University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Introductions, C Refresher
Operating Systems, Fall 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla
Vedansh Goenka Joy Liu

Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane

Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones

Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng

Bo Sun Steven Chang Rania Souissi Rashi Agrawal | fear no man.

Sana Manesh

Segmentation fault
(core dumped)

But that thing... It scares me.

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» How are you?

University of Pennsylvania LOO: Intro, & C Refresher

Administrivia

First Assignment (HWOO penn-vector)

Releases After Class; Expect an announcement on Ed sometime tonight!
“Due” Friday next week 09/05

Extended to be due the same time as HWO1 (Friday the 12th)
Mostly a C refresher

Pre semester Survey

Anonymous

Short!

Releases Wednesday
Due Friday the 5t

CIS 5480, Fall 2025

University of Pennsylvania LOO: Intro, & C Refresher

CIS 5480, Fall 2025

Lecture Outline

% Introduction & Logistics
= Course Overview
= Assighments & Exams
= Policies

» C “Refresher”

" memory
" Pointers
« Output Parameters
" Arrays
" Structs

University of Pennsylvania LOO: Intro, & C Refresher

Instructor: Joel

+» UPenn CIS faculty member since August 2024

» Before this | Lectured @ Stanford

" Where | taught computer systems and probability fundamentals
" Had a whole lot of fun doing it

" Discovered my love for Teaching by TA-ing!

- Education: Stanford University
+» Masters in Computer Science in June 2023

= Bachelors in Symbolic Systems in June 2021

CIS 5480, Fall 2025

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 202

Instructor: Joel

« | love the outdoors....

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Instructor: Joel

+ | play Mexican folk music.......

el

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Instructor: Joel

+ | love to cook...

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Instructor: Joel

" Miso Soup

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

We Care

+» We care a lot about your actual learning and that you have a good experience
with the course

+ We are human beings, and we know that you are one too. If you are facing
difficulties, please let us know and we can try and work something out.

+ I’'m always willing to chat about anything. Book a time to meet with me!

m https://calendly.com/joelrmrz-seas/meet-with-joel

10

https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Course Overview

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Course Overview

-

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Course Overview

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Course Overview

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Course Overview

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Course Overview

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Course Overview

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

i

Memory Unit

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Course Overview

Process

Operating System

Computer

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

“Lies-to-children”

% "The necessarily simplified stories we tell children and students as a
foundation for understanding so that eventually they can discover that they
are not, in fact, true."

= Andrew Sawyer (Narrativium and Lies-to-Children: 'Palatable Instruction in 'The Science of Discworld')

19

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

“Lies-to-children”

» A lie-to-children is a statement that is false, but which nevertheless leads the
child's mind towards a more accurate explanation, one that the child will only
be able to appreciate if it has been primed with the lie"

= Terry Pratchett, lan Stewart & Jack Cohen (The Science of Discworld)

20

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Question

+» What color is the sky?

21

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Question

+» What color is the sky?

«\' HH' |

{HH‘!““I-!!!E

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

We lied to you (but in a good way)

% |s memory one giant array of bytes? Eh....... no
% |s this a useful model? Yes

23

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Course Overview

OS does A LOT wore

Process thaw just privting,
IR ¢ ling uput, Video

display, and timer

Computer

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Course Overview

THERE IS A LOT
GOING ON TO
Operating System SUPPORT THIS

Computer

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Course Overview

THERE IS A LOT
GOTING ON TO
SUPPORT THIS

Operating System

Computer

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

We're going to lie to you (but in a good way)

» "All models are wrong, but some are useful."

= Same source as below.

+» "If it were necessary for us to understand how every component of our daily
lives works in order to function - we simply would not."

= AnRel (UNHINGED: A Guide to Revolution for Nerds & Skeptics)

+ This course will reveal more details, but there is still a ton | am leaving out.
Even what | say that is accurate, will likely change in the future.

27

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Prerequisites

+» Course Prerequisites:
= CIS 2400 (or equivalent previous experience)
= Teamwork & Willingness/happy to spend substantial time coding

+» What you should be familiar with already:
= Cprogramming
= C Memory Model
= Computer Architecture Model
= Basic UNIX command line skills

+» HWO0O and HWO1 are tuned so that it will help refresh you on these.
= Even if you think you know C, get started sooner rather than later.

28

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

CIS 5480 Learning Objectives

+» To leave the class with a better understanding of:
" How a computer runs/manages multiple programs
" How the previous point may affect the code we write
" How to read documentation
= Experience writing a massive programming project FROM SCRATCH with others.
" More comfortable writing C code

+» Topics list/schedule can be found on course website

= Note: This is tentative

29

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Disclaimer

+ A lot of the course is tentative
= Joel has taught this before but is CHANGING A LOT this time

+~ This is a digest, READ THE SYLLABUS

" https://www.seas.upenn.edu/~cis5480/current/documents/syllabus

=" Note: Syllabus is still being updated

30

https://www.seas.upenn.edu/~cis5480/current/documents/syllabus
https://www.seas.upenn.edu/~cis5480/current/documents/syllabus

University of Pennsylvania LOO: Intro, & C Refresher

Course Components: Textbook

+ Textbook (0)

= Textbooks recommended in pasts
- A.S. Tanenbaum. Modern Operating Systems (4th Edition onwards). Prentice-Hall.

- W. Richard Stevens and Stephen A. Rago. Advanced Programming in the UNIX Environment
(2/e or 3/e). Addison-Wesley Professional.

= Systems for all: https://diveintosystems.org/book/
- Free online textbook, pretty well written

" Linux Man pages:
« https://linux.die.net/man/
- https://www.man7.org/linux/man-pages/

« The man command in the terminal
- DEMO:

— name a C function
— tcsetpgrp

CIS 5480, Fall 2025

31

https://diveintosystems.org/book/
https://linux.die.net/man/
https://linux.die.net/man/
https://www.man7.org/linux/man-pages/
https://www.man7.org/linux/man-pages/
https://www.man7.org/linux/man-pages/
https://www.man7.org/linux/man-pages/

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Course Components: Part 1

+ Lectures (~26)
" |ntroduces concepts, slides & recordings available on canvas
" |n lecture polling. Polls are not graded on correctness
= We will not use every lecture slot. Some lectures will be cancelled or just office hours.
+ Recitations (New) (~10)
= Goes over content in more depth, question practice and is most relevant to the programming
projects.
= Content is gone over in a different format/explanation than lecture. (Not just lecture 2.0)
" Thursdays @ 5:15 - 6:45PM in Towne 100. (Will be split up in two sections, 5:15PM & 6PM

= Attendance and Participation is part of your grade.

- Mechanism to track this will be posted by end of the week!
- TAs are already working hard on this!

32

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Course Components: Part 2

+ Check-ins “Quizzes” (~10)
= Unlimited attempt low-stake quizzes on canvas to make sure you are caught up with material
= Lowest two are dropped
» Exams (2)
= Details TBD
+ Pre-recorded videos (many)
= Entirely optional
= Goes over lecture material or demonstrates something for projects
» Projects (4)

= See next couple slides

33

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Programming Facilities

« Docker

= Same environment as the Autograder
" |nstructions for setup will be up by end of day!

+ Speclab cluster, as a fallback incase Docker does not work
" |nstructions on course website

" To see status: https://www.seas.upenn.edu/checklab/?lab=speclab

» DO NOT use Eniac machines to develop projects for this class!

34

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Project 0

\/
0’0

Project O

Making a basic data structure in C: A dynamically resizable array (e.g. Vector or ArrayList)
Optional Extention: make an easier to use generic version w/ macros

Idea is to help you get comfortable with coding in C

- C

- Structs

- Pointers

- Allocation

Done Individually

Will be posted after class!!

35

University of Pennsylvania LOO: Intro, & C Refresher

Project 1 & 2

+» Project 1
= Unix “Shell” — command interpreter (e.g. sh, bash, etc)

= Excellent way to learn about how system calls are supported
and used.

= Done individually
= Code review

+» Project 2
= Unix “Shell” — the real deal

= Redirection, pipelines, background/foreground processing, job control
= Groups of two.

CIS 5480, Fall 2025

36

University of Pennsylvania LOO: Intro, & C Refresher

PennOS

- Best way to learn about an operating systems is to build one.
» Build all the main features of an OS (in emulation)
» WiIll be done in Groups of 4.

