; 
M ) 2
f0; 1gM will be used as a simple index for the 2M possible models given by (23). Let �
 and X
 denote the

vector of coe�cients and the design matrix associated with those variables xm for which 
m = 1. In this

section, we apply MDL to the problem of model selection, or equivalently, the problem of identifying one or

more vectors 
 that yield the \best" or \nearly best" models for y in equation (23). In many cases, not all of

the 2M possibilities make sense, and hence our search might be con�ned to only a subset of index vectors 
.

The concept of \best," or more precisely the measure by which we compare the performance of di�erent

selection criteria, is open to debate. Theoretical studies, for example, have examined procedures in terms of

either consistency (in the sense that we select a \true" model with high probability) or prediction accuracy

(providing small mean squared error), and di�erent criteria can be recommended depending on the chosen

framework. Ultimately, no matter how we settle the notion of \best," the bene�t of a selection rule is

derived from the insights it provides into real problems. Mallows (1973) puts it succinctly: \The greatest

value of the device [model selection] is that it helps the statistician to examine some aspects of the structure

of his data and helps him to recognize the ambiguities that confront him." In general, we should apply

any selection procedure with some care, examining the structure of several good-�tting models rather than

restricting our attention to a single \best." This point tends to be lost in simulation studies that necessitate

blunt optimization of the criterion being examined. At the end of this section, we present two applications

that illustrate di�erent practical aspects of model selection for regression analysis. The �rst involves the

identi�cation of genetic loci associated with the inheritance of a given trait in fruit 
ies. Here, MDL aids in

evaluating speci�c scienti�c hypotheses. In the second example, we construct e�cient representations for a
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large collection of hyperspectral (curve) data collected from common supermarket produce. Model selection

is used in this context as a tool for data (dimension) reduction prior to an application of (MDL-like) cluster

analysis.

Our review of regression problems draws from number of sources on MDL (see Rissanen, 1987 and 1989;

Speed and Yu, 1993; and Barron et al, 1998) as well as the literature on Bayesian variable selection (see

Smith and Spiegelhalter, 1980; O'Hagan, 1994; Kass and Raftery, 1995; and George and McCulloch, 1997).

Because the need for selection in this context arises frequently in applications, we will derive several MDL

criteria in detail.

4.1.1 Several Forms of MDL for Regression

Following the general recipe given in the previous sections, the MDL criteria we derive for regression can all

be written as a sum of two code lengths

L(yjX
 ; 
) + L(
) : (24)

This two-stage approach (see Section 3.1) explicitly combines both the cost to encode the observed data y

using a given model 
, as well as the cost to transmit our choice of model. For the second term, we use the

Bernoulli( 12 ) model discussed in Section 2.2 to describe the elements of 
; that is, the 
m are taken to be

independent, binary random variables and the probability that 
m = 1 is a half. Following this approach,

each value of 
 has the same probability

P (
) =

�
1

2

�k �
1

2

�M�k
=

�
1

2

�M

: (25)

Therefore, the cost L(
) = � logP (
) is constant. When we have reason to believe that smaller or larger

models are preferable, a di�erent Bernoulli model (with a smaller or larger value of p) can be used to encode


. This approach has been taken in the context of Bayesian model selection and is discussed at the end of

this section.

Having settled on this component in the code length, we turn our attention to the �rst term in (24), the

cost of encoding the data, L(yjX
; 
). In the next few pages, we will describe di�erent MDL schemes for

computing this quantity. To simplify notation, we will drop the dependence on model index: pick a vector 


and let � = �
 denote the k = k
 coe�cients in (23) for which 
m = 1. Similarly, let X = X
 be the design

matrix associated with the selected variables in 
. For the most part, we will work with maximum likelihood

estimates for both the regression coe�cients � (also known as ordinary least squares or OLS estimates) and

the noise variance �2,

�̂ = (X 0X)�1X 0y and �̂2 = ky �X�̂k2=n : (26)

Finally, we take RSS to represent the residual sum of squares corresponding to this choice of �̂.

Two-stage MDL Recall from Section 3.1 that two-stage MDL for a parametric model class is equivalent

to the BIC criterion. Using the linear regression model (23), the code length associated with the observed

data y is then given by the familiar forms

1

2�2
RSS +

k

2
logn ; (27)

when �2 is known, and

n

2
logRSS +

k

2
logn : (28)
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when it is unknown. To derive these expressions, we have applied the formula (10) using the estimators (26)

and dropping constants that do not depend on our choice of model.

In both cases, the penalty applied to the dimension k depends on the sample size n. Related criteria like

Mallows' Cp (Mallows, 1973) and Akaike's AIC (Akaike, 1974) di�er only in the size of this penalty:

Cp =
1

2�2
RSS + k and AIC =

n

2
logRSS + k; (29)

where we have again ignored terms that do not depend on our choice of model.9 While keeping the general

form of these criteria, various authors have suggested other multipliers in front of k that can o�er improved

performance in special cases: see Sugiura (1978) and Hurvich and Tsai (1989) for a corrected version of AIC

for small samples; Hurvich, Simono� and Tsai (1998) for AIC in nonparametric regression; and Mallows

(1995) for an interpretation of Cp when a di�erent value of the penalty on model size is desired. Shortly, we

will present an application in which a multiple of the BIC penalty is proposed as the \correct" cost for a

particular class of problems arising in genetics.

Mixture MDL and SIC. In Section 3.2 we formally introduced the use of mixture distributions for

constructing valid description lengths based on parametric classes. As this form of MDL is structurally

similar to a Bayesian analysis, our discussion of mixture MDL for regression problems will be relatively

brief and borrow heavily from a classical treatment of Bayesian variable selection for linear models. The

framework for applying mixture codes in this context can be found in Rissanen (1989).

Under the regression set-up, we form a mixture distribution for y (conditional on our choice of model

and the values of the predictors X) by introducing a density function w(�; �2),

m(yjX) =

Z
f(yjX; �; �) w(�; �) d� d� : (30)

To obtain a closed-form expression for m(yjX), Rissanen (1989) takes w to be a member of the natural

conjugate family of priors for the normal linear regression model (23); namely the so-called normal-inverse-

gamma distributions (see the appendix). Under this density, the noise variance �2 is assigned an inverse-

gamma distribution with shape parameter a. Then, conditional on �2, the coe�cients � have a normal

distribution with mean zero and variance-covariance matrix �2

c �, where � is a known, positive de�nite

matrix. In his original derivation, Rissanen (1989) selects � to be the k � k identity matrix. Sidestepping

this decision for the moment, the mixture code length for y computed from (13) is given by

� log m(yjX) = � log m(yjX; a; c)

= �1

2
log jc��1j+ 1

2
log

��c��1 +XtX
��� 1

2
log a+

n+ 1

2
log (a+Rc) ; (31)

where

Rc = Rc = yty � ytX
�
c��1 +XtX

�
�1

Xty :

In expression (31), we have made explicit the dependence of the mixture code length on the values of two

hyperparameters in the density w: a, the shape parameter of the inverse-gamma distribution for �2, and c,

the (inverse) scale factor for �.

Rissanen (1989) addresses the issue of hyperparameters by picking a and c to minimize the quantity

(31) model by model. It is not di�cult to see that â = Rc=n, while for most values of �, ĉ must be found

9The form of Cp given above applies when �2 is known. If not, Mallows (1973) suggests using an unbiased estimate b�2.
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numerically. An algorithm for doing this is given in the appendix. Treating a and c in this way, however,

we lose the interpretation of � logm(yjX; â; ĉ) as a description length. To remain faithful to the coding

framework, the optimized hyperparameter values â and ĉ must also be transmitted as overhead. Explicitly

accounting for these extra factors gives us the mixture code length

� log m(yjX; â; ĉ) + L ( â ) + L ( ĉ ) : (32)

Because â and ĉ are determined by maximizing the (mixture or marginal) log-likelihood (31), they can

be seen to estimate a and c at the standard parametric rate of 1=
p
n. Therefore, we take a two-stage

approach to coding â and ĉ and assign each a cost of 1
2 logn bits. Rissanen (1989) argues that no matter

how we account for the hyperparameters, their contribution to the overall code length should be small. This

reasoning is borne out in our simulation studies. At the end of this section we return to the issue of coding

hyperparameters and discuss reasonable alternatives to the two-stage procedure motivated here.

An important ingredient in our code length (32) is the prior variance-covariance matrix, �. As mentioned

above, for most values of � we cannot �nd a closed-form expression for ĉ and must instead rely on an iterative

scheme. (A general form for the procedure is outlined in the appendix.) Rissanen (1989) gives details for

the special case � = Ik�k . We refer to the criterion derived under this speci�cation as iMDL, where i refers

to its use of the identity matrix. In the Bayesian literature on linear models, several authors have suggested

a computationally attractive choice for �; namely � = (XtX)�1. Zellner (1986) christens this speci�cation
the g-prior. In our context, this value of � provides us with a closed-form expression for ĉ. After substituting

â = Rc=n for a in (31), it is easy to see that

1=ĉ = max (F � 1; 0) with F =
(y0y �RSS)

kS
; (33)

where F is the usual F -ratio for testing the hypothesis that each element of � is zero, and S = RSS=(n�k).

