CIS 4480/5480 Recitation 1 - Processes, Valgrind and Style
SOLUTION

Welcome back to recitation!!! &

Exercise 1: GDB Debugging

In this exercise, you should use GDB to debug the program linked on the recitation files
on the website.

You are given a file called pokemon_buggy.c. This program looked like it should print
some info about a Pokémon... but it crashed or printed nonsense!

Questions to Answer:

1.

e What was the first bug you found and fixed?
o There is a segfault caused by trying to dereference a NULL pointer.
e What line caused the crash?
o Line 21 (struct Pokemon* p = malloc(sizeof(struct Pokemon));)
e Why did the program crash at that point?
o The program tries to dereference a NULL pointer, which causes a
segfault.
e What did you change to fix it?
o Change NULL to properly malloc space for the struct.

e What was the second bug you encountered after fixing the first?
o Out of bounds memory access gives garbage value.
e Did the program crash again, or just behave strangely?
o Behaves strangely, level is not 0, 5, 10, or 15, is a garbage value.
e How did you use gdb to identify the problem?
o Used print command in GDB to print out value of index, used
breakpoints to determine what line level was set to incorrect value
e Where was the invalid access? What caused it?
o Invalid access outside of the array containing levels, caused when index
was set to 3, which is equal to the length of the array.

https://www.seas.upenn.edu/~cis5480/25fa/schedule.html
https://www.seas.upenn.edu/~cis5480/25fa/schedule.html

Exercise 2: Processes and File Access

#include <fcntl.h>
#tinclude <stdlib.h>

int main() {
pid_t child = fork();
int fd = open("file.txt", O_WRONLY);
if (fd == -1) {

exit (EXIT_FAILURE);

}
write(fd, "this is parent or child.", 25);

close(fd);
return 0;

Questions to answer:
e Which processes have access to file.txt?
a) Parent
b) Child
c) Both
d) Neither

e If the parent closes the file, can the child still write to file.txt? Explain your
answer.

Yes, the child can still write to file.txt because when fork() was called, the parent’s file
descriptor table (the table that lists the files open to the process) is duplicated for the
child process. Thus the child has access to all files that the parent did at the time of
fork(), but the access is independent of the parent’s access. If the parent closes the
file, the file descriptor is removed from the parent’s file descriptor table but not the
child’s.

Exercise 3: The Process Family Tree

Here are two diagrams, where each labeled box represents a process. PO is the
“original process” that forks P1. Arrows show the parent-child relationship. The order
of processes spawning from first to last is: PO, P1, P2, P3.

Method 1

Metwod 2.

N

=
0

#ARCOW SWOS ?‘f“"

ew\a

Questions to answer:

e Using either C code, psuedocode, or a written description, describe how you
would fork 3 processes to achieve diagram 1 and diagram 2.

Diagram 1

Diagram 2

The original process (P0) calls fork.

Then, you check if the return value of fork
is not zero. If so, you call fork again,
ensuring only the parent does this.
Check if the most recent return value of
fork is not zero, and if it is, call fork a
third time. Then, the parent calls wait()
three times.

The original process (P0) calls fork.
Then, you check if return value of fork is
zero. If so, you call fork again (to ensure
only the child is calling fork). Check if
the most recent return value of fork is
zero, and if it is, call fork a third time.
Each parent should call wait() after fork
returned.

e |et’s say | have 3 independent tasks: T1, T2, and T3.

©)
®)
©)
©)

o

P1 will exec T1

P2 will exec T2

P3 will exec T3

T1, T2, and T3 all require 1/0 calls to be made (i.e. reading from or writing
to a file)

PO must wait until T1, T2, and T3 have finished.

Which diagram will result in the faster runtime? Explain your answer.

The first diagram shows faster runtime, because having one parent fork 3
processes to do 3 independent tasks will make best use of concurrency. For
diagram 1, let’s say the CPU is running P3, and comes to a point where P3 has
to read a file. An1/O call like reading or writing doesn’t require CPU, so when P3
is waiting to receive data, the CPU can context switch to either P1 or P2 (but not
PO, which is blocked). On the other hand, diagram 2 would not allow a context
switch from P3 because PO, P1, and P2 are blocked until P3 exits, so the CPU is
“wasted.”

Exercise 4: Waiting

int main (void) {
int level 1 = fork();
if (level 1 == 0) {
int level 2a = fork();
if (level 2a == 0) {
printf ("A") ;
} else {
wait (NULL) ;
printf ("B") ;
}
} else {
int level 2b = fork();
if (level 2b == 0) {
printf ("C") ;
exit(0) ;
}
printf£("D") ;
}
printf ("0") ;
return (0);

}

Questions to Answer:

1. Draw a diagram of all processes and clearly indicate all parent-child
relationships. You may model your diagram after the one shown in Exercise 2, if
you would like.

\we -1 =0
O
“ﬁﬂ{};o lt \\wu&bvo

!

lewe\- 2b = O

I\OMA,lG‘O

2. Which of the following are possible outputs? Select all that apply:
BOACODO
DOCAOBO
DOAOBOC
CADO00BO
ABCDO000

©oo0 T

	 Questions to Answer:

