
CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Introductions, C Refresher
Operating Systems, Fall 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla

Vedansh Goenka Joy Liu

Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane

Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones

Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng

Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Poll: how are you?

❖ How are you?

2

pollev.com/cis5480

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Administrivia

❖ First Assignment (HW00 penn-vector)

▪ Releases After Class; Expect an announcement on Ed sometime tonight!

▪ “Due” Friday next week 09/05

▪ Extended to be due the same time as HW01 (Friday the 12th)

▪ Mostly a C refresher

❖ Pre semester Survey
▪ Anonymous

▪ Short!

▪ Releases Wednesday

▪ Due Friday the 5th

3

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Lecture Outline

❖ Introduction & Logistics

▪ Course Overview

▪ Assignments & Exams

▪ Policies

❖ C “Refresher”

▪ memory

▪ Pointers

• Output Parameters

▪ Arrays

▪ Structs

4

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Instructor: Joel

❖ UPenn CIS faculty member since August 2024

❖ Before this I Lectured @ Stanford

▪ Where I taught computer systems and probability fundamentals

▪ Had a whole lot of fun doing it

▪ Discovered my love for Teaching by TA-ing!

❖ Education: Stanford University

❖ Masters in Computer Science in June 2023

▪ Bachelors in Symbolic Systems in June 2021

5

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Instructor: Joel

❖ I love the outdoors….

6

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Instructor: Joel

❖ I play Mexican folk music…….

7

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Instructor: Joel

❖ I love to cook…

8

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Instructor: Joel

❖ I have two awesome cats (sometimes)

▪ Ube Donut

▪ Miso Soup

9

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

We Care

❖ We care a lot about your actual learning and that you have a good experience
with the course

❖ We are human beings, and we know that you are one too. If you are facing
difficulties, please let us know and we can try and work something out.

❖ I’m always willing to chat about anything. Book a time to meet with me!

▪ https://calendly.com/joelrmrz-seas/meet-with-joel

10

https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel
https://calendly.com/joelrmrz-seas/meet-with-joel

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Overview

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Overview

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Overview

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Overview

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Overview

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Latch/Flip-Flop

Adder

Mux/Demux

Course Overview

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Overview

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Computer

Operating System

Process

Course Overview

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

“Lies-to-children”

❖ "The necessarily simplified stories we tell children and students as a
foundation for understanding so that eventually they can discover that they
are not, in fact, true."
▪ Andrew Sawyer (Narrativium and Lies-to-Children: 'Palatable Instruction in 'The Science of Discworld' ‘)

19

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

“Lies-to-children”

❖ "A lie-to-children is a statement that is false, but which nevertheless leads the
child's mind towards a more accurate explanation, one that the child will only
be able to appreciate if it has been primed with the lie"

▪ Terry Pratchett, Ian Stewart & Jack Cohen (The Science of Discworld)

20

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Question

❖ What color is the sky?

21

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Question

❖ What color is the sky?

22

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

We lied to you (but in a good way)

❖ Is memory one giant array of bytes?

❖ Is this a useful model?

23

Eh……. no
Yes

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Computer

Operating System

Process

OS does A LOT more

than just printing,

reading input, video

display, and timer

Course Overview

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Computer

Operating System

P1 P2 P3 Pn…

THERE IS A LOT

GOING ON TO

SUPPORT THIS

Course Overview

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Computer

Operating System

P1 P2 P3 Pn…

THERE IS A LOT

GOING ON TO

SUPPORT THIS

Course Overview

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

We’re going to lie to you (but in a good way)

❖ "All models are wrong, but some are useful."

▪ Same source as below.

❖ "If it were necessary for us to understand how every component of our daily
lives works in order to function - we simply would not."

▪ AnRel (UNHINGED: A Guide to Revolution for Nerds & Skeptics)

❖ This course will reveal more details, but there is still a ton I am leaving out.
Even what I say that is accurate, will likely change in the future.

27

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Prerequisites

❖ Course Prerequisites:

▪ CIS 2400 (or equivalent previous experience)

▪ Teamwork & Willingness/happy to spend substantial time coding

❖ What you should be familiar with already:

▪ C programming

▪ C Memory Model

▪ Computer Architecture Model

▪ Basic UNIX command line skills

❖ HW00 and HW01 are tuned so that it will help refresh you on these.

▪ Even if you think you know C, get started sooner rather than later.