The computations are spelled out in more detail in the appendix. The truncation at zero in (33) rules out

negative values of the prior variance. Rewriting (33), we �nd that ĉ is zero unless R2 > k=n, where R2 is the

usual squared multiple correlation coe�cient. When the value of ĉ is zero, the prior on � becomes a point

mass at zero, e�ectively producing the \null" mixture model10 corresponding to 
 = (0; : : : ; 0). Substituting

the optimal value of ĉ into (31) and adding the cost to code the hyperparameters as in (32), we arrive at a

�nal mixture form

gMDL =

8<
:

n
2 logS + k

2 logF + logn ; R2 � k=n

n
2 log

�
y0y
n

�
+ 1

2 logn ; otherwise :
(34)

which we will refer to as gMDL for its use of the g-prior. From this expression, we have dropped a single

bit that is required to indicate whether the condition R2 < k=n is satis�ed and hence which model was used

to code the data. When R2 < k=n, we apply the null model which does not require communicating the

hyperparameter ĉ. Hence a 1
2 logn term is missing from the lower expression.

Unlike most choices for �, the g�prior structure provides us with an explicit criterion that we can study

theoretically. First, since n=n = 1 � R2, this version of mixture MDL can never choose a model with

dimension larger than the number of observations. After a little algebra, it is also clear that gMDL orders

models of the same dimension according to RSS; that is, holding k �xed, the criterion (34) is an increasing

function of RSS. This property is clearly shared by AIC, BIC and Cp. Unlike these criteria, however,

gMDL applies an adaptively determined penalty on model size. Rewriting (34) in the form

n

2
logRSS +

�

2
k (35)

10The null model is a scale mixture of normals, each N(0; �) and � having an inverse-gamma prior.
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we �nd that � depends on the F -statistics, so that \poor �tting" models receive a larger penalty.

Finally, in Section 3.2, we applied a simple approximation to the mixture form of MDL to derive the

so-called Stochastic Information Complexity (17). For a model index 
, the Hessian matrix of the mixture

m(�) in (12) based on the k + 1 parameters � and � = �2 is given by�
1
�̂X

0X 0

0 n
2�̂2

�
:

Therefore, a little algebra reveals the SIC criterion

SIC(
) =
n� k � 2

2
logRSS +

k

2
logn+

1

2
log det[X 0X ]; (36)

where we have omitted an additive constant that is independent of model choice.

Normalized Maximized Likelihood As mentioned in Section 3.4, the normalized maximum likelihood

form of MDL (cf. Rissanen, 1996, and Barron et al., 1998) is very recent and only some of its theoretical

properties are known. It is motivated by the maximum likelihood code introduced by Shtarkov (1987).

Recall that the maximum likelihood estimates of � and � = �2 are given by (26). Let f(yjX; �; �) be the
joint Gaussian density of the observed data y, so that the normalized maximum likelihood function is

f̂(y) =
f(yjX; �̂(y); �̂ (y))R

Y(r;�0) f(zjX; �̂(z); �̂(z))dz
; (37)

where Y(r; �0) = fzj�̂0(z)X 0X�̂(z)=n � r; �̂ (z) � �0g. In this case, the maximized likelihood is not integrable,
and our solution is to simply restrict the domain of f̂ to Y . Recall that we did not encounter this di�culty

with the Bernoulli model studied in Section 3.4; where given the number of 1's, the binary sequences had

a uniform distribution over the type class. Using the su�ciency and independence of �̂(y) and �̂ (y), one

obtains

� log f̂(y) =
n

2
logRSS � log �

�
n� k

2

�
� log �

�
k

2

�
+
k

2
log

r

�0
� 2 log(2k): (38)

To eliminate the hyper-parameters r and �0, we again minimize the above code length for each model by

setting

r̂ =
�̂0(y)X 0X�̂(y)

n
=

y0y �RSS

n
and �̂0 =

RSS

n
:

By substituting these values for r and �0 into (38), we obtain the selection criteria nMDL (n for \normalized

maximum likelihood"),

nMDL =
n

2
logRSS � log �

�
n� k

2

�
� log �

�
k

2

�
+
k

2
log

y0y �RSS

RSS
� 2 log(2k): (39)

Technically, we should also add 1
2 logn for each of the optimized hyperparameters as we had done for gMDL.

In this case, the extra cost is common to all models and can be dropped. Rewriting this expression, we �nd

that

nMDL =
n

2
logS +

k

2
logF

+
n� k

2
log(n� k)� log �

�
n� k

2

�
+
k

2
log(k)� log �

�
k

2

�
� 2 log k;
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up to an additive constant that is independent of k. Applying Stirling's approximation to each �(�) yields

nMDL � n

2
logS +

k

2
logF +

1

2
log(n� k)� 3

2
log k :

We recognize the leading two terms in this expression as the value of gMDL (34) when R2 > k=n. This

structural similarity is interesting given that these two MDL forms were derived from very di�erent codes.

Our derivation of nMDL follows Barron et al. (1998) who remedy the non-integrability of the maximized

likelihood by restricting f̂ to the bounded region Y . Recently, Rissanen (2000) addressed this problem by

applying another level of normalization. Essentially, the idea is to treat the hyperparameters �0 and r as

we did � and � . The maximized likelihood (39) is normalized again, this time with respect to �̂0 = �̂0(y)

and r̂ = r̂(y). Following a straightforward conditioning argument, Rissanen (2000) �nds that this second

normalization makes the e�ect of the hyperparameters on the resulting code length additive, and hence can

be ignored for model selection.11 Ultimately, the �nal NML criterion derived in this way di�ers from our

nMDL rule in (39) by only an extra log k. Rissanen (2000) applies his NML selection criterion to wavelet

denoising, illustrating its performance on a speech signal.

Stine and Foster (1999) also explore the derivation of NML for estimating the location parameter in

a 1-dimensional Gaussian family, but propose a di�erent solution to the non-integrability problem. They

suggest a numerically-derived form which is shown to have a certain minimax optimality property (up to

a constant factor). In general, the derivation of NML in such settings is still very much an area of active

research. We present nMDL here mainly to illustrate the reasoning behind this form, and comment on its

similarity to gMDL.

Discussion As mentioned at the beginning of this section, there are alternatives to our use of the Bernoulli( 12 )

model for coding the index 
. For example, George and Foster (1999) take the elements of 
 to be a pri-

ori independent Bernoulli random variables with success probability p. They then select a value for p by

maximum likelihood (in the same way we treated the parameters a and c). In early applications of model

selection to wavelet expansions, the value of p was �xed at some value less than a half to encourage small

models (Clyde, Parmigiani and Vidakovic, 1998).

The use of a normal-inverse-gamma prior with � = (XtX)�1 appears several times in the literature in

Bayesian model selection. For example, Akaike (1977) essentially derives gMDL for orthogonal designs.

Smith and Spiegelhalter (1980) use this prior when considering model selection based on Bayes factors where

a = 0 and c = c(n) is a deterministic function of sample size. These authors were motivated by a \calibration"

between Bayes factors and penalized selection criteria in the form of BIC and AIC (see also Smith, 1996;

and Smith and Kohn, 1996). Finally, Peterson (1986) builds on the work of Smith and Spiegelhalter (1980)

by �rst choosing � = (XtX)�1 and then suggesting that c be estimated via (marginal) maximum-likelihood

based on the same mixture (31). This is essentially Rissanen's (1989) prescription.

Throughout our development of the various MDL criteria, we have avoided the topic of estimating the

coe�cient vector � once the model has been selected. In the case of AIC and BIC, it is common practice to

simply rely on OLS. The resemblance of mixture MDL to Bayesian schemes, however, suggests that for this

form a shrinkage estimator might be more natural. For example, the criterion gMDL is implicitly comparing

models not based on �̂, but rather the posterior mean (conditional on our choice of model)

max

�
1� 1

F
; 0

�
�̂

11In deriving his form of NML, Rissanen (2000) also handles the issue of coding the model index 
 di�erently than we have

in (24). Another normalization is applied, this time across a set of model indices 
.
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associated with the normal-inverse-gamma prior and the regression model (23). Here, F is de�ned as in

the gMDL criterion (34). Recall that the condition that F > 1 is equivalent to the multiple R2 being

larger than k=n. Interestingly, this type of shrinkage estimator was studied by Sclove (1968) and Sclove,

Morris and Radhakrishnan (1972), where it was shown to have improved mean squared error performance

over OLS and other shrinkage estimators. In the case of iMDL, the coe�cient vector � is estimated via

classical ridge regression. Of course, Bayesian methods can be applied more generally within the MDL

framework. For example, in Section 3.1 we found that any
p
n�consistent estimator can be used in the

two-stage coding scheme. This means that we could even substitute Bayesian estimators for �2 and � in

the two-stage criterion (28) rather than �̂ and �̂2. The beauty of MDL is that each such scheme can be

compared objectively, regardless of its Bayesian or frequentist origins.