» By the end of the project, you will:

= | earn about how different subsystems in Unix interact with each other
= | earn about priority scheduling, file systems, user shell interactions
= Become a really good and confident systems programmer

CIS 5480, Fall 2025

37

% University of Pennsylvania

LOO: Intro, & C Refresher

CIS 5480, Fall 2025

PennOS

» There is a paper on this: http://netdb.cis.upenn.edu/papers/pennos.pdf
at an ACM OS journal.

» Group evaluation done by the end of semester.

= Team members with lower than 15% contribution to the group will get their
course grade downgraded.

= Team members who do almost nothing will get a failing grade in the course

38

http://netdb.cis.upenn.edu/papers/pennos.pdf

University of Pennsylvania LOO: Intro, & C Refresher

HW Policies

CIS 5480, Fall 2025

» Students who did not contribute to group projects will get F grade
regardless of overall score.

Late Policy

You are given 5 late tokens.

Tokens are counted per student and can only be used on some assignments.
Two tokens used at max per assignment

Each token grants 48 hours of extra time

If there are extenuating circumstances, please let us know.
We can be lenient, we can work something out

39

CIS 5480, Fall 2025

University of Pennsylvania LOO: Intro, & C Refresher

Collaboration Policy Violation

% You will be caught:
= Careful grading of all written homeworks by teaching staff
= Measure of Software Similarity (MOSS): http://theory.stanford.edu/~aiken/moss/

® “Successfully” used in several classes at Penn

+» Zero on the assignment. F grade if caught twice.

" First-time offenders will be reported to Office of Student Conduct with no exceptions.
Possible suspension from school

= Your friend from last semester who gave the code will have their grade retrospectively
downgraded.

40

http://theory.stanford.edu/~aiken/moss/

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Collaboration Policy Violation

+ Generative Al

= | am skeptical of its usefulness for your learning and for your success in the course
= Not banned, but not recommended. Use your best judgement.

% You will not help your overall grade and happiness:

" Quizzed individually during project demo, exams on project in finals

" |f you can’t explain your code in OH, we can turn you away.
- This is different than being confused on a bug or with C, this is ok

= Personal lifelong satisfaction from completing PennOS

41

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Course Grading

+~ Breakdown:

= Participation & Engagement (10%)
 Check-in Quizzes: 2%
- Recitation Attendance: 8%

" Projects (65%)
- Project O penn-vector: 5%
- Project 1 penn-shredder: 6%
- Project 2 penn-shell: 18%
« Project 3 PennOS: 36%

= Exams (25%)
- Midterm Exam: 10%
- Final Exam: 15%

« Final Grade Calculations:

= Whatis used in previous semesters is in the syllabus 42

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Course Infrastructure

+» Course Website: www.seas.upenn.edu/~cis5480/current/
= Materials, Schedule, Syllabus ...

+» Docker or Speclab
" Coding environment for hw’s

+» Gradescope
= Used for HW Submissions

+ Poll Everywhere

= Used for lecture polls

« Ed Discussion

= Course discussion board

43

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Getting Help

= Announcements will be made through here
- When you show up and the lecture hall is empty, go to Ed to find out why...

= Ask and answer questions
" Sign up if you haven’t already!
+ Office Hours:
" Can be found on calendar on front page of course website

= Starts this week on Thursday. Location can be found on the calendar. Will start remotely..

1-on-1’s:

J/
0’0

® Can schedule 1-on-1’s with Joel

= Should attend OH and use Ed when possible, but this is an option for when OH and Ed
can’t meet your needs or if you need more nuanced help.

" TAs are also available on a case by case basis.

44

University of Pennsylvania LOO: Intro, & C Refresher

We Care

+» We are still figuring things out, but we do care about you and your experience
with the course

= Please reach out to course staff if something comes up and you need help

<~ PLEASE DO NOT CHEAT OR VIOLATE ACADEMIC INTEGRITY

= We know that things can be tough, but please reach out if you feel tempted. We want to
help

= Read more on academic integrity in the syllabus

CIS 5480, Fall 2025

45

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ Any questions, comments or concerns so far?

46

University of Pennsylvania LOO: Intro, & C Refresher

CIS 5480, Fall 2025

Lecture Outline

% Introduction & Logistics
" Course Overview
= Assignments & Exams
= Policies

« C “Refresher”

" memory
= Pointers
« Output Parameters
" Arrays
= Structs

47

University of Pennsylvania LOO: Intro, & C Refresher

Memory

« Where all data, code, etc are stored for a
program

+» Broken up into several segments:
= The stack
" The heap
" The kernel
= Etc.

« Each “unit” of memory has an address

Stack

!

!

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
text, .rodata

CIS 5480, Fall 2025

48

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Memory as an array of bytes

» Everything in memory is made of bits and bytes
" Bits:asingle 1or0
= Byte: 8 bits

int main() {
char ¢ = 'A';

» Memory is a giant array of bytes where o
char other = '0°';

everything* is stored

= Each byte has its own address (“index”)

int x = 5950;

+» Some types take up one byte, others more

Ox04 Ox05 Ox06 O0OxO07 Ox08 O0Ox09 OxOA OxOB OxOC OxOD OxOE OxOF Ox10 Ox11 Ox12

49

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Pointers POINTERS ARE EXTREMELY

«» Variables that store addresses IMPORTANT IN C

" |t stores the address to somewhere in memory
" Must specify a type so the data at that address can be interpreted

equivalent

+ @Generic definition:[type* name;]Or[typé *name;]

= Example: [int *ptr;]
« Declares a variable that can contain an address

-« Trying to access that data at that address will treat the data there as an int

50

University of Pennsylvania LOO: Intro, & C Refresher

CIS 5480, Fall 2025

Memory is Huge

+» Modern computers are called “64-bit”
= Addresses are 64-bits (8-bytes)

=" There are 2% possible memory locations, each location is 1-byte

. »1:18,446,744,073,709,551,616.

" Pointers must be 64-bits (8-bytes) to be able to hold any address on the computer.

51

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Pointer Operators

+» Dereference a pointer using the unary * operator

= Access the memory referred to by a pointer
® Can be used to read or write the memory at the address

= Example: int *ptr = ...; // Assume initialized
int a = *ptr; // read the value
*ptr = a + 2; // write the value

«» @Get the address of a variable with &

= &sfoo gets the address of foo in memory

= Example: int a = 5950;
int *ptr = &a;
*ptr = 2; // ‘a’ now holds 2

52

University of Pennsylvania

Memory as an array of bytes

» Everything in memory is made of bits and bytes

" Bits:asingle 1or0
= Byte: 8 bits

» Memory is a giant array of bytes where

everything* is stored

= Each byte has its own address (“index”)

+» Some types take up one byte, others more

LOO: Intro, & C Refresher

int main() {

CIS 5480, Fall 2025

char c A';
char other =

int x = 5950;
int* ptr = &x;

—_—
Ox04 Ox0O5 Ox06 O0OxO07 [Ox08 O0Ox09 OxOA O0Ox0OB 0OxOC O0OxOD O0OxOE \ OxOF Ox10 Ox11 Ox12
5950 OX000PVP VRV

53

University of Pennsylvania

Pointer Example

LOO: Intro, & C Refresher

e

int main(int argc, char** argv) {
inta, b, c;
int* ptr; // ptris a pointer to an int

*ptr=7;
c=a+b;

return O;

}
_

Initial values
are garbage

O0x2000| a {-
0x2004| b --
0x2008 | ¢ =
0x200C | ptr --

CIS 5480, Fall 2025

54

University of Pennsylvania

Pointer Example

LOO: Intro, & C Refresher

e

int main(int argc, char** argv) {

inta, b, c;

int* ptr; // ptris a pointer to an int
—>q = 5’
—b = 3;

ptr = &a;

*ptr=7;
c=a+hb;

return O;

}

_

0x2000
0x2004
0x2008
0x200C

a 5
b 3
C _
ptr -

CIS 5480, Fall 2025

55

University of Pennsylvania

Pointer Example

LOO: Intro, & C Refresher

e

int main(int argc, char** argv) {
inta, b, c;
int* ptr; // ptris a pointer to an int

a=>5;
b=23;
1—ptr = &a;