28

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

CIS 5480 Learning Objectives

❖ To leave the class with a better understanding of:

▪ How a computer runs/manages multiple programs

▪ How the previous point may affect the code we write

▪ How to read documentation

▪ Experience writing a massive programming project FROM SCRATCH with others.

▪ More comfortable writing C code

❖ Topics list/schedule can be found on course website
▪ Note: This is tentative

29

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Disclaimer

❖ A lot of the course is tentative

▪ Joel has taught this before but is CHANGING A LOT this time

❖ This is a digest, READ THE SYLLABUS
▪ https://www.seas.upenn.edu/~cis5480/current/documents/syllabus

▪ Note: Syllabus is still being updated

30

https://www.seas.upenn.edu/~cis5480/current/documents/syllabus
https://www.seas.upenn.edu/~cis5480/current/documents/syllabus

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Components: Textbook

❖ Textbook (0)

▪ Textbooks recommended in pasts

• A.S. Tanenbaum. Modern Operating Systems (4th Edition onwards). Prentice-Hall.

• W. Richard Stevens and Stephen A. Rago. Advanced Programming in the UNIX Environment
(2/e or 3/e). Addison-Wesley Professional.

▪ Systems for all: https://diveintosystems.org/book/

• Free online textbook, pretty well written

▪ Linux Man pages:

• https://linux.die.net/man/

• https://www.man7.org/linux/man-pages/

• The man command in the terminal

• DEMO:

– name a C function

– tcsetpgrp
31

https://diveintosystems.org/book/
https://linux.die.net/man/
https://linux.die.net/man/
https://www.man7.org/linux/man-pages/
https://www.man7.org/linux/man-pages/
https://www.man7.org/linux/man-pages/
https://www.man7.org/linux/man-pages/

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Components: Part 1

❖ Lectures (~26)

▪ Introduces concepts, slides & recordings available on canvas

▪ In lecture polling. Polls are not graded on correctness

▪ We will not use every lecture slot. Some lectures will be cancelled or just office hours.

❖ Recitations (New) (~10)

▪ Goes over content in more depth, question practice and is most relevant to the programming
projects.

▪ Content is gone over in a different format/explanation than lecture. (Not just lecture 2.0)

▪ Thursdays @ 5:15 – 6:45PM in Towne 100. (Will be split up in two sections, 5:15PM & 6PM

▪ Attendance and Participation is part of your grade.

• Mechanism to track this will be posted by end of the week!

• TAs are already working hard on this!

32

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Components: Part 2

❖ Check-ins “Quizzes” (~10)

▪ Unlimited attempt low-stake quizzes on canvas to make sure you are caught up with material

▪ Lowest two are dropped

❖ Exams (2)
▪ Details TBD

❖ Pre-recorded videos (many)

▪ Entirely optional

▪ Goes over lecture material or demonstrates something for projects

❖ Projects (4)

▪ See next couple slides

33

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Programming Facilities

❖ Docker

▪ Same environment as the Autograder

▪ Instructions for setup will be up by end of day!

❖ Speclab cluster, as a fallback incase Docker does not work

▪ Instructions on course website

▪ To see status: https://www.seas.upenn.edu/checklab/?lab=speclab

❖ DO NOT use Eniac machines to develop projects for this class!

34

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Project 0

❖ Project 0

▪ Making a basic data structure in C: A dynamically resizable array (e.g. Vector or ArrayList)

▪ Optional Extention: make an easier to use generic version w/ macros

▪ Idea is to help you get comfortable with coding in C

• C

• Structs

• Pointers

• Allocation

▪ Done Individually

▪ Will be posted after class!!

35

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Project 1 & 2

❖ Project 1

▪ Unix “Shell” – command interpreter (e.g. sh, bash, etc)

▪ Excellent way to learn about how system calls are supported

and used.

▪ Done individually

▪ Code review

❖ Project 2

▪ Unix “Shell” – the real deal

▪ Redirection, pipelines, background/foreground processing, job control

▪ Groups of two.

36

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

PennOS

❖ Best way to learn about an operating systems is to build one.

❖ Build all the main features of an OS (in emulation)

❖ Will be done in Groups of 4.

❖ By the end of the project, you will:

▪ Learn about how different subsystems in Unix interact with each other

▪ Learn about priority scheduling, file systems, user shell interactions

▪ Become a really good and confident systems programmer

37

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

PennOS

❖ There is a paper on this: http://netdb.cis.upenn.edu/papers/pennos.pdf
at an ACM OS journal.

❖ Group evaluation done by the end of semester.

▪ Team members with lower than 15% contribution to the group will get their

course grade downgraded.