Next, in several places we are forced to deal with hyperparameters that need to be transmitted so that

the decoder knows which model to use when reconstructing the data y. We have taken a two-stage approach,

attaching a �xed cost of 1
2 logn to each such parameter. Rissanen (1989) proposes using the universal prior on

integers L� after discretizing range of the hyperparameters in a model-independent way. If prior knowledge

suggests a particular distribution, then naturally it should be used instead. In general, the value of the

hyperparameters are chosen to minimize the combined code length

( â; ĉ ) = min
(a;c)

fL(yjX; a; c) + L(a) + L(c)g (40)

where the �rst term represents the cost of coding the data given the value of the hyperparameters, â and ĉ,

and the second term accounts for the overhead in sending them. In our derivation of iMDL and gMDL,

we took the latter terms to be constant so that we essentially selected the hyperparameters via maximum

(mixture or marginal) likelihood. In the simulation study presented in the next section, each reasonable

method for incorporating the cost of the hyperparameters produced selection criteria with similar prediction

errors. As a �nal note, the theoretical material in Section 5 justi�es the use of MDL only when the values

of the hyperparameters are �xed. The minimization in (40) complicates a general analysis, but certainly

selection rules can be studied on a case-by-case basis when explicit forms appear (as in the case of gMDL).

We leave a detailed discussion of this material to a future paper.

4.1.2 A Simulation Study

When choosing between models with the same number of variables, AIC and each of the MDL procedures

BIC, gMDL and nMDL select the model with the smallest residual sum of squares, RSS. Therefore, to

implement these criteria, it is su�cient to consider only the lowest RSS models for dimensions 1; 2; : : : ;M .

When the number of predictors is relatively small (say, less than 30), it is not unreasonable to perform

an exhaustive search for these models by a routine branch-and-bound algorithm (see Furnival and Wilson,

1974, for a classic example). Unfortunately, the criteria iMDL and SIC involve characteristics of the design

matrix X , requiring a di�erent technique. An obvious (and popular) choice involves greedy, stepwise model

building. In this case, some combination of stepwise addition (sequentially adding new variables that create

the largest drop in the model selection criterion) and deletion (removing variables that have the least impact

on the criterion) can be used to identify a reasonably good collection of predictors. Rissanen (1989) discusses

these greedy algorithms in the context of (approximately) minimizing iMDL or SIC. The recent interest

in Bayesian computing has produced a number of powerful McMC schemes for variable selection. To apply

these ideas to MDL, �rst recall that the mixture form is based on an integrated likelihood (12) that we can

write as m(y) = p(yj
) for model indices 
. Assuming that each 
 2 f0; 1gM is equally likely a priori, we

�nd that

m(y) = p(yj
) / p(
jy) ;

26



Median Average Proportion Equivalent
Criterion model error model size correct penalty

� = (5; 0; 0; 0; 0; 0; 0; 0) OLS 9.1 8.0 1.0 0.0

(snr � 3.2) gMDL 1.0 1.4 0.7 4.0

nMDL 4.2 2.3 0.2 2.4

iMDL 1.4 1.5 0.6 3.7

BIC 3.2 1.9 0.4 3.0

AIC 5.3 2.8 0.2 2.0

AICC 3.3 1.9 0.4 3.2

SIC 7.6 4.1 0.04 1.0

� = (3; 1:5; 0; 0; 2; 0; 0; 0) OLS 9.6 8.0 1.0 0.0

(snr � 3.2) gMDL 7.6 2.8 0.2 3.6

nMDL 7.6 3.5 0.3 2.6

iMDL 6.8 3.0 0.3 2.7

BIC 8.0 3.3 0.2 3.0

AIC 8.5 3.8 0.2 2.0

AICC 7.6 3.0 0.3 3.6

SIC 8.6 5.1 0.07 1.0

� = 0:75 � (1; 1; 1; 1; 1; 1; 1; 1) OLS 9.5 8.0 1.0 0.0

(snr � 1.4) gMDL 10.5 2.9 0.0 2.9

nMDL 9.7 3.6 0.0 1.8

iMDL 9.3 3.4 0.0 1.9

BIC 11.0 3.0 0.0 3.0

AIC 10.2 3.5 0.0 2.0

AICC 10.6 2.8 0.0 3.5

SIC 10.5 4.8 0.06 1.0

Table 1: Simulation results for n = 20 observations from model (41). In each case, � = 0:5 and � = 4.

a posterior distribution over the collection of possible models. Candidate chains for exploring this space

include the Gibbs sampler of George and McCulloch (1993); the importance sampler of Clyde, DeSimone

and Parmigiani (1996), applicable when the predictor variables are orthogonal; and the Occam's window

scheme of Madigan, Raftery and Hoeting (1997). In the simulation study described below, however, the

number of covariates is small, so that we could simply evaluate SIC and iMDL on all possible models to

identify the best.

To understand the characteristics of each MDL criterion, we consider three simulated examples. These

have been adapted from similar experiments in Tibshirani (1996) and Fourdrinier and Wells (1998). In each

case, we work with data sets consisting of 20 observations from a model of the form

y = x� + ��; (41)

where x 2 R8 has a multivariate normal distribution with mean zero and variance-covariance matrix Vij =

2�ji�jj, i; j = 1; : : : ; 8; and � is an independent standard normal noise term. In Table 1, we compare several

MDL selection criteria across 100 data sets simulated according to (41), where � = 0:5, � = 4 and � 2 R8 is

assigned one of three (vector) values listed in Table 1. We quote both the average size of models selected by
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each criteria as well as the median model error, where model error is de�ned to be

Efx�̂ � x�g2 = (�̂ � �)0V (�̂ � �) ;

with �̂ obtained by an ordinary least squares (OLS) �t with the selected variables. In Table 1 we have also

included the signal-to-noise (snr) ratio for each set of simulations, where we take

snr = �0V �=�2 :

The row labeled OLS represents a straight OLS �t to the complete set of variables.

In this simulation, we initially compared AIC, BIC, gMDL, SIC, and nMDL. An anonymous referee

suggested that as AIC is based on large-sample approximations, a modi�ed criterion AICC is a more

appropriate comparison. This form was derived by Sugiura (1978) for use in small samples and was later

studied by Hurvich and Tsai (1989). In our notation, this criterion is given by

AICC =
n

2
logRSS +

n

2

1 + k=n

1� (k + 2)=n

It is well known that when the data-generating mechanism is in�nite dimensional (and includes the candidate

covariate variables), AIC is an optimal selection rule in terms of prediction error; that is, AIC identi�es a

�nite dimensional model that, while an approximation to the truth, has good prediction properties. However,

when the underlying model is in fact �nite dimensional (the truth belongs to one of the model classes being

evaluated), AIC tends to choose models that are too large. The criterion AICC was derived under the

assumption of a �nite truth, and avoids the asymptotic arguments used in the original derivation of AIC.

Computationally, this criterion is also amenable to the branch and bound techniques mentioned above.

In general, except for SIC, the MDL criteria outperformed AIC, AICC and BIC. Notice that AICC

does improve over AIC in all but the case of entirely weak e�ects, and even here the di�erence is small.

This improvement is to be expected as the data-generating model is among the candidates being evaluated,

precisely the �nite dimensional set-up under which AICC was derived. The selection rule iMDL, seems

to perform exceedingly well in each simulation set-up, although its performance degrades slightly when we

considered larger sample sizes. In only one of the simulation suites did gMDL perform poorly relative to

the other MDL schemes, namely the third case with entirely weak e�ects. When we increase the sample size

to 50, but maintain the same signal-to-noise ratio, gMDL recovers and its model error rivals that of iMDL.

Another interesting e�ect to mention in Table 1 is that in the third case (weak e�ects), model selection with

iMDL out-performs OLS and AIC. In principle, AIC is known to work well in this situation. When we

re-ran these simulations with � = 0, corresponding to independent predictors, AIC did in fact improve to

the level of iMDL. The implicit shrinkage performed by iMDL when evaluating models through (32) is

apparently responsible for iMDL's excellent performance here. We hasten to add, however, that in all cases,

once a model is selected, we are simply performing an OLS �t to obtain �̂ (from which the model error is

derived). For both mixture forms of MDL and for all the simulations, the shrinkage procedures based on ĉ

improve on these OLS estimates.

Given the penalties on k imposed by AIC and BIC, one can expect that AIC will favor larger models

while BIC is more conservative. This can be seen in each of our simulation results. The MDL forms,

however, can be thought of as imposing an adaptive penalty on model size. For comparison purposes, we

computed an equivalent penalty in a neighborhood of the best model identi�ed by the MDL criteria. To be

more precise, in Figure 4 we plot the iMDL criterion versus model size, evaluated for the 28 = 512 possible

models using data from a single run of the simulation described above. De�ne iMDL�(k) to be the minimum
value of iMDL among all models of size k and let RSS�(k) be the residual sum of squares for that model.

Then, consider the quantity

�(k) = 2
h
iMDL�(k)� n

2
logRSS�(k)

i
:
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Figure 5: Calculating an equivalent penalty for the MDL criteria. In this case, we consider iMDL and

restrict our attention to a di�erence of the two points connected by heavy black segments.