*ptr=7;
c=a+hb;

return O;

}
_

0x2000
0x2004
0x2008
0x200C

CIS 5480, Fall 2025

a 5

b 3

C _
ptr | 0x2000

56

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Pointer Example

(int main(int argc, char** argv) {) Ox2000| a 7
inta b, =~ | 0x2004 | b 3
int* ptr; // ptris a pointer to an int

0x2008 C =
- 0x200C | ptr | 0x2000
ptr = &a;
T—*ptr=7;
c=a+b;
return O;
}
\§ J

57

University of Pennsylvania

Pointer Example

LOO: Intro, & C Refresher

e

int main(int argc, char** argv) {
inta, b, c;
int* ptr; // ptris a pointer to an int

*ptr=7;
T—Cc=a+b;

return O;

}
_

0x2000
0x2004
0x2008
0x200C

a 7
b 3
C 10
ptr | 0x2000

CIS 5480, Fall 2025

58

University of Pennsylvania LOO: Intro, & C Refresher

Pointers as References

+» The exact value stored in a pointer almost never matters, we treat them more

like references

% In this class we will never hardcode in an address into a pointer. We will never

do something like :

(int *ptr = Ox7fffff5194; |

= Read as: "ptr contains the address @X7 ffff£5194"
= *with the exception of NULL

+» Instead, we write code that is more often like:

int example = 5;
int *ptr = &a;

= Read as: "ptr refers to the integer example”
= Or"ptr contains the address of the integer example” (Personal

CIS 5480, Fall 2025

59

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» What does this print? int main() {

_ _ int curr = 6;
" You can assume this compiles int arc = 12;

and the print syntax is correct.
int* ptr = &curr;
: : *ptr = 2;
" Try drawing with boxes and arrows!

arc = 3;
int* other = ptr;
ptr = &arc;
*ptr = *other
*ptr += 3;

printf("%d\n", curr);
printf("%d\n", arc);

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

%+ What does this print? nt ?ai”r(‘r)‘ { ;
int curr = 6;
" You can assume this compiles int arc = 12;

and the print syntax is correct.
int* ptr = &curr;
*ptr = 2;

" Try drawing with boxes and arrows!
arc = 3;

curr [:] int* other = ptr;

ptr = &arc;
arc *ptr = *other

*ptr += 3;

ptr |:|

Cther [:] printf("%d\n", curr);
printf("%d\n", arc);

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

%+ What does this print? nt ?ai”r(‘r)‘ { ;
int curr = 6;
" You can assume this compiles int arc = 12;

and the print syntax is correct.

int* ptr = &curr;
*ptr = 2;

arc = 3;

curr int* other = ptr;
[:] ptr = &arc;

arc *ptr = *other
*ptr += 3;

" Try drawing with boxes and arrows!

printf("%d\n", curr);
printf("%d\n", arc);

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

%+ What does this print? nt ?ai”r(‘r)‘ { ;
int curr = 6;
" You can assume this compiles int arc = 12;

and the print syntax is correct.

int* ptr = &curr;
*ptr = 2;

arc = 3;

curr int* other = ptr;

" Try drawing with boxes and arrows!

ptr = &arc;

arc *ptr = *other

*ptr += 3;

ptr

Cther [:] printf("%d\n", curr);
printf("%d\n", arc);

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

%+ What does this print? nt ?ai”r(‘r)‘ { ;
int curr = 6;
" You can assume this compiles int arc = 12;

and the print syntax is correct.

int* ptr = &curr;
*ptr = 2;

arc = 3;

curr int* other = ptr;

ptr = &arc;

arc *ptr = *other

*ptr += 3;

" Try drawing with boxes and arrows!

ptr

printf("%d\n", curr);
printf("%d\n", arc);

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

%+ What does this print? nt ?ai”r(‘r)‘ { ;
int curr = 6;
" You can assume this compiles int arc = 12;

and the print syntax is correct.

int* ptr = &curr;
*ptr = 2;

arc = 3;

curr int* other = ptr;

ptr = &arc;

arc *ptr = *other
*ptr += 3;
ptr

" Try drawing with boxes and arrows!

printf("%d\n", curr);
printf("%d\n", arc);

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

%+ What does this print? nt ?ai”r(‘r)‘ { ;
int curr = 6;
" You can assume this compiles int arc = 12;

and the print syntax is correct.

int* ptr = &curr;
*ptr = 2;

arc = 3;

curr int* other = ptr;

ptr = &arc;

arc *ptr = *other
*ptr += 3;
ptr

" Try drawing with boxes and arrows!

printf("%d\n", curr);
printf("%d\n", arc);

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

%+ What does this print? nt ?ai”r(‘r)‘ { ;
int curr = 6;
" You can assume this compiles int arc = 12;

and the print syntax is correct.

int* ptr = &curr;
*ptr = 2;

arc = 3;

curr int* other = ptr;

ptr = &arc;

arc *ptr = *other
*ptr += 3;
ptr

" Try drawing with boxes and arrows!

printf("%d\n", curr);
printf("%d\n", arc);

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Aside: NULL

+» NULL is a memory location that is guaranteed to be invalid

" |n Con Linux, NULL is 0x0 and an attempt to dereference NULL causes a
segmentation fault

<£¥ Useful as an indicator of an uninitialized (or currently unused) pointer
or allocation error

" |t's better to cause a segfault than to allow the corruption of memory!

rint main(int argc, char** argv) {

int* p = NULL;

*p = 1; // causes a segmentation fault
return EXIT SUCCESS;

|}

68

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Structured Data

+ A struct isa Cdatatype that contains a set of fields
= Similar to a Java class, but with no methods or constructors or really much else...
= Useful for defining new structured types of data

ﬁActs similarly to primitive variables
+» Generic declaration:

[// declaring the struct type 1 [// declaring the struct type 1
struct point { typedef struct point st {
float x; float x;
float y; float y;
bi } point;
// declaring a variable // declaring a variable
Lstruct point pt;) Lpoint pt;)

69

University of Pennsylvania

LOO: Intro, & C Refresher

Structured Data Initialization

» A struct isa Cdatatype thatc
<€YActs similarly to primitive variables

« Generic declaration:

ontains a set of fields

float x;
float vy;

point origin = {0.0f,

point other = (point)
.x = 3.14f,
.y = 3.800¢%,

I g

\.

(typedef struct point st {

} point; / Default values are still garbage
point pt;

0.0£y; <- Luitlalizer List
{
<- with designators

pt = origin; // pt now contains 0.0f, 0.0f

Nsame as pt.x
pt.y

= Oorigln.x;
= origlin.y;

CIS 5480, Fall 2025

70

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Structs: Copied not Referenced

+» When we have two struct variables, we have two structs.

" QObjects in languages like Java or Python are references

typedef struct point st {
float x;

pt | x=??2?? float y;

y=7?7?77? } Point;

main’s stack frame

int main() {

Point pt;
Point origin = {0.0f, 0.0f};
pt = origin; // pt now contains 0.0f, 0.0f

pt.Xx
pt.y

71

University of Pennsylvania

>

LOO: Intro, & C Refresher CIS 5480, Fall 2025

Structs: Copied not Referenced

+» When we have two struct variables, we have two structs.

" QObjects in languages like Java or Python are references

main’s stack frame

pt

origin

X=7?77
y =7?7?7?

x = 0.0f
y = 0.0f

typedef struct point st {
float x;
float y;

} Point;

int main() {

Point pt;
Point origin = {0.0f, 0.0f};
pt = origin; // pt now contains 0.0f, 0.0f

pt.Xx
pt.y

72

University of Pennsylvania

LOO: Intro, & C Refresher CIS 5480, Fall 2025

Structs: Copied not Referenced

+» When we have two struct variables, we have two structs.

" QObjects in languages like Java or Python are references

main’s stack frame

pt | x =0.0f

y = 0.0f
origin| x = 0.0f
y = 0.0f

typedef struct point st {
float x;
float y;

} Point;

int main() {

Point pt;
Point origin = {0.0f, 0.0f};

pt =

pt.Xx
pt.y

origin; // pt now contains ©.0f, 0.0f

73

University of Pennsylvania

LOO: Intro, & C Refresher CIS 5480, Fall 2025

Structs: Copied not Referenced

+» When we have two struct variables, we have two structs.