▪ Team members who do almost nothing will get a failing grade in the course

38

http://netdb.cis.upenn.edu/papers/pennos.pdf

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

HW Policies

❖ Students who did not contribute to group projects will get F grade
regardless of overall score.

❖ Late Policy

▪ You are given 5 late tokens.

▪ Tokens are counted per student and can only be used on some assignments.

▪ Two tokens used at max per assignment

▪ Each token grants 48 hours of extra time

▪ If there are extenuating circumstances, please let us know.
We can be lenient, we can work something out

39

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Collaboration Policy Violation

❖ You will be caught:

▪ Careful grading of all written homeworks by teaching staff

▪ Measure of Software Similarity (MOSS): http://theory.stanford.edu/~aiken/moss/

▪ “Successfully” used in several classes at Penn

❖ Zero on the assignment. F grade if caught twice.

▪ First-time offenders will be reported to Office of Student Conduct with no exceptions.
Possible suspension from school

▪ Your friend from last semester who gave the code will have their grade retrospectively
downgraded.

40

http://theory.stanford.edu/~aiken/moss/

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Collaboration Policy Violation

❖ Generative AI

▪ I am skeptical of its usefulness for your learning and for your success in the course

▪ Not banned, but not recommended. Use your best judgement.

❖ You will not help your overall grade and happiness:
▪ Quizzed individually during project demo, exams on project in finals

▪ If you can’t explain your code in OH, we can turn you away.

• This is different than being confused on a bug or with C, this is ok

▪ Personal lifelong satisfaction from completing PennOS

41

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Grading

❖ Breakdown:

▪ Participation & Engagement (10%)

• Check-in Quizzes: 2%

• Recitation Attendance: 8%

▪ Projects (65%)

• Project 0 penn-vector: 5%

• Project 1 penn-shredder: 6%

• Project 2 penn-shell: 18%

• Project 3 PennOS: 36%

▪ Exams (25%)

• Midterm Exam: 10%

• Final Exam: 15%

❖ Final Grade Calculations:

▪ What is used in previous semesters is in the syllabus 42

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Course Infrastructure

❖ Course Website: www.seas.upenn.edu/~cis5480/current/

▪ Materials, Schedule, Syllabus …

❖ Docker or Speclab
▪ Coding environment for hw’s

❖ Gradescope
▪ Used for HW Submissions

❖ Poll Everywhere

▪ Used for lecture polls

❖ Ed Discussion

▪ Course discussion board

43

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Getting Help

❖ Ed

▪ Announcements will be made through here

• When you show up and the lecture hall is empty, go to Ed to find out why…

▪ Ask and answer questions

▪ Sign up if you haven’t already!

❖ Office Hours:

▪ Can be found on calendar on front page of course website

▪ Starts this week on Thursday. Location can be found on the calendar. Will start remotely..

❖ 1-on-1’s:

▪ Can schedule 1-on-1’s with Joel

▪ Should attend OH and use Ed when possible, but this is an option for when OH and Ed
can’t meet your needs or if you need more nuanced help.

▪ TAs are also available on a case by case basis.
44

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

We Care

❖ We are still figuring things out, but we do care about you and your experience
with the course

▪ Please reach out to course staff if something comes up and you need help

❖ PLEASE DO NOT CHEAT OR VIOLATE ACADEMIC INTEGRITY

▪ We know that things can be tough, but please reach out if you feel tempted. We want to
help

▪ Read more on academic integrity in the syllabus

45

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Poll: how are you?

❖ Any questions, comments or concerns so far?

46

pollev.com/cis5480

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Lecture Outline

❖ Introduction & Logistics

▪ Course Overview

▪ Assignments & Exams

▪ Policies

❖ C “Refresher”

▪ memory

▪ Pointers

• Output Parameters

▪ Arrays

▪ Structs

47

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory

❖ Where all data, code, etc are stored for a
program

❖ Broken up into several segments:

▪ The stack

▪ The heap

▪ The kernel

▪ Etc.