If we replaced iMDL with either AIC or BIC in this de�nition, then the di�erence �(k + 1)� �(k) would

be 2 or logn, respectively.12 To get a rough idea of the price placed on dimension by the MDL criteria, we

looked at this di�erence in the neighborhood of the minimum. In Figure 4, the heavy, black line joins the

two points used to evaluate �(k). The average equivalent penalty across the 100 replicates of each simulation

is given in Table 1. The adaptability of these procedures is immediately evident from the �rst and third

simulation set-ups. When faced with a single, strong e�ect, for example, the penalties associated with iMDL

and gMDL are larger than that of BIC, forcing smaller models; while when given a number of small e�ects,

the penalty shrinks below that for AIC allowing iMDL to capture larger models. The criterion SIC tends

to impose a penalty that is much weaker than AIC, leading to its discouraging results.

From these simulations, we �nd that there is a distinct performance advantage in the adaptive forms

of MDL, gMDL and iMDL, over BIC, AIC, and AICC in model selection. The theoretical properties of

gMDL and iMDL are currently under study (Hansen and Yu, 1999). Interestingly, both of these forms

share much in common with the new empirical Bayes criteria of George and Foster (1998) and the Peel

method of Fourdrinier and Wells (1998). In the next section, we investigate the use of MDL in two applied

problems. In the �rst case, a hand-crafted procedure has been proposed to perform model selection within a

restricted class of problems. We �nd that the adaptivity of MDL produces results that are (automatically)

equivalent to this specialized approach. In the second example, we apply MDL to curve estimation. The

output from this procedure will be used later to illustrate a form of MDL for cluster analysis.

12While the expressions for BIC and AIC can be manipulated in other ways to tease out the penalty on dimension, we have

chosen di�erences because most of the MDL expressions are only known up to additive constants.
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4.1.3 Applying MDL in Practice: Two Regression Examples

The genetics of a fruit 
y. Our �rst example comes from genetics and has been developed into a

variable selection problem by Cowen (1989), Doerge and Churchill (1996) and Broman (1997). The data we

consider were collected by Long, Mullaney, Reid, Fry, Langley and Mackay (1995) as part of an experiment

to identify genetic loci, locations on chromosomes, that in
uence the number of bristles on the fruit 
y

Drosophila melanogaster.

The experimental procedure followed by Long et al. (1995) was somewhat complicated, but we will

attempt to distill the essential features. First, a sample of fruit 
ies were selectively inbred to produce two

family lines di�erentiated on the basis of their abdominal bristles. Those 
ies with low bristle counts were

separated into one parental line L, while those with high counts formed another line H. Several generations

of 
ies were then obtained from these two populations through a backcross. That is, the H and L lines were

crossed to yield the so-called �rst �lial generation F1, and then the F1 
ies were again crossed with the low

parental line L. Ultimately, sixty-six inbred family lines were obtained in this way so that the individual 
ies

within each group were genetically identical at nineteen chosen genetic markers (or known locations on the

chromosomes). Abdominal bristle counts were collected from a sample of 20 males and 20 females from each

of these populations. By design, all the 
ies bred in the backcross inherited one chromosome from the �rst

�lial generation F1 and one from the low parental line L, so that at each of the genetic markers they have

either the LL or HL genotype. The goal of this experiment was to identify whether the genotype at any of

the nineteen genetic markers in
uenced observed abdominal bristle counts.

Let yij , i = 1; : : : ; 66, j = 1; 2, denote the average number of bristles for line i, tabulated separately for

males, corresponding to j = 1, and females, corresponding to j = 2. Consider a model of the form

yij = �+ �sj +
X
l

�lxil +
X
l

�lsjxil + �ij (42)

where sj is a contrast for sex, s1 = �1 and s2 = +1; and xil = �1 or +1 according to whether line i had

genotype LL or HL at the lth marker, l = 1; : : : ; 19. Therefore, the full model (42) includes main e�ects

for sex and genotype as well as the complete sex � genotype interaction, a total of 39 variables. The error

term �ij is taken to be Gaussian with mean zero and unknown variance �2. In this framework, identifying

genetic markers that have an in
uence on bristle counts becomes a problem of selecting genotype contrasts

in the model (42). Following Broman (1997), we do not impose any hierarchical constraints on our choice of

models, so that any collection of main e�ects and interactions can be considered. Therefore, in the notation

of Section 4.1 we introduce an index vector 
 2 f0; 1g39 that determines which covariates in (42) are active

(we have intentionally excluded the intercept from this index, forcing it to be in each model).

Broman (1997) considered variable selection for this problem with a modi�ed BIC criterion

BIC� =
n

2
logRSS + �

k

2
logn; (43)

where � = 2, 2.5, or 3. Broman (1997) found that placing a greater weight on the dimension penalty log(n)=2

is necessary in this context to avoid including spurious markers. As with the data from Long et al. (1995),

model selection is complicated by the fact that the number of cases n collected for backcross experiments is

typically a modest multiple of the number of possible predictor variables. Aside from practical considerations,

Broman (1997) motivated (43) by appealing to the framework in Smith (1996) and Smith and Kohn (1996).

These authors start with the mixture distribution (31) derived in Section 4.1.1, taking the improper prior

speci�cation a = d = 0 in (63) and (64). Instead of �nding optimal values for c, they consider deterministic

functions c = c(n). This approach was also taken by Smith and Spielgelhalter (1980) who attempted to

calibrate Bayesian analyses with other selection criteria like AIC. If we set c(n) = n� for all models, then
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from (31) we roughly obtain Broman's criterion (43).13 The larger we make �, the more di�use our prior

on � becomes. Because the same scaling factor appears in the prior speci�cation for models of di�erent

dimensions, the mass in the posterior distribution tends to concentrate on models with fewer terms.
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Figure 6: Comparing several di�erent model selection criteria.

As the number of markers studied by Long et al. (1997) was relatively small, Broman (1997) was able to

employ a branch-and-bound procedure to obtain the optimal model according to each of the criteria (43).

By good fortune, these three rules each selected the same 8-term model,

yij = �+ �sj + �2xi2 + �5xi5 + �9xi9 + �13xi;13 + �17xi;17 + �5sjxi5 + �ij ; (44)

which includes the main e�ect for sex, �ve genotype main e�ects (occurring at markers 2, 5, 9, 13, and 17),

and one sex � genotype interaction (at marker 5). To make a comparison with the MDL selection rules

derived in Section 4.1.1, we again performed an exhaustive search for AIC, BIC, gMDL and nMDL. As

noted above, there are a number of McMC schemes that can be applied to �nd promising models based on

iMDL and SIC. We chose the so-called focused sampler of Wong, Hansen, Kohn and Smith (1998).14 In

Figure 5 we overlay these criteria, plotting the minimum of each as a function of the model dimension k. For

easy comparison, we have mapped each curve to the interval [0; 1]. As noted by Broman (1997), BIC and

13This argument is meant as a heuristic; for the precise derivation of (43), the interested reader is referred to Broman (1997).
14The speci�c sampler is somewhat unimportant for the purpose of this paper. Any one of a number of schemes could be

used to accomplish the same end.
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hence AIC chose larger models that were primarily supersets of (44) involving 9 and 13 terms, respectively.

Our two forms of mixture MDL, gMDL and iMDL, and the Normalized Maximized Likelihood criterion,

nMDL, were each in agreement with Broman's BIC� , selecting model (44). Using the device introduced in

the previous section (see Figure 4), we �nd that the equivalent penalty imposed by gMDL was 7.4, which

corresponds to an � = 7:4= logn = 7:4= log 132 = 1:5. For nMDL the story was about the same with an

equivalent penalty of 7:0 (or an � of 1.4). Finally, iMDL had a penalty of 6.4 for an � of 1.3. These �ndings

are satisfying in that our automatic procedures produced the same results as selection rules that have been

optimized for the task of identifying non-spurious genetic markers from backcross experiments. Somewhat

disappointingly, strict minimization of SIC identi�es a model with 12 variables (and an equivalent penalty of

1.6, less than half of BIC's log 132 = 4:9). From Figure 5, however, we see that the SIC curve is extremely


at in the neighborhood of its optimum, implying that an 11-term model provides virtually the same quality

of �t. For k = 11, SIC selects a model that is a subset of that chosen according to AIC, but contains all of

the terms in the model identi�ed by BIC.

To summarize, we have compared the performance of several forms of MDL to a special-purpose selection

criterion (43). For the most part, our results are consistent with Broman (1997), identifying (44) as the best

model. The only poor performer in this context was SIC which fell between the poorly performing criteria

AIC and BIC.

The color of supermarket produce. Our second regression example involves model selection in the

context of function estimation. In Figure 6 we present a number of spectral re
ectance curves obtained

from samples of common fruits and vegetables. In total, measurements were taken on samples from some 70

varieties of popular produce, our ultimate goal being the creation of a recognition system that could augment

supermarket check-out systems. For example, in the upper lefthand panel, each curve represents the color

of a lemon measured at a small spot on its surface. The intensity of light re
ected by its skin is recorded

as a function of wavelength, producing a single curve in Figure 6. Because of noise considerations, we have

restricted our measurements to a subset of the visible spectrum between 400 and 800 nm, recording values

in 5 nm intervals. To remove the e�ects of varying surface re
ectivity and to account for the possibility

that the intensity of the incident light may vary from measurement to measurement, each curve has been

normalized (across wavelength) to have mean zero and variance 1.

To make sense of these curves, consider the sample of limes represented in the upper rightmost corner

of Figure 6. Limes are green because chlorophyll in their skin absorbs light strongly in the region between

680 and 700 nm. The dip in this region is evident in each of the lime measurements. Similarly, several of

the bananas in our sample must have been slightly green because a few of the corresponding curves also

drop in this region. In general, plant pigments absorb light in broad, overlapping bands and hence we

expect our re
ectance curves to be smooth functions of wavelength. The underlying chemistry manifests

itself by varying the coarse features of each measurement. Finally, as should be apparent from Figure 6, our

experimental setup allowed us to capture these curves with very little noise.

In this section, our goal is to derive a compact representation of these curves to be used for recognition

purposes (see also, Furby, Kiiveri and Campbell, 1990). Dimension reduction is accomplished by simple

projections onto an adaptively determined space of functions. Suppose we observe each curve at n distinct

wavelengths x1; : : : ; xn. Then, consider the candidate basis functions of the form

Bi(x) = K(x; xi) for i = 1; : : : ; n ;

where K(�; �) is some speci�ed kernel function. There are a number of choices for K, most falling into the

class of so-called radial basis functions often used in neural networks (Hertz, Krough and Palmer, 1991). We

choose instead to use the kernels that appear in the construction of smoothing splines (Wahba, 1990 and
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Figure 7: Spectral re
ectance curves collected from 6 varieties of supermarket produce. In each panel, we

plot 5 representative curves. Knot locations selected by gMDL and BIC are marked by vertical lines in the

lower right panel.

Wong et al., 1997). Then, having settled on a basis, we search for an approximation of the form

f(x) � �0 + �1x+
X
i:
i=1

�iBi(x); x 2 [400; 800] (45)

where f is the true re
ectance measurement taken from a sample of fruit and 
 2 f0; 1gn again indexes the

candidate basis functions. Variable selection in (45) with Bi de�ned through smoothing spline kernels is

equivalent to choosing knot locations in a natural spline space (Schumaker, 1981). Notice that in this case

we always include a constant and linear term in our �ts. (Because of our normalization, we do not need the

constant term, but we include it in the equation above for completeness). In this context, Luo and Wahba

(1997) employ a stepwise greedy algorithm to identify a model, while Wong et al. (1997) make use of the

focused sampler after constructing a computationally feasible prior on 
. Finally, recall that a traditional

smoothing spline estimate would �x 
 = (1; : : : ; 1) and perform a penalized �t (Wahba, 1990). See Hansen

and Kooperberg (1998) for a general discussion of knot location strategies.

As mentioned above, the data presented in Figure 6 was collected as part of a larger project to create

a classi�er for recognizing supermarket produce based solely on its color. While we ultimately applied a

variant of penalized discriminant analysis (Hastie, Buja and Tibshirani, 1995), a reasonably accurate scheme
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involves dimension reduction (45) followed by simple linear discriminant analysis (LDA) on the coe�cients

�i. Therefore, we adapted the MDL criteria introduced previously to handle multiple responses (curves).

Our search for promising indices 
 now represents identifying a single spline space (45) into which each curve

is projected, producing inputs (coe�cients) for a classi�cation scheme like LDA. Given our extension of the

MDL procedures to multiple responses, it is also possible to simply \plug in" each of these schemes to the


exible discriminant analysis technique of Hastie, Tibshirani and Buja (1994). The expansion (45), with its

curve-by-curve projection into a �xed linear (although adaptively selected) space can be applied directly in

this algorithm.

For our present purposes, we have roughly 30 curves for each variety listed in Figure 6 for a total of

176 response vectors. Because of the size of the problem, the best BIC and gMDL models were computed

using the focused sampler of Wong et al. (1997). We restricted our attention to these two forms purely on

the basis of computational burden. The iterations (66) required by iMDL are prohibitive given our current

implementation of the algorithm. It is of course possible to take short-cuts with greedy, deterministic searches

as proposed by Rissanen (1989). However, to simplify our presentation, we restrict our attention to only

these two forms. In each case, 10,000 iterations of the sampler were used to identify the best expansion

(45). To simplify our exposition even further, we were pleased to �nd that BIC and gMDL agreed on the

number of knots, and hence their placement as both select the minimal RSS model among candidates of the

same dimension. In Figure 7 we highlight the locations of the selected knots, or rather the points xi that

correspond to kernel functions Bi(�) = K(�; xi) in the approximation (45). The higher density of knots in

the neighborhood of 700 nm is expected. Because of chlorophyll's absorption properties, re
ectance curves

collected from green plants often exhibit a sharp rise in this region known as the red edge.

Based on these selected knot locations, we now project each curve into the linear space de�ned in (45).

In the next section, the coe�cients from these projections will be applied to an MDL-like clustering scheme.

4.2 Clustering Analysis

In this section, we apply a close cousin of MDL introduced by Wallace and Boulton (1968) and re�ned by

Wallace and Freeman (1987). Originally designed for cluster analysis, their principle of Minimum Message

Length (MML) also appeals to a notion of code length to strike a balance between model complexity and

�delity to the data. Under this framework, a two-part message is constructed, analogous to the two-stage

coding scheme mentioned in Sections 2 and 3. For cluster analysis, a mixture of parametric models is

proposed, so that the �rst part of the MML message consists of

� the number of clusters or components;

� the number of data points belonging to each cluster;

� the parameters needed to specify each model; and

� the cluster membership for each data point.

In the second part of the message, the data are encoded using the distribution of the speci�ed model exactly

as we described in Sections 2 and 3. As with MDL, the best MML model is the one with the shortest message

length. In the words of Wallace and Boulton (1968), \a classi�cation is regarded as a method of economical

statistical encoding of the available attribute information."

When possible, MML will attempt to divide the data into homogeneous groups (implying that the model

for each component captures the structure in the data), while penalizing the overall complexity or, rather,

the total number of components. For the moment, the only practical di�erence between two-stage MDL and

MML has to do with the precise encoding of the selected model. As these details are somewhat technical, the

interested reader is referred to Baxter and Oliver (1995). Observe, however, that the restriction to two-part
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Figure 8: Mixture modeling via MML. SNOB �nds 10 clusters for the projected re
ectance curves. The

ovals are contours of constant probability for the clusters that exhibit signi�cant variation in the �rst two

principal component directions. The symbols denote B = Banana, Li = Lime, Le = Lemon, C = Cantaloupe,

O = Orange, and G = Garlic.

messages limits MML from taking advantage of other, more elaborate, coding schemes that still give rise to

statistically-sound selection schemes.

To illustrate MML or the practical application of MDL to cluster analysis, we consider the produce data

from the previous section. Recall that each spectral re
ectance curve was projected onto a spline space (45)

with the 14 knot locations speci�ed in Figure 7. When combined with the linear term in (45) we obtain

15 estimated coe�cients for each of our 176 curves. To this dataset we applied MML cluster analysis using

SNOB, a public-domain Fortran program developed by Wallace's group at Monash University in Melbourne,

Australia. The SNOB program and a number of relevant documents can be found through David Dowe's

Web site http://www.cs.monash.edu.au/�dld. Wallace and Dowe (1994) describe the mixture modeling

framework on which SNOB is based.

When clustering Gaussian data, each component of the mixture has a multivariate normal distribution

with a diagonal covariance matrix. At present, SNOB assumes that all intra-class correlations are zero.

Following a suggestion in the documentation, we orthogonalized the entire data set via a principal components

decomposition. In Figure 8, have plotted the scores corresponding to the �rst two components, labeling points

according to the class of each fruit. Clear divisions can be seen between, say, the limes and bananas. The
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cantaloupe measurements stretch across a broad area at the bottom of this plot, an indication that it will be

di�cult to separate this class from the others. This is perhaps not surprising given the di�erent colors that

a cantaloupe can exhibit. The 10-cluster SNOB model is superimposed by projecting each Gaussian density

in the mixture onto the space of the �rst two-dimensional principal components. Again, each component

in this mixture is a Gaussian with diagonal variance-covariance matrix. In some cases, the SNOB clusters

capture isolated groups of fruits (the bananas, lemons and limes, for example), while in other cases the color

appears in too many di�erent varieties.

4.3 Time Series Models

Our �nal application of MDL is to time series analysis. We emphasize predictive MDL which is especially

natural in this setting. Our benchmarks will be AIC and BIC. In this context, determining the orders of

an autoregressive-moving average (ARMA) process is a common model selection problem. Throughout this

section we will focus on Gaussian ARMA(p; q) models, speci�ed by the equation

xt = �1xt�1 + : : :+ �pxt�p + Zt + �1Zt�1 : : :+ �qZt�q ; (46)

where the variables Zt are iid Gaussian with mean 0 and variance �2. As is customary, we assume that the

polynomials

1� �1z � : : :� �pz
p = 0 and 1� �1z � : : :� �qz

q = 0

have no roots in jzj < 1, so that equation (46) describes a stationary, second-order Gaussian process.

Given parameter values � = (�1; : : : ; �p) and � = (�1; : : : ; �q), and a series x1; : : : ; xt, it is straightforward

to make predictions from (46) to times t + 1; t+ 2; : : : conditional on the �rst t data points. For example,

following Brockwell and Davis (1991, pp. 256), xt+1 has a Gaussian distribution with mean x̂t+1 and variance

�2rt which are calculable from the recursive formulae:�
x̂t+1 =

Pt
i=1 �it(xt+1�i � x̂t+1�i); 1 � t < max(p; q)

x̂t+1 = �1xt + : : :+ �pxt+1�p +
Pq

i=1 �it(xt+1�i � x̂t+1�i); t � max(p; q)
(47)

The extra parameters �it and rt can be obtained recursively by applying the so-called innovation algorithm

(Brockwell and Davis, Prop. 5.2.2., 1991) to the covariance function of the ARMA process.