" QObjects in languages like Java or Python are references

main’s stack frame

pt | x =0.0f

y = 0.0f
origin| x = 3.0f
y = 0.0f

typedef struct point st {
float x;
float y;

} Point;

int main() {

Point pt;
Point origin = {0.0f, 0.0f};

pt =

pt.Xx
pt.y

origin; // pt now contains ©.0f, 0.0f

74

University of Pennsylvania

LOO: Intro, & C Refresher CIS 5480, Fall 2025

Structs: Copied not Referenced

+» When we have two struct variables, we have two structs.

" QObjects in languages like Java or Python are references

main’s stack frame

pt | x =0.0f
y = 0.0f

origin| x = 3.0f
y = 2.0f

typedef struct point st {
float x;
float y;

} Point;

int main() {

Point pt;
Point origin = {0.0f, 0.0f};

pt =

pt.Xx
pt.y

origin; // pt now contains ©.0f, 0.0f

75

University of Pennsylvania

LOO: Intro, & C Refresher

Accessing struct Fields

» Use “.” torefer to afield in a struct

+» Use “—>" to refer to a field from a struct pointer

Dereferences pointer first, then accesses field

.

4 .
struct Point {

float x, vy;
i

int main(int argc, char** argv) {
Point pl = {0.0, 0.0};
Point* pl ptr = &pl;

pl.x = 1.0;
pl ptr->y =
return 0O;

}

2.0; // equivalent to (*pl ptr).y

Il
AN
S

CIS 5480, Fall 2025

76

LOO: Intro, & C Refresher CIS 5480, Fall 2025

University of Pennsylvania

pollev.com/cis5480

@ Poll Everywhere

+» What does this code print?

(#include <stdio.h>)
#include <stdlib.h>
volid modify int(int x) {
X = 57 -
}
int main() {
int num = 3;
modify int (num) ;
printf ("$d\n", num);
return EXIT SUCCESS;
}
g J

77

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» What does this code print?

/;include <stdio.h> i\
#include <stdlib.h>

typedef struct point st {
int x;
int y;

} Point;

void modify point (Point p) {
p.x = 3800;
p.y = 4710;

int main() {
Point p = {1100, 2400},
modify point (p);
printf ("%d, %d\n", p.x, p.y):
return EXIT SUCCESS;

\ Y

78

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» What does this code print?
/}include <stdio.h> i\
#include <stdlib.h>
typedef struct point st {
int x;
int y;
o } Point;
+~ How could we fix it?
. . void modify point (Point p) {
E.g. make modify point b.x = 3800;
actually modify a point P 4710;
int main() {
Point p = {1100, 2400},
modify point (p);
printf ("%d, %d\n", p.x, p.y):
return EXIT SUCCESS;
}
_ /

79

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Demo: pass_by.c

+» Everything in Cis pass-by value (e.g. a copy is passed to the function)

» HOWEVER, we can pass a copy of a pointer (e.g. a reference to something) to
mimic pass-by-reference.

- Demo pass_by.c
= Note: most lecture code will be available on the course website

80

University of Pennsylvania

LOO: Intro, & C Refresher

Visualization: faulty pass by reference

main’s stack frame

p |x=1100
y = 2400

flypedef struct point st {
int x;
int y;

} Point;

void modify point (Point* ptr)
Point new point = (Point) ({
.x = 3800,
.y = 4710,

I

ptr = &new point;

}

int main() {
Point p = {1100, 2400};

modify point (&p);

return EXIT SUCCESS;

\}

{

printf ("%d, %d\n", p.x, p.y);

CIS 5480, Fall 2025

81

University of Pennsylvania

LOO: Intro, & C Refresher

Visualization: faulty pass by reference

main’s stack frame

p |x=1100
y = 2400

modify _point’s stack frame

ptr

flypedef struct point st { ‘\
int x;
int y;
} Point;

void modify point (Point* ptr) {
Point new point = (Point) {
.x = 3800,
.y = 4710,
i
ptr = &new point;

}

int main() {
Point p = {1100, 2400},
modify point (&p);
printf ("%d, $d\n", p.x, p.y);
return EXIT SUCCESS;

}

-

CIS 5480, Fall 2025

82

LOO: Intro, & C Refresher CIS 5480, Fall 2025

University of Pennsylvania

Visualization: faulty pass by reference

main’s stack frame [typedef struct point st {)
int x;
p |x=1100 int y;
y=2400 } Point;
void modify point (Point* ptr) {
Point new point = (Point) {
.x = 3800,
.y = 4710,
AN } i
—l . . .
modify_point’s stack frame \ } PEIE = RS POl
ptr | .
int main() {
int Point p = {1100, 2400},
new_poin X = 3800 modify point (&p);
y::4710 printf ("%d, $d\n", p.x, p.y);
return EXIT SUCCESS;
}
\ J

83

LOO: Intro, & C Refresher CIS 5480, Fall 2025

University of Pennsylvania

Visualization: faulty pass by reference

main’s stack frame [typedef struct point st {)
int x;
p |x=1100 int y;
y=2400 } Poilnt;
void modify point (Point* ptr) {
Point new point = (Point) {
.Xx = 3800,
.y = 4710,
I
modify_point’s stack frame — QEE = GOEW POLBIES
ptr . .
int main() {
int Point p = {1100, 2400},
new_poin X = 3800 modify point (&p);
y::4710 printf ("%d, $d\n", p.x, p.y);
return EXIT SUCCESS;
}
- /

84

University of Pennsylvania

LOO: Intro, & C Refresher

Visualization: faulty pass by reference

main’s stack frame

p |x=1100
y = 2400

flypedef struct point st {
int x;
int y;

} Point;

void modify point (Point* ptr) {
Point new point = (Point) {
.x = 3800,
.y = 4710,

b7
ptr = &new point;

}

int main() {
Point p = {1100, 2400},
modify point (&p);
__’printf("%d, $d\n", p.x, p.V);
return EXIT SUCCESS;

.

CIS 5480, Fall 2025

85

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Gap slide

+ Slide to make clear that we are moving onto a new example (that looks very
similar)

86

LOO: Intro, & C Refresher CIS 5480, Fall 2025

University of Pennsylvania

Visualization: fixed pass by reference (Output Parameters)
™

flypedef struct point st {
int x;
int y;

} Point;

void modify point (Point* ptr) ({
Point new point = (Point) ({
.Xx = 3800,

Buggy version said: .y = 4710,

ptr = &new point i

}

int main() {
Point p = {1100, 2400},
modify point (&p);
printf ("%d, %d\n", p.x, p.Vy);
return EXIT SUCCESS;

87

University of Pennsylvania

LOO: Intro, & C Refresher

CIS 5480, Fall 2025

Visualization: fixed pass by reference (Output Parameters)

main’s stack frame

p |x=1100
y = 2400

flypedef struct point st { ‘\
int x;
int y;
} Point;
void modify point (Point* ptr) ({
Point new point = (Point) ({
.x = 3800,
.y = 4710,
I
*ptr = new point;
}
int main() {
] Point p = {1100, 2400},
modify point (&p);
printf ("%d, %d\n", p.x, p.Vy);
return EXIT SUCCESS;
}
-

88

LOO: Intro, & C Refresher CIS 5480, Fall 2025

University of Pennsylvania

Visualization: fixed pass by reference (Output Parameters)

main’s stack frame [typedef struct point st {)
int x;
p |x=1100 int y;
y=2400 } Point;
void modify point (Point* ptr) ({
Point new point = (Point) ({
.x = 3800,
.y = 4710,
A\ } i
modify_point’s stack frame \ } IPIEIE S S ISOIE
ptr . .
int main() {
Point p = {1100, 2400},
modify point (&p);
printf ("%d, %d\n", p.x, p.Vy);
return EXIT SUCCESS;
}
_ J

89

LOO: Intro, & C Refresher CIS 5480, Fall 2025

University of Pennsylvania

Visualization: fixed pass by reference (Output Parameters)

main’s stack frame [typedef struct point st {)
int x;
p |x=1100 int y;
y=2400 } Point;
void modify point (Point* ptr) ({
Point new point = (Point) ({
.x = 3800,
.y = 4710,
A\ } i
: o T 4ptr = int;
modify_point’s stack frame \ } ptt = new_point;
ptr . .
int main() {
int Point p = {1100, 2400},
new_poin X = 3800 modify point (&p);
y::4710 printf ("%d, %d\n", p.x, p.Vy);
return EXIT SUCCESS;
}
_ J