We now turn to de�ning two forms of MDL in this context. For ease of notation, we will collect the

parameters �, � and �2 into a single vector �. To emphasize the dependence of x̂t+1 and rt on �, we write

x̂t+1(�) and rt(�):

Hence the predictive density of xt+1 conditional on x1; : : : ; xt is given by

qt(xt+1j�) =
�
2�rt�

2
�� 1

2 exp

�
� 1

2rt�2
(xt+1 � x̂t+1)

2

�
;

and the likelihood for � based on x1; : : : ; xn is simply

q(�) =

nY
t

qt(xt+1j�): (48)

Letting �̂n denote the MLE in this context, two stage MDL takes on the now familiar form of BIC

� log q(�̂n) +
p+ q + 1

2
logn:
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The consistency proof of the two-stage MDL or BIC follows from Hannan and Quinn (1979) for AR models

and from Gerencs�er (1987) for general ARMA processes. As explained earlier, the complexity penalty logn=2

comes from coding the parameter values at the estimation rate 1=
p
n. When an AR model is not stable,

Huang (1990) shows that this complexity penalty should be adjusted to the new estimation rate. For example,

this leads to a complexity term logn for the explosive case where the estimation rate is 1=n.

When modeling time series data, the predictive form of MDL is perhaps the most natural. Expressing

the likelihood predictively, we arrive at the criterion

PMDL(p; q) = �
nX
t=1

log qt(xt+1j�̂t): (49)

A closely related quantity for assessing the orders in ARMA models is the so-called accumulated prediction

error (APE)

APE(p; q) =

nX
t

(xt+1 � x̂t+1)
2;

although APE was used long before the MDL principle. The computational cost of PMDL can be enormous

for general ARMA models since the parameter estimate �̂t in (49) must be updated for each new observation.

Hannan and Rissanen (1982) and Lai and Lee (1997) have proposed methods for reducing this cost. Con-

sistency proofs for PMDL order selection can be found for AR models in Hannan, McDougall, and Poskitt

(1988) and Hemerly and Davis (1989a, 1989b), and for general ARMA models in Gerencs�er (1987).

While deriving a mixture form of MDL appears possible by appealing to the state-space approach to

ARMA processes (cf. Carlin, Polson, and Sto�er, 1992), selecting (computationally feasible) priors remains

an active research area in its own right. In the next example, we apply AIC, BIC and PMDL to the actual

values (di�erenced) of the return series studied in Section 2.

Example 3 (continued) In the lefthand panel of Figure 2, we presented �rst di�erences of the daily

return series. While our interest at that point was on compressing the string of up's and downs's,

we now focus on the series itself. To ease the computational burden of PMDL, we choose to only

update the parameter estimates every 100 days. We also restrict our attention to the �rst 6100

data points, intentionally stopping short of the spike induced by the stock market crash in 1987.

Using the time series tools in S-PLUS, we �t our parameter estimates and recursively evaluated the

likelihood (48) conditioned on the �rst 100 days. The standard analysis tools in S-PLUS allowed for

a quick order determination via AIC and BIC. These criteria indicated that a simple MA(1) was

in order. We then considered models where p and q varied (independently) over the range 0 to 5,

and found that PMDL also favors a MA(1) model. This result agrees with our initial work on the

up-and-down series from Section 2. Undoubtedly, the (twice-di�erenced) DJIA series is much more

complex than a simple ARMA process, but our goal here is to illustrate the application of MDL and

not dabble in the stock market. �

5 Theoretical Results on MDL

In Section 3, we mentioned that the validity of an MDL model selection criterion depends on properties

of the underlying coding scheme or, more precisely, the resulting description lengths. In this section we

formalize these ideas in the context of regular parametric families (model classes). We �rst derive pointwise

and minimax lower bounds on the code length with which data strings can be encoded with the help of a
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class of models. Coding schemes yielding description lengths that achieve these lower bounds are said to

produce valid MDL model selection criteria. Next, we return to the hypothesis tests of Example 4 and verify

that the two-stage, predictive and mixture forms of description length all achieve these lower bounds. It

has been shown that under very general conditions, MDL model selection criteria are consistent when the

data-generating model belongs to the class being considered (cf. Barron et al., 1998). We end this section

by illustrating why this is the case using the same simple framework of Example 4. For a more thorough

treatment of the theoretical justi�cations of MDL, the interested reader is referred to the recent review article

by Barron et al. (1998).

5.1 Rissanen's Pointwise Lower Bound

Given a parametric family or model class

M = ff�(xn) : � 2 � � R
kg;

let E�f�g denote the expectation with respect to a random variable (data string) Xn having density f�. (In

contrast to previous sections, we are now going to be more careful when referring to random variables Xn

versus points xn 2 Rn .) Using this notation, the di�erential entropy of f� de�ned in (5) becomes

H�(X
n) = �E� log f�(X

n):

For any density (or pre�x code) q(xn), the Kullback-Leibler divergence between f� and q is given by

Rn(f�; q) = E� log
f�(X

n)

q(Xn)
(50)

= E�

n
� log q(Xn)� �� log f�(X

n)
�o
:

Rn(f�; q) represents the expected extra nats needed to encode the data string Xn using q rather than the

optimal scheme based on f�. In coding theory, Rn is called the (expected) redundancy of q.

De�ning a valid description length for a data string based on models from the classM reduces to �nding

a density q that achieves the \smallest" redundancy possible for all members in M. To make this concrete,

we �rst derive a lower bound on redundancy in a well-de�ned global sense over the entire classM, and then

illustrate choices for q that achieve it. We begin with a pointwise result �rst derived in Rissanen (1986a).

Assume that a
p
n-rate estimator �̂(xn) for � exists and the distribution of �̂(Xn) has uniformly summable

tail probabilities:

P�f
p
nk�̂(Xn)� �k � logng � �n; for all � and

X
n

�n <1;

where k�k denotes some norm in Rk . Then, for any density q, Rissanen (1986a) �nds that

lim inf
n!1

E� log[ f�(X
n)=q(Xn) ]

(k=2) logn
� 1; (51)

for all � 2 �, except on a set of � with a Lebesgue measure zero. This exceptional set depends on q and k.

Viewing � log q(Xn) as the code length of an idealized pre�x code, then (51) implies that without knowing

the true distribution f�, we generally need at least k logn=2 more bits to encode Xn, no matter what pre�x

code we use.

Shannon's source coding theorem (Section 2) quanti�es the best expected code length when symbols

from a known data-generating source are encoded with the density q (denoted by the distribution function
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Q in Section 2). Rissanen's lower bound (51) extends this result to the case in which we only know that the

\true" source belongs to some model classM. In coding theory this is referred to as the problem of universal

coding. Historically, the pointwise lower bound was the �rst to appear, which was followed by the minimax

approach in the next section. The two approaches connect in Merhav and Feder (1995) where a lower bound

on redundancy is obtained for abstract spaces. The pointwise lower bound (51) has been generalized to a

special nonparametric class of models in density estimation by Rissanen, Speed, and Yu (1992) and their

arguments should apply to other nonparametric settings.

5.2 Minimax Lower Bound

The bound (51) holds for almost every value of � 2 �, hence the term pointwise. We now turn to a minimax

version of this result. We again focus on parametric classes. The interested reader is referred to Barron et

al. (1998) for the minimax approach in MDL and nonparametric estimation.

First, we de�ne the minimax redundancy to be

R+
n = min

q
sup
�2�

Rn(f�; q): (52)

This expression has a simple interpretation as the minimum over all coding schemes for Xn of the worst case

redundancy over all parameter values �. Next, consider a prior distribution w(�) on the parameter space �

and de�ne the Bayes redundancy associated with a density q relative to w as

R�n(q; w) =
Z
�

Rn(f�; q)w(d�): (53)

The minimal Bayes redundancy for a given w is given by

Rn(w) = min
q

R�n(q; w); (54)

which is achieved by the mixture distribution

mw(xn) =

Z
�

f�(x
n)w(d�): (55)

To see this, write

R�n(q; w) �R�n(m
w; w) =

Z
Xn

log
mw(xn)

q(xn)
mw(dxn) � 0;

where the last relation holds from Jensen's inequality. Evaluating (54) at mw yields

Rn(w) = R�n(m
w; w)

=

Z
�

Z
Xn

log
f�(x

n)

mw(xn)
f�(dx

n) w(d�)

With a slight abuse of notation, if we let � also denote the random variable induced by the prior w, then the

last expression above is known as the mutual information Iw(�;X
n) between � and the random variable

Xn = X1; : : : ; Xn (Cover and Thomas, 1991). Therefore, we have established that

Rn(w) = Iw(�;X
n): (56)
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The quantity Iw measures the average amount of information contained in the data Xn about the parameter

� and has been used to measure information in a statistical context by Lindley as early as 1956 (cf. Lindley,

1956).

Let R�n denote the worst case minimal Bayes redundancy among all priors w:

R�n = sup
w

Rn(w): (57)

This quantity also carries with it an information-theoretic interpretation. Here, R�n is referred to as the

channel capacity, C(�;Xn). Following Cover and Thomas (1991), we envision sending a message consisting

of a value of � through a noisy channel represented by the conditional probability of Xn given �. The receiver

then attempts to reconstruct the message � from Xn, or rather estimates � from Xn. Assuming � is to be

sampled from a distribution w(�), the channel capacity represents the maximal message rate that the noisy

channel allows. The capacity-achieving distribution \spaces" the input values of �, countering the channel

noise and aiding message recovery (see Cover and Thomas, 1991).

Now, observe that the channel capacity C(�;Xn), bounds the minimax redundancy R+
n (52) from below:

R+
n = min

q
sup
�2�

Rn(f�; q)

� sup
w

min
q

Z
�

Rn(f�; q)w(d�)

= sup
w

min
q

R�n(q; w) (58)

= sup
w

Rn(w) (59)

� C(�;Xn);

where the equalities (58) and (59) are simply the de�nitions of the Bayes redundancy (53) and the minimal

Bayes redundancy (57), respectively.

Haussler (1997) demonstrates that in fact the minimax redundancy (52) is equal to the channel capacity:

R+
n = C(�;Xn) = R�n : (60)

According to this result, if we can calculate the capacity of the channel de�ned by the pair w and f�, then we

can get the minimax redundancy immediately. This statement was �rst proved by Gallager (1976), although

the minimax result of this type for general loss functions was known prior to this point (cf. Le Cam, 1986).

See also Davisson (1973), Davisson and Leon-Garcia (1980) and Csisz�ar (1990).

To be useful, this equivalence requires us to compute the channel capacity for a pair w and f�. Unfortu-

nately, this can be a daunting calculation. When both the prior and density function are smooth, however,

a familiar expansion can be employed to derive a reasonable approximation. Let I(�) denote the Fisher

information matrix de�ned by

Ii;j(�) = E

"
@

@�i
log f(X j�) @

@�j
log f(X j�)

#
for all i; j = 1; : : : ; k:

Assume the observation sequence Xn = X1; : : : ; Xn are iid (or memoryless in the parlance of information

theory) from some distribution f� in the classM. Under regularity conditions on the prior w and the model

class M, Clarke and Barron (1990) derived the following expansion in the general k-dimensional case (see

Ibragimov and Has'minsky, 1973, for the 1-dimensional case). Let K be a compact subset in the interior

of �. Then, given a positive, continuous prior density w supported on K, the expected redundancy (51)
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evaluated at the mixture distribution mw (55) can be expanded as

Rn(f�;m
w) =

k

2
log

n

2�e
+ log

p
det I(�)

w(�)
+ o(1);

where the o(1) term is uniformly small on compact subsets interior to K. Averaging with respect to w yields

an expansion for the minimal Bayes redundancy, or mutual information, (56)

Rn(w) = Iw(�;X
n)

=
k

2
log

n

2�e
+

Z
K

w(�) log

p
det I(�)

w(�)
d� + o(1):

The middle term is maximized by Je�reys' prior (when this prior is well-de�ned):

w�(�) =

p
det I(�)R

K

p
det I(�) d�

;

Hence the minimax redundancy satis�es

R+
n = min

q
sup
�2�

Rn(f�; q) =
k

2
log

n

2�e
+ log

Z
K

p
det I(�) d� + o(1): (61)

Recalling the equivalence (60) and the channel capacity interpretation of the worst case minimal Bayes

redundancy, Je�reys' prior is now seen to be the capacity-achieving distribution for the channel de�ned by

the pair w and f�(x
n). Intuitively, sampling a message � according to Je�reys' prior will result in channel

inputs that are well separated in the sense that the probability of correctly reconstructing the message from

Xn is high.

The leading term in (61) is the same k
2 logn as in Rissanen's pointwise lower bound (51). Any code that

achieves this leading term (to �rst order) on expected redundancy over a model class quali�es as a code to

be used as the description length in the MDL selection for a model (Barron et al., 1998, address qualifying

coding schemes based on the constant term). Such codes fairly represent all the members in the model class

(in the minimax sense) without the knowledge of exactly which distribution generated our data string.

To gain perspective, we now contrast the analysis of the Kullback-Leibler divergence Rn(f�; q) de�ned in

(51) that is carried out for the derivation of AIC with the analysis presented above. For AIC, we replace the

distribution q with f�̂n , where �̂n is the maximum likelihood estimator of �.15 Under standard assumptions,

the estimate �̂n converges to � in such a way that Rn(f�; f�̂n) has a negative 1
2�

2
k limiting distribution.

Therefore, the Kullback-Liebler divergence Rn(f�; f�̂n) has a limiting mean of �k
2 . This limit accounts for

half of AIC's bias correction, the half associated with Kullback-Leibler divergence from f� due to parameter

estimation, see Sakamoto, Ishiguro and Kitagawa (1985, p. 54) or Findley (1999). The minimax calculation

in (61) is focussed on a q which is a joint density of xn and determined by the set �. Moreover, it is shown

in Rissanen (1996) that the minimax redundancy is achieved asymptotically by the joint density (when it

exists) corresponding to the normalized maximum likelihood (NML) code. That is, f�̂n(x
n)=Cn where Cn

is the normalization constant required to make f�̂n(x
n) into a joint density or a code. The �k

2 term from

the unnormalized maximum likelihood estimator as in the AIC case appears as k
2 log

1
e and the rest of the

terms in (61) give the asymptotic expansion of Cn (cf. Barron et al, 1998). Hence, MDL criteria that

achieve minimax redundancy can be viewed as more conservative criteria that AIC from the perspective of

Kullback-Leibler divergence.

15Note that f
�̂n

is an estimator of the joint density of xn, but is not a joint distribution. Therefore, it cannot be used to

generate a code.
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For more general parameter spaces, Merhav and Feder (1995) prove that the capacity of the induced

channel is a lower bound on the redundancy that holds simultaneously for all sources in the class except for

a subset of points whose probability, under the capacity-achieving probability measure, vanishes as n tends

to in�nity. Because of the relationship between channel capacity and minimax redundancy, this means that

the minimax redundancy is a lower bound on the redundancy for \most" choices of the parameter �, hence

generalizing Risssanen's lower bound.

For the case when the source is memoryless, that is, when the observations are conditionally independent

given the true parameter �, and have a common distribution f�, � 2 �, Haussler and Opper (1997) obtain

upper and lower bounds on the mutual information in terms of the relative entropy and Hellinger distance.

Using these bounds and the relation between the minimax redundancy and channel capacity, asymptotic

values for minimax redundancy can be obtained for abstract parameter spaces.

5.3 Achievability of Lower Bounds by Di�erent Forms of Description Length

In regular parametric families (model classes), the forms of description length introduced in Section 3 all

achieve the k
2 logn asymptotic lower bounds on redundancy, both in the pointwise and minimax senses. They

therefore qualify as description lengths (to �rst order) to be used in MDL model selection. We illustrate this

through our running Example 4 from Section 2.3. Our notation for a random data string will now revert to

that from Section 4, so that xn represents a random sequence x1; : : : ; xn.

Example 4 (continued) Two-stage MDL. Trivially, because M0 consists of a single distribution,

the expected redundancy of L0 given in (4) is zero. Now, for � 6= 0, give above (11)

� log f�(x
n) =

n

2
log(2�) +

1

2

nX
t=1

(xt � �)2:

Therefore, the expected redundancy between f� and the code length function L1 (11) is given by

E�

�
log f�(x

n)� L1(x
n)
	

=
n

2
E�f�xn � �g2 + 1

2
logn

=
1

2
+

1

2
logn;

which for k = 1 achieves the pointwise lower bound (51).

Heuristically, for a general k-dimensional regular parametric family, it is well-known that the quantity

� log
f�̂(x

n)

f�(xn)

has an asymptotic �2k distribution hence its expected value should be k
2 , which is of smaller order

than k
2 logn. Thus the two-stage description length achieves the lower bound.

Mixture MDL. As with the two-stage scheme, the redundancy of L0 is zero because M0 consists

of a single model. Now, starting with expression (15) we can calculate the expected redundancy for

L1

1

2
log(1 + n�) +

1

2

n

1 + 1=(n�)
E��x

2 �
X
t

�E�xt +
1

2
n�2

=
1

2
log(1 + n�) +

1

2

n

1 + 1=(n�)
(1=n+ �2)� n�2=2

=
1

2
logn+O(1);
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which clearly achieves the pointwise lower bound (51). In addition, given any prior distribution w on

�, we can construct a pre�x code according to the mixture distribution mw (55). The corresponding

code length is

L(xn) = � log

Z
w(d�) f�(x

n):

As mentioned above, under certain regularity conditions, Clarke and Barron (1990) showed that

the redundancy of the mixture code has the following asymptotic expansion for a regular family of

dimension k:

Rn(m
w; �) =

k

2
log

n

2�e
+

1

2
log

p
det I(�)

w(�)
+ o(1) :

It follows that the mixture code achieves the minimax lower bound, and as we have mentioned earlier,

Je�reys' prior maximizes the constant term in the minimax redundancy (cf. Barron et al., 1998).