920

University of Pennsylvania

LOO: Intro, & C Refresher

CIS 5480, Fall 2025

Visualization: fixed pass by reference (Output Parameters)

main’s stack frame

p | x=3800
y=4710

modify _point’s stack frame

ptr

new_point % = 3800

y = 4710

flypedef struct point st { ‘\
int x;
int y;
} Point;
void modify point (Point* ptr) ({
Point new point = (Point) ({
.x = 3800,
.y = 4710,
I
__>*ptr = new_point;
}
int main() {
Point p = {1100, 2400},
modify point (&p);
printf ("%d, %d\n", p.x, p.Vy);
return EXIT SUCCESS;
}
-

91

University of Pennsylvania

LOO: Intro, & C Refresher

CIS 5480, Fall 2025

Visualization: fixed pass by reference (Output Parameters)

main’s stack frame

p | x=3800
y=4710

flypedef struct point st { ‘\
int x;
int y;
} Point;
void modify point (Point* ptr) ({
Point new point = (Point) ({
.x = 3800,
.y = 4710,
I
*ptr = new point;
}
int main() {
Point p = {1100, 2400},
__*imodify_point(&p);
printf ("%d, %d\n", p.x, p.Vy);
return EXIT SUCCESS;
}
-

92

University of Pennsylvania LOO: Intro, & C Refresher

CIS 5480, Fall 2025

Lecture Outline

% Introduction & Logistics
" Course Overview
= Assignments & Exams

= Policies
« C “Refresher”

" memory
" Pointers
« Output Parameters
" Arrays
= Strings
= Structs

93

University of Pennsylvania

LOO: Intro, & C Refresher

Arrays in C

+» Definition: type [type name [size]]

" Allocates size x sizeof (type) bytes of contiguous memory

®" Normal usage is a compile-time constant for size
(e.q. scores[175];)

" |nitially, array values are “garbage”

+ Size of an array

= Not stored anywhere — array does not know its own size!

" The programmer will have to store the length in another variable or hard-code it in
®" No bounds checking!

CIS 5480, Fall 2025

94

LOO: Intro, & C Refresher CIS 5480, Fall 2025

University of Pennsylvania

Using Arrays Optional whew initializing
(

= fvalO,m,valN};]

« |nitialization: [type name[size]
= {} initialization can only be used at time of definition

" |f no size supplied, infers from length of array initializer

+» Array name used as identifier for “collection of data”
" name [1ndex] specifies an element of the array and can be used as an

assignment target or as a value in an expression
" Array na@ (by itself) produces the address of the start of the array

- Cannot be assigned to / changed

int primes[6] = {2, 3, 5, 6, 11, 13};
primes[3] = 7;
] = No TndexOutOfBounds

0; h!
/7 WEHORY SIS Hope for segfault

primes[100
95

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Arrays in C

int main() {
. . char ¢ = "\0';
%+ Here is a memory diagram example:

int arr[2] = {1, 2};
}

Ox06 O0xO07 Ox08 O0x09 OxOA O0OxOB OxOC OxOD OxOE OxOF 0x10 Ox11 Ox12 O0x13 0x14

o' [7 >

96

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Pointers as C arrays nain() {

C = l\@ls
+» Pointers can be set to an array
arr[2] = {1, 2};

* ptr = arr;

+ Pointers can always be indexed into like an array

" Pointers don’t always have to point to the beginning of x = ptr[1] + 1;
an array!

Ox06 O0x0/ Ox08 O0x09 OxOA O0xOB OxOC OxOD OxOE OxOF 0x10 Ox11 Ox12 Ox13 O0Ox14

o I 1 :
Ox18 O0x19/ Ox1A Ox1B Ox1C Ox1D Ox1E Ox1F O0Ox20 Ox21 O0x22 O0x23 0x24 O0x25 O0x26
Ox0000. . .08

97

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

-

@ Poll Everywhere pollev.com/cis5480

+ What is the final value of core after this
code is run? Where is ptr pointing to
after this code is run?

" Hint: Draw it out! core[l] += 20;

void foo() A
int core[3] = {5940, 5930, 5960};

int* ptr = &(core[1]);
ptr[@] -= 900;

ptr[1l] = 5000;

core[2] += 20;

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ What is the final value of core after this
code is run? Where is ptr pointing to
after this code is run?

" Hint: Draw it out! core[l] += 20;

void foo() A
int core[3] = {5940, 5930, 5960};

int* ptr = &(core[1]);
ptr[@] -= 900;

ptr[1l] = 5000;

core[2] += 20;

Ox08 O0x09 OxOA O0xOB OxOC OxOD OxOE OxOF O0x10 Ox11 Ox12 Ox13 Ox14

5940 5930 5960 e

University of Pennsylvania LOO: Intro, & C Refresher

Strings in C

% Strings in C are just arrays of characters with a special character at the end to
mark the end of the string: ' \0”’

= Called the “null terminator” character

+» C-strings are often referred to with a char[] or a char¥*®

int main() {
char ¢ = "\0';
+» Example:
= print(str) // Rain char str[5] = "Rain”;
" print(ptr_str) // in char* ptr_str = &(str[2]);
}

0x06 Ox0/\ _0Ox08 O0Ox09 OxOA O0xOB O0OxOC OxOD /OxOE OxOF 0x10 Ox11 Ox12 Ox13 O0Ox14

0x000...008

100

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

Finish this code:
size t strlen(char* str) {

This function takes in a string size t length = @;
—_— - J

and returns the length of the string.
Do not call any other function
size_tis just an unsigned integer type

Remember to index into the pointer like
an array!

What marks the end of a string?

You don’t have to use a while loop, but
| think it makes the most sense. return length;

}

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

Finish this code:
size t strlen(char* str) {

This function takes in a string size t length = @;
—_— - J

and returns the length of the string.

Do not call any other function while (str[length] != "\0") {
size_tis just an unsigned integer type

Remember to index into the pointer like length += 1;

an array!
What marks the end of a string?

You don’t have to use a while loop, but
| think it makes the most sense. return length;

}

University of Pennsylvania LOO: Intro, & C Refresher

Multi-dimensional Arrays

+» @Generic 2D format:
type name[rows] [cols];
= Still allocates a single, contiguous chunk of memory
= Cis row-major
= Can access elements with multiple indices
- A[O] [1] 7;
- my int = A[1][2];

" The entries in this array are stored in memory in row major order as follows:
-A[0][0], A[O][1], A[O][2], A[1][O], A[1][1], A[1][2]

® 2-D arrays normally only useful if size known in advance. Otherwise use dynamically-
allocated data and pointers (later)

CIS 5480, Fall 2025

103

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Arrays as Parameters

+ It’s tricky to use arrays as parameters

= What happens when you use an array name as an argument? Fasses i address of start of array
- It “decays” into a pointer

= Pointers (like arrays) do not know their length

int sumAll (int a[]) { int sumAll (int* a) {
int i, sum = 0; int i, sum = 0O;
for (1 = 0; 1 < ...?22% for (1 = 0; 1 < ...?2?27
} }
Equivalent

+ Note: Array syntax works on pointers
" bg(ptr(3] = ...; |

104

University of Pennsylvania

LOO: Intro, & C Refresher

Solution: Pass Size as Parameter

CIS 5480, Fall 2025

(int sumAll (int a[], int size) ({
int i, sum = 0;
for (1 = 0; i < size; i++)

sum += al[i];
}
return sum;
}
_

+ Standard idiom in C programs

University of Pennsylvania

Pointer Arithmetic

LOO: Intro, & C Refresher

+» We can do arithmetic on addresses to iterate through arrays.