Predictive MDL. Using (22), it is easy to check that the redundancy

E�(� log q(xn) + log f�(x
n)) =

1

2

nX
t=1

(1 + 1=t)� n=2

=
1

2

nX
t=1

1=t

=
1

2
logn+O(1):

Thus it achieves the lower bound (51) and can be used as the description length for data based on

model M1. As with the previous two forms, the expected redundancy of L0 is zero.

For more general cases, Rissanen (1986b, Theorem 3) proved that the predictive code based on

the maximum likelihood estimator achieves the pointwise redundancy lower bound under regularity

conditions. �

5.4 Assessing MDL Model Selection Procedures in Terms of

Consistency and Prediction Errors

Although MDL has a solid motivation from the viewpoint of noiseless compression of data, which itself has

a close tie to statistical estimation, it is not clear a priori whether or not MDL will lead to model selection

procedures that are sensible statistically. One criterion used in assessing model selection procedures is

consistency when a �nite-dimensional \true" model is assumed. That is, as the sample size gets large,

a consistent procedure will pick the correct model class with probability approaching 1. The two-stage,

predictive, and mixture forms of MDL are consistent in the regression case (cf. Speed and Yu, 1994). In

general, di�erent MDL forms are consistent under very weak conditions (cf. Barron et al, 1998). The

predictive code takes the form of predictive least squares in time series and stochastic regression models. See

Hemerly and Davis (1989) for time series models and Wei (1992) for general stochastic regression models

and the consistency of the predictive form. We illustrate the consistency of MDL through the two-stage code

in our running example.16

16Under the same �nite dimensional \true" model assumption, as an alternative to the consistency assessment, Merhav (1989)

and Merhav, Gutman and Ziv (1989) analyze model selection criteria by studying the best possible under�tting probability

while exponentially restricting the over�tting probability.
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Example 4 (continued) Recall that two-stage MDL or BIC will selectM0 if j�xnj �
p
logn=n. When

M1 is true, the probability of under�tting is

P (M0 is selected) = P�(j�xnj �
p
logn=n)

� P�(N(0; 1) � �
p
n�

p
logn)

� O(e�n�
2=2):

Similarly, when M0 is true, the probability of over�tting is

P (M1 is selected) = P�(j�xnj >
p
logn=n)

= P�(jN(0; 1)j >
p
logn)

� O(1=
p
n):

Therefore, two-stage MDL yields a consistent model selection rule. �

In general, an exponential decay rate on the under�tting probability and an algebraic decay rate on the

over�tting probability hold for the predictive and mixture MDL forms, and also for other regression models

(cf. Speed and Yu, 1994). Consistency of MDL follows immediately. It also follows from and examination

of the under�tting probability that for �nite sample sizes, consistency is e�ected by the magnitude of �2

(or squared bias in general) relative to n, and not the absolute magnitude of �2. Speed and Yu (1994)

also studied the behavior of MDL criteria in two prediction frameworks: prediction without re�tting and

prediction with re�tting. In both cases, MDL (and BIC) turned out to be optimal if the true regression

model is �nite dimensional. AIC is not consistent, but the consequence in terms of prediction errors is not

severe: the ratio of AIC 's prediction error and that of any form of MDL (or BIC) is bounded.

No model is true in practice, but the �nite dimensional model assumption in regression does approximate

the practical situation where the model bias has a \cli�" or a sharp drop at a certain sub-model class under

consideration, or when the covariates can be divided into two groups of which one is very important and

the other marginal and no important covariates are missing from consideration. When bias decays gradually

and never hits zero, however, the consistency criterion does not make sense. In this case, prediction error

provides insight into the performance of a selection rule. Shibata (1981) shows that AIC is optimal for

these situations, at least in terms of one-step ahead prediction error. The simulation studies in Section 4

illustrate that by trading o� between bias and variance it is possible to create examples in which BIC

outperforms AIC and vice versa. A similar point was made in Speed and Yu (1994). When the covariates

under consideration are misspeci�ed or super
uous, Findley (1991) gives examples both in regression and

time series models where the bigger model always gives a smaller prediction error thus suggesting AIC is

better for these particular models. For exactly these reasons, we believe adaptive model selection criteria

likc gMDL are very useful.

6 Conclusion

In this article, we have reviewed the Principle of Minimum Description length and its various applications

to statistical model selection. Through a number of simple examples, we have motivated the notion of

code length as a measure for evaluating competing descriptions of data. This brings a rich information-

theoretic interpretation to statistical modeling. Throughout this discussion, our emphasis has been on the
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practical aspects of MDL. Toward that end, we developed in some detail MDL variable selection criteria for

regression, perhaps the most widely applied modeling framework. As we have seen, the resulting procedures

have connections with both frequentist and Bayesian methods. Two mixture forms of MDL, iMDL and

gMDL exhibit a certain degree of adaptability, allowing them to perform like AIC at one extreme and BIC

at the other. To illustrate the scope of the MDL framework, we have also discussed model selection in the

context of curve estimation, cluster analysis and order selection in ARMA models.

Some care has gone into the treatment of so-called valid description lengths. This notion is important, as

it justi�es the use of a given coding scheme for comparing competing models. Any implementation of MDL

depends on the establishment of a universal coding theorem, guaranteeing that the resulting selection rule

has good theoretical properties, at least asymptotically. The two-stage, mixture, predictive and normalized

maximized likelihood coding schemes all produce valid description lengths. Our understanding of the �nite-

sample performance of even these existing MDL criteria, will improve as they �nd greater application within

the statistics community. To aid this endeavor, the MDL procedures discussed in this paper will be made

available by the �rst author in the form of an S-PLUS library.

Inspired by algorithmic complexity theory, the descriptive modeling philosophy of MDL adds to other

more traditional views of statistics. Within engineering, MDL is being applied to ever more exotic modeling

situations, and there is no doubt that new forms of description length will continue to appear. MDL

provides an objective umbrella under which rather disparate approaches to statistical modeling can co-exist

and be compared. In crafting this discussion, we have tried to point out interesting open problems and

areas needing statistical attention. At the top of this list is the incorporation of uncertainty measures

into the MDL framework. The close ties with Bayesian statistics yields a number of natural suggestions

in this direction, but nothing formal has been done in this regard. The practical application of MDL in

nonparametric problems should also provide a rich area of research, as theoretical results in this direction

are already quite promising (see, for example, Barron and Yang, 1998; and Yang, 1999).
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8 Appendix

We begin with the normal-inverse-gamma family of conjugate priors for the normal linear regressionmodel (23).

Setting � = �2, these densities are given by

w(�; �) / �
�d+k+2

2 exp

��(� � b)tV �1(� � b) + a

2�

�
; (62)

and depend on several hyperparameters: a; d 2 R, the vector b 2 Rk , and a k�k symmetric, positive de�nite
matrix V . Valid ranges for these parameters include all values that make (62) a proper density. Under this

class of priors, the mixture distribution (30) has the form

� log m(yjX) =
1

2
log jV j � 1

2
log jV �j � d

2
log a +

d�

2
log a� ; (63)

ignoring terms that do not depend on our particular choice of model, where

d� = d+ n ; V � = (V �1 +XtX)�1 ; b� = V �(V �1b+Xty) ;
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and

a� = a+ yty + btV �1b� (b�)t(V �)�1b� :

The derivation of m(yjX), the marginal or predictive distribution of y, is standard and can be found in

O'Hagan (1994).

To implement this mixture form of MDL, we have to settle on values for the hyperparameters. In his

original derivation, Rissanen (1989) considers normal-inverse-gamma priors with

d = 1 ; V = c�1� ; and b = (0; : : : ; 0) : (64)

After making these substitutions, we then want to minimize the expression (63) over the two hyperparameters

a and c. First, a straightforward calculation gives us the closed-form expression â = Rc=n. Substituting â

for a, we arrive at the log-likelihood

� log m(yjX; â; c) = �1

2
log jc��1j + 1

2
log

�� c��1 +XtX
�� +

n

2
log Rc : (65)

Surprisingly, we obtain this form no matter how we select d in our prior speci�cation (64), so d = 1 is not

a restrictive choice. This form, in fact, is equivalent to a mixture distribution computed under the so-called

weak prior corresponding to a = d = 0; a choice of hyperparameters that assigns the improper prior 1=�

to � .

Unfortunately, optimizing over c presents us with a more di�cult problem. After di�erentiating (31), we

�nd that ĉ must satisfy

ĉ =
kRĉ

Rĉ trace [ ��1 ( ĉ��1 + X 0X)�1 ] + n ytX ( ĉ��1 +XtX )
�1

��1 ( ĉ��1 + XtX )
�1

Xty
: (66)

This expression can be be applied iteratively, with convergence typically requiring fewer than twenty steps,

depending on the starting values. In deriving what we have called iMDL, Rissanen (1989, pp. 129) exhibits

a slightly di�erent relationship for the special case of � = Ik�k . (The di�erence is presumably the result of

transcription errors.) To obtain gMDL, we instead choose � = (XtX)�1, and we arrive at the expression

for ĉ given in (33) either by direct substitution in (66) or by minimizing (65).
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