\.

int sum = 0;
int* ptr = a;
for (int i =
sum += ptr]|

}

3/ 5/ 9}1
// &(al0])
O; 1 < size;

1];

i++)

{

.

int a[] = {0
int size = 4;

int sum = 0O;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++)
sum += *ptr;

}

{

CIS 5480, Fall 2025

106

University of Pennsylvania

Pointer Arithmetic

+» We can do arithmetic on addresses to iterate through arrays.
)

size
sum

ptr

LOO: Intro, & C Refresher

(int a[] = {0, 3, 5, 9};
int size = 4;

\.

int sum = 0;

int* ptr = a; // &(al[0])
int* end = ptr + size;
for (; ptr != end; ptr++)

}

sum += *ptr;

{

CIS 5480, Fall 2025

107

University of Pennsylvania

LOO: Intro, & C Refresher

Pointer Arithmetic

+» We can do arithmetic on addresses to iterate through arrays.
(int a[] = {0, 3, 5, 9};)

\.

int size = 4;

int sum = 0;

int* ptr = a; // &(al[0])
int* end = ptr + size;
for (; ptr != end; ptr++) {

sum += *ptr;

}

size

sum

ptr

end

1 past the end of the array!

CIS 5480, Fall 2025

108

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Pointer Arithmetic

+» We can do arithmetic on addresses to iterate through arrays.
)

(int a[] = {0, 3, 5, 9};
int size = 4;

int sum = 0;

int* ptr = a; // &(al[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {
sum += *ptr;

}

\. J

a
size | 4
sum |0
ptr
end 109

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Pointer Arithmetic

+» We can do arithmetic on addresses to iterate through arrays.
)

(int a[] = {0, 3, 5, 9};
int size = 4;

int sum = 0;

int* ptr = a; // &(al[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {
sum += *ptr;

}

\. J

a
size | 4
sum |3
ptr
end 110

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Pointer Arithmetic

+» We can do arithmetic on addresses to iterate through arrays.
)

(int a[] = {0, 3, 5, 9};
int size = 4;

int sum = 0;

int* ptr = a; // &(al[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {
sum += *ptr;

}

\. J

size

sum

ptr

end 111

University of Pennsylvania

LOO: Intro, & C Refresher

Pointer Arithmetic

+» We can do arithmetic on addresses to iterate through arrays.
)

size
sum
ptr

end

(int a[] = {0, 3, 5, 9};

\.

int size = 4;

int sum = 0;

int* ptr = a; // &(al[0])

int* end = ptr + size;

for (; ptr != end; ptr++)
sum += *ptr;

}

{

17

\L

CIS 5480, Fall 2025

112

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

That’s all for now!

» If we got through all this, good job!!!

% You should have everything you need for the first homework assignment after
next lecture (The Heap, Malloc and Free). If you want to get started now, we
put some of the slides on malloc and free after this slide.

+» We are going a little fast because we expect you have already seen all or most
of this before!

+ When we get to new material it usually won’t be as fast

» Releasing today or tomorrow:
= HWOO

" Pre-semester Survey
113

University of Pennsylvania LOO: Intro, & C Refresher

Demo: get_input.c

+ Lets code together a small program that:

Reads at max 100 characters from stdin (user input)
Truncates the input to only the first word
Prints that word out

Not allowed to use scanf, FILE*, printf, etc

CIS 5480, Fall 2025

114

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» There are two things wrong with this function

+» What are they? How do we fix this function w/o changing the function
signature

(#define MAX INPUT SIZE 100 A

char* read;stdin() {
char Str[MAX_INPUT_SIZE];

ssize t res = read(STDIN FILENO, str, MAX INPUT SIZE);

// error checking

1f (res <= 0) {
return NULL;

}

return str;

115

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» There are two things wrong with this function
+» What are they? How do we fix this function w/o changing the function sig?

(#define MAX INPUT SIZE 100 A

char* read stdin() ({
char str[MAX INPUT SIZE];

ssize t res = read(STDIN FILENO,
str, MAX INPUT SIZE);

// error checking

if (res <= 0) {
return NULL;

}

return str;

}
\. A/
// assuming this is how the function is called
char* result = read stdin();

116

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» There are two things wrong with this function
+» What are they? How do we fix this function w/o changing the function sig?

(#define MAX INPUT SIZE 100)
char* read stdin() ({
The Stack char str[MAX INPUT SIZE];
main .
ssize t res = read(STDIN FILENO,

// error checking

if (res <= 0) {
return NULL;

}

return str;

\}

// assuming this is how the function is called

char* result = read stdin();
_—— - —— 117

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» There are two things wrong with this function
+» What are they? How do we fix this function w/o changing the function sig?

(#define MAX INPUT SIZE 100)
char* read stdin() ({
The Stack char str[MAX INPUT SIZE];
main .
ssize t res = read(STDIN FILENO,

. // error checking
read_stdin if (res <= 0) {

. return NULL;
str ['H', ', ...] }

return str;

|
| X
|
|

// assuming this is how the function is called

char* result = read stdin();
_—— - —— 118

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» There are two things wrong with this function
+» What are they? How do we fix this function w/o changing the function sig?

(#define MAX INPUT SIZE 100 A

char* read stdin() ({

The Stack char str[MAX INPUT SIZE];
main .
ssize t res = read(STDIN FILENO,
char* result “~\> str, MAX_INPUT_SIZE);
// error checking
I if (res <= 0) {
. return NULL;
plririririelelrle]

}

return str;

& Y

// assuming this is how the function is called
char* result = read stdin();

119

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Memory Allocation

+» So far, we have seen two kinds of memory allocation:

(int counter = 0; // global var Y (int foo(int a) { h
int x = a + 1; // local var
int main() { return x;
counter++; }
printf ("count = %d\n",counter) ;
return 0; int main() {
) int y = foo(10); // local var
\ J printf ("y = %d\n",y);
. . return O;
" counter is statically-allocated))

- Allocated when program is loaded ,
" a, x,y are automatically-

- Deallocated when program exits
Prog allocated

- Allocated when function is called

QQ@ Deallocated when function returns

120

University of Pennsylvania LOO: Intro, & C Refresher

Aside: sizeof

+» sizeof operator can be applied to a variable or a type and it evaluates to the
size of that type in bytes

+» Examples:

L)

" sizeof (int)-returns the size of an integer

" sizeof (double)-returns the size of a double precision number
" struct my struct s;

- sizeof (s) —returns the size of the struct s
" my type *ptr

- sizeof (*ptr) —returns the size of the type pointed to by ptr

% Very useful for Dynamic Memory

CIS 5480, Fall 2025

121

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

What is Dynamic Memory Allocation?

+» We want Dynamic Memory Allocation

" Dynamic means “at run-time”

" The compiler and the programmer don’t have enough information
to make a final decision on how much to allocate

= Your program explicitly requests more memory at run time
" The language allocates it at runtime, maybe with help of the OS

L0

+» Dynamically allocated memory persists until either:
= A garbage collector collects it (automatic memory management)
= Your code explicitly deallocates it (manual memory management)

% Crequires you to manually manage memory

®" More control, and more headaches 122

University of Pennsylvania LOO: Intro, & C Refresher

Heap API

%~ Dynamic memory is managed in a location in memory called the "Heap"

" The heap is managed by user-level runetime library (libc)
" |nterface functions found in <stdlib.h>

+» Most used functions:
" void *malloc(size_t size);
- Allocates memory of specified size
" void free (void *ptr);
- Deallocates memory

>

Note: void¥* is “generic pointer”. It holds an address, but doesn’t specify
what it is pointing at.
+ Note 2: size tistheintegertype of sizeof ()

CIS 5480, Fall 2025

123

University of Pennsylvania

LOO: Intro, & C Refresher

malloc ()

.:.[VOid *malloc(size t size);]

+» malloc allocates a block of memory of the requested
Size
® Returns a pointer to the first byte of that memory
« And returns NULL if the memory allocation failed!
" You should assume that the memory initially contains garbage
= You'll typically use sizeof to calculate the size you need

[// allocate a 10-float array 1
float* arr = malloc (10*sizeof (float));
if (arr == NULL)

{
return errcode; **\\\\\\-ALMM?KSGHECKT%jgf%MLL
}
// do stuff with arr

CIS 5480, Fall 2025

124

University of Pennsylvania

free ()

LOO: Intro, & C Refresher

X Usage:[free (pointer) ;]

+» Deallocates the memory pointed-to by the pointer

" Pointer must point to the first byte of heap-allocated memory (i.e.
something previously returned by malloc)

" Freed memory becomes eligible for future allocation

- [free (NULL) ;] does nothing.

" The bits in the pointer are not changed by calling free

« Defensive programming: can set pointer to NULL after freeing it

\\

rfloat* arr = malloc (10*sizeof (float));

if (arr == NULL)
return errcode;

.. // do stuff with arr
free(arr) ;

N\

arr = NULL; // OPTIONAL *“

CIS 5480, Fall 2025

125

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

The Heap

The Heap is a large pool of available memory to use for Dynamic allocation

This pool of memory is kept track of with a small data structure indicating
which portions have been allocated, and which portions are currently
available.

malloc:

" searches for a large enough unused block of memory

" marks the memory as allocated.

= Returns a pointer to the beginning of that memory

free:

" Takes in a pointer to a previously allocated address
= Marks the memory as free to use.

126

University of Pennsylvania

LOO: Intro, & C Refresher

Dynamic Memory Example

f#include <stdlib.h> R
int main() {
1T char* ptr = malloc(4*sizeof (char));
if (ptr == NULL)
return EXIT FAILURE;
. .. // do stuff with ptr
free (ptr);
}
_ J

addr
0x2001

0x4000
0x4001
0x4002
0x4003
0x4004
0x4005
0x4006
0x4007
0x4008
0x4009

var value
ptr ——

HEAP START USED

USED

USED

USED

CIS 5480, Fall 2025

127

University of Pennsylvania

LOO: Intro, & C Refresher

Dynamic Memory Example

f#include <stdlib.h> R
int main() {
1, char* ptr = malloc(4*sizeof (char));
if (ptr == NULL)
return EXIT FAILURE;
. .. // do stuff with ptr
free (ptr);
}
_ J

addr
0x2001

0x4000
0x4001
0x4002
0x4003
0x4004
0x4005
0x4006
0x4007
0x4008
0x4009

var

value

ptr

0x4002

HEAP START

USED

USED

USED

USED

USED

USED

USED

USED

CIS 5480, Fall 2025

128

University of Pennsylvania LOO: Intro, & C Refresher

Dynamic Memory Example

f#include <stdlib.h> R
int main() {
char* ptr = malloc(4*sizeof (char));
if (ptr == NULL)
return EXIT FAILURE;
. .. // do stuff with ptr
1, free(ptr);
}
_ J

addr
0x2001

0x4000
0x4001
0x4002
0x4003
0x4004
0x4005
0x4006
0x4007
0x4008
0x4009

var value
ptr 0x4002
HEAP START USED
USED

USED

USED

CIS 5480, Fall 2025

129

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Fixed read_stdin()

(4define MAX INPUT SIZE 100)
char* read stdin() {
char str = (char*) malloc(sizeof (char) * MAX INPUT SIZE);
if (str == NULL) {

return NULL;

ssize_t e = read(STDIN_FILENO, str, MAX_INPUT_SIZE);
// error checking

1f (res <= 0) {
return NULL;

return str;

130

University of Pennsylvania LOO: Intro, & C Refresher

Demo (continued): get_input.c

+ Lets code together a small program that:
" Reads at max 100 characters from stdin (user input)
" Truncates the input to only the first word
= Prints that word out
= Not allowed to use scanf, FILE*, printf, etc

+» What was the other issue? (other than not using malloc)

CIS 5480, Fall 2025

131

University of Pennsylvania LOO: Intro, & C Refresher

Dynamic Memory Pitfalls

Buffer Overflows

= E.g. ask for 10 bytes, but write 11 bytes

= Could overwrite information needed to manage the heap
= Common when forgetting the null-terminator on malloc’d strings

Not checking for NULL

= Malloc returns NULL if out of memory
= Should check this after every call to malloc

Giving £ree () a pointer to the middle of an allocated region
= Free won’t recognize the block of memory and probably crash

Giving free() a pointer that has already been freed

= Will interfere with the management of the heap and likely crash

malloc does NOT initialize memory
= There are other functions like calloc that will zero out memory

CIS 5480, Fall 2025

132

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Memory Leaks

% The most common Memory Pitfall
+» What happens if we malloc something, but don’t free it?

" That block of memory cannot be reallocated, even if we don’t use it anymore, until it is
freed

= |f this happens enough, we run out of heap space and program may slow down and
eventually crash

+» Garbage Collection

= Automatically “frees” anything once the program has lost all references to it
= Affects performance, but avoid memory leaks

® Java has this, C doesn’t

133

%8 University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

static function variables

« Functions can declare a variable as static

/@include <stdio.h> // for printf i\
#include <stdlib.h> // for EXIT SUCCESS

This is how some functions
(like owne in proj0) com
int main(int argc, char** argv) { rewmember” things.

int next num();

(
printf ("%d\n", next num()); // prints 1
printf ("$d\n", next num()); // then 2
printf ("$d\n", next num()); // then 3

return EXIT_SUCCESS;

int next num() {
// marking this variable as static means that
// the value 1s preserved between calls to the function
// this allows the function to "remember" things

static int counter = 0;
Can be thonght of as a
counter++; sl Al e
return counter; ?O‘a vgﬁﬁ ¢ tha }5
“private” 1o a function

4/ 134

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» Which line below is first to (most likely) cause a crash?

" Yes, there are a lot of bugs, but not all cause a crash ©

" Seeif you can (#include <stdio.h>)
find all the bugs! #include <stdlib.h>

int main(int argc, char** argv) {
int a[2];
int* b = malloc(2*sizeof (int));
int* c;

< o0 W N
Hh
(R)
®
®
o3

}
N J 135

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Memory Corruption - What Happens?

f#include <stdio.h>)
#include <stdlib.h>

main
int main(int argc, char** argv) ({
a int al2];
? m=mPp| int* b = malloc (2*sizeof (int));
? 1Rt* @2
af[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
b c = b+3; // Ok, but if we use c, problem
free(&(al0])); // free something not malloc'ed
? free (b) ;
C ? free (b) ; // double-free the same block
= 5; // use a freed (dangling) pointer

// any many more!

heaQ: return 0;

_ J

Note: Arrow points
to next instruction.

memcorrupt.c
136

University of Pennsylvania LOO: Intro, & C Refresher CIS 5480, Fall 2025

Memory Corruption - What Happens?

f#include <stdio.h>)
#include <stdlib.h>

main
int main(int argc, char** argv) ({
a o int al[2];
. int* b = malloc(2*sizeof (int));
1Rt* @2
?
— af[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
b c = b+3; // Ok, but if we use c, problem
free(&(al0])); // free something not malloc'ed
free (b) ;
C ? free (b) ; // double-free the same block
= 5pg // use a freed (dangling) pointer

// any many more!

heaQ: return 0;

? . J

Note: Arrow points
to next instruction.

memcorrupt.c
137

University of Pennsylvania

LOO: Intro, & C Refresher

Memory Corruption - What Happens?

main

heap:

memcorrupt.c

(#include <stdio.h>)
#include <stdlib.h>
int main(int argc, char** argv) ({
int al[2];
int* b = malloc(2*sizeof (int));
1Rt* @2
af[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(al0])); // free something not malloc'ed
free (b) ;
free (b) ; // double-free the same block
b[0] = 5; // use a freed (dangling) pointer
// any many more!
return 0;
}
g J

Note: Arrow points
to next instruction.

CIS 5480, Fall 2025

138

CT¢C|

University of Pennsylvania

LOO: Intro, & C Refresher

Memory Corruption - What Happens?

main

heap:

memcorrupt.c

(#include <stdio.h>)
#include <stdlib.h>
int main(int argc, char** argv) ({
int al[2];
int* b = malloc(2*sizeof (int));
1Rt* @2
af[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(al0])); // free something not malloc'ed
free (b) ;
free (b) ; // double-free the same block
b[0] = 5; // use a freed (dangling) pointer
// any many more!
return 0;
}
g J

Note: Arrow points
to next instruction.

CIS 5480, Fall 2025

139

University of Pennsylvania

LOO: Intro, & C Refresher

Memory Corruption - What Happens?

main

heap:

— 777

memcorrupt.c

(#include <stdio.h>)
#include <stdlib.h>
int main(int argc, char** argv) ({
int al[2];
int* b = malloc(2*sizeof (int));
1Rt* @2
af[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(al0])); // free something not malloc'ed
free (b) ;
free (b) ; // double-free the same block
b[0] = 5; // use a freed (dangling) pointer
// any many more!
return 0;
}
g J

Note: Arrow points
to next instruction.

CIS 5480, Fall 2025

140

CT¢C|

University of Pennsylvania

LOO: Intro, & C Refresher

Memory Corruption - What Happens?

main
a
? 5
?
b Crash!
q
C
heap: 5
?
— 7777

memcorrupt.c

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) ({

int al[2];

// any many more!
return O;

int* b = malloc(2*sizeof (int));

1Rt* @2

af[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(al0])); // free something not malloc'ed
free (b) ;

free (b) ; // double-free the same block

b[0] = 5; // use a freed (dangling) pointer

J

Note: Arrow points
to next instruction.

CIS 5480, Fall 2025

141

University of Pennsylvania

LOO: Intro, & C Refresher

Memory Corruption - What Happens?

main

heap:

memcorrupt.c

— 777

(#include <stdio.h>)
#include <stdlib.h>
int main(int argc, char** argv) ({
int al[2];
int* b = malloc(2*sizeof (int));
1AE™ @g
af[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(al0])); // free something not malloc'ed
free (b) ;
 — free (b) ; // double-free the same block
b[0] = 5; // use a freed (dangling) pointer
// any many more!
return 0;
}
g J

This “double free”
would also canse the
program to crash

Note: Arrow points
to next instruction.

CIS 5480, Fall 2025

142

CT¢C|

University of Pennsylvania

LOO: Intro, & C Refresher

Memory Corruption - What Happens?

main

heap:

— 777

memcorrupt.c

(#include <stdio.h>)
#include <stdlib.h>
int main(int argc, char** argv) ({
int al[2];
int* b = malloc(2*sizeof (int));
1Rt* @2
af[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(al0])); // free something not malloc'ed
free (b) ;
free (b) ; // double-free the same block
b[0] = 5; // use a freed (dangling) pointer
// any many more!
return 0;
}
g J

Note: Arrow points
to next instruction.

CIS 5480, Fall 2025

CT¢C|

University of Pennsylvania

LOO: Intro, & C Refresher

Memory Corruption - What Happens?

main

heap:

— 777

memcorrupt.c

(#include <stdio.h>)
#include <stdlib.h>
int main(int argc, char** argv) ({
int al[2];
int* b = malloc(2*sizeof (int));
1Rt* @2
af[2] = 5; // assigns past the end of an array
b[0] += 2; // assumes malloc zeros out memory
c = b+3; // Ok, but if we use c, problem
free(&(al0])); // free something not malloc'ed
free (b) ;
free (b) ; // double-free the same block
b[0] = 5; // use a freed (dangling) pointer
// any many more!
return 0;
}
g J

Note: Arrow points
to next instruction.

CIS 5480, Fall 2025

	Default Section
	Slide 1: Introductions, C Refresher Operating Systems, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Instructor: Joel
	Slide 6: Instructor: Joel
	Slide 7: Instructor: Joel
	Slide 8: Instructor: Joel
	Slide 9: Instructor: Joel
	Slide 10: We Care
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: “Lies-to-children”
	Slide 20: “Lies-to-children”
	Slide 21: Question
	Slide 22: Question
	Slide 23: We lied to you (but in a good way)
	Slide 24
	Slide 25
	Slide 26
	Slide 27: We’re going to lie to you (but in a good way)
	Slide 28: Prerequisites
	Slide 29: CIS 5480 Learning Objectives
	Slide 30: Disclaimer
	Slide 31: Course Components: Textbook
	Slide 32: Course Components: Part 1
	Slide 33: Course Components: Part 2
	Slide 34: Programming Facilities
	Slide 35: Project 0
	Slide 36: Project 1 & 2
	Slide 37: PennOS
	Slide 38: PennOS
	Slide 39: HW Policies
	Slide 40: Collaboration Policy Violation
	Slide 41: Collaboration Policy Violation
	Slide 42: Course Grading
	Slide 43: Course Infrastructure
	Slide 44: Getting Help
	Slide 45: We Care
	Slide 46: Poll: how are you?
	Slide 47: Lecture Outline
	Slide 48: Memory
	Slide 49: Memory as an array of bytes
	Slide 50: Pointers
	Slide 51: Memory is Huge
	Slide 52: Pointer Operators
	Slide 53: Memory as an array of bytes
	Slide 54: Pointer Example
	Slide 55: Pointer Example
	Slide 56: Pointer Example
	Slide 57: Pointer Example
	Slide 58: Pointer Example
	Slide 59: Pointers as References
	Slide 60: Pointers Poll
	Slide 61: Pointers Poll
	Slide 62: Pointers Poll
	Slide 63: Pointers Poll
	Slide 64: Pointers Poll
	Slide 65: Pointers Poll
	Slide 66: Pointers Poll
	Slide 67: Pointers Poll
	Slide 68: Aside: NULL
	Slide 69: Structured Data
	Slide 70: Structured Data Initialization
	Slide 71: Structs: Copied not Referenced
	Slide 72: Structs: Copied not Referenced
	Slide 73: Structs: Copied not Referenced
	Slide 74: Structs: Copied not Referenced
	Slide 75: Structs: Copied not Referenced
	Slide 76: Accessing struct Fields
	Slide 77: Poll: how are you?
	Slide 78: Poll: how are you?
	Slide 79: Poll: how are you?
	Slide 80: Demo: pass_by.c
	Slide 81: Visualization: faulty pass by reference
	Slide 82: Visualization: faulty pass by reference
	Slide 83: Visualization: faulty pass by reference
	Slide 84: Visualization: faulty pass by reference
	Slide 85: Visualization: faulty pass by reference
	Slide 86: Gap slide
	Slide 87: Visualization: fixed pass by reference (Output Parameters)
	Slide 88: Visualization: fixed pass by reference (Output Parameters)
	Slide 89: Visualization: fixed pass by reference (Output Parameters)
	Slide 90: Visualization: fixed pass by reference (Output Parameters)
	Slide 91: Visualization: fixed pass by reference (Output Parameters)
	Slide 92: Visualization: fixed pass by reference (Output Parameters)
	Slide 93: Lecture Outline
	Slide 94: Arrays in C
	Slide 95: Using Arrays
	Slide 96: Arrays in C
	Slide 97: Pointers as C arrays
	Slide 98: Pointer as Array Poll
	Slide 99: Pointer as Array Poll
	Slide 100: Strings in C
	Slide 101: Pointer as Array Poll
	Slide 102: Pointer as Array Poll
	Slide 103: Multi-dimensional Arrays
	Slide 104: Arrays as Parameters
	Slide 105: Solution: Pass Size as Parameter
	Slide 106: Pointer Arithmetic
	Slide 107: Pointer Arithmetic
	Slide 108: Pointer Arithmetic
	Slide 109: Pointer Arithmetic
	Slide 110: Pointer Arithmetic
	Slide 111: Pointer Arithmetic
	Slide 112: Pointer Arithmetic
	Slide 113: That’s all for now!
	Slide 114: Demo: get_input.c
	Slide 115: Demo: get_input.c
	Slide 116: Demo: get_input.c
	Slide 117: Demo: get_input.c
	Slide 118: Demo: get_input.c
	Slide 119: Demo: get_input.c
	Slide 120: Memory Allocation
	Slide 121: Aside: sizeof
	Slide 122: What is Dynamic Memory Allocation?
	Slide 123: Heap API
	Slide 124: malloc()
	Slide 125: free()
	Slide 126: The Heap
	Slide 127: Dynamic Memory Example
	Slide 128: Dynamic Memory Example
	Slide 129: Dynamic Memory Example
	Slide 130: Fixed read_stdin()
	Slide 131: Demo (continued): get_input.c
	Slide 132: Dynamic Memory Pitfalls
	Slide 133: Memory Leaks
	Slide 134: static function variables
	Slide 135: Practice Question
	Slide 136: Memory Corruption - What Happens?
	Slide 137: Memory Corruption - What Happens?
	Slide 138: Memory Corruption - What Happens?
	Slide 139: Memory Corruption - What Happens?
	Slide 140: Memory Corruption - What Happens?
	Slide 141: Memory Corruption - What Happens?
	Slide 142: Memory Corruption - What Happens?
	Slide 143: Memory Corruption - What Happens?
	Slide 144: Memory Corruption - What Happens?