❖ Each “unit” of memory has an address

48

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory as an array of bytes

❖ Everything in memory is made of bits and bytes

▪ Bits: a single 1 or 0

▪ Byte: 8 bits

❖ Memory is a giant array of bytes where
everything* is stored
▪ Each byte has its own address (“index”)

❖ Some types take up one byte, others more

49

0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12

…

int main() {
 char c = 'A';
 char other = '0';
 int x = 5950;

}

0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12

'A' '0' 5950 …

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers

❖ Variables that store addresses

▪ It stores the address to somewhere in memory

▪ Must specify a type so the data at that address can be interpreted

❖ Generic definition: type* name; or type *name;

▪ Example:

• Declares a variable that can contain an address

• Trying to access that data at that address will treat the data there as an int

50

int *ptr;

type* name; type *name;

equivalent

POINTERS ARE EXTREMELY

IMPORTANT IN C

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory is Huge

❖ Modern computers are called “64-bit”

▪ Addresses are 64-bits (8-bytes)

▪ There are 264 possible memory locations, each location is 1-byte

▪ 264 is 18,446,744,073,709,551,616.
▪ Pointers must be 64-bits (8-bytes) to be able to hold any address on the computer.

51

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer Operators

❖ Dereference a pointer using the unary * operator

▪ Access the memory referred to by a pointer

▪ Can be used to read or write the memory at the address

▪ Example:

❖ Get the address of a variable with &

▪ &foo gets the address of foo in memory

▪ Example:

52

int *ptr = ...; // Assume initialized

int a = *ptr; // read the value

*ptr = a + 2; // write the value

int a = 5950;

int *ptr = &a;

*ptr = 2; // ‘a’ now holds 2

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory as an array of bytes

❖ Everything in memory is made of bits and bytes

▪ Bits: a single 1 or 0

▪ Byte: 8 bits

❖ Memory is a giant array of bytes where
everything* is stored
▪ Each byte has its own address (“index”)

❖ Some types take up one byte, others more

53

int main() {
 char c = 'A';
 char other = '0';
 int x = 5950;

 int* ptr = &x;
}

0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12

'A' '0' 5950 …

0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12

'A' '0' 5950 0x0000000000000008 …

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

0x2000 a --

0x2004 b --

0x2008 c --

0x200C ptr --

Pointer Example

54

int main(int argc, char** argv) {
 int a, b, c;
 int* ptr; // ptr is a pointer to an int

 a = 5;
 b = 3;
 ptr = &a;

 *ptr = 7;
 c = a + b;

 return 0;
}

Initial values

are garbage

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

0x2000 a 5

0x2004 b 3

0x2008 c --

0x200C ptr --

Pointer Example

55

int main(int argc, char** argv) {
 int a, b, c;
 int* ptr; // ptr is a pointer to an int

 a = 5;
 b = 3;
 ptr = &a;

 *ptr = 7;
 c = a + b;

 return 0;
}

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

x --

p --

0x2000 a 5

0x2004 b 3

0x2008 c --

0x200C ptr 0x2000

Pointer Example

56

int main(int argc, char** argv) {
 int a, b, c;
 int* ptr; // ptr is a pointer to an int

 a = 5;
 b = 3;
 ptr = &a;

 *ptr = 7;
 c = a + b;

 return 0;
}

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

x --

p --

0x2000 a 7

0x2004 b 3

0x2008 c --

0x200C ptr 0x2000

Pointer Example

57

int main(int argc, char** argv) {
 int a, b, c;
 int* ptr; // ptr is a pointer to an int

 a = 5;
 b = 3;
 ptr = &a;

 *ptr = 7;
 c = a + b;

 return 0;
}

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

x --

p --

0x2000 a 7

0x2004 b 3

0x2008 c 10

0x200C ptr 0x2000

Pointer Example

58

int main(int argc, char** argv) {
 int a, b, c;
 int* ptr; // ptr is a pointer to an int

 a = 5;
 b = 3;
 ptr = &a;

 *ptr = 7;
 c = a + b;

 return 0;
}

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers as References

❖ The exact value stored in a pointer almost never matters, we treat them more
like references

❖ In this class we will never hardcode in an address into a pointer. We will never
do something like :

▪ Read as: "ptr contains the address 0x7fffff5194"

▪ *with the exception of NULL

❖ Instead, we write code that is more often like:

▪ Read as: "ptr refers to the integer example"

▪ Or "ptr contains the address of the integer example” (Personal
59

int *ptr = 0x7fffff5194;

int example = 5;

int *ptr = &a;

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ What does this print?

▪ You can assume this compiles
and the print syntax is correct.

▪ Try drawing with boxes and arrows!

60

pollev.com/cis5480

int main() {
 int curr = 6;
 int arc = 12;

 int* ptr = &curr;
 *ptr = 2;
 arc = 3;

 int* other = ptr;
 ptr = &arc;
 *ptr = *other
 *ptr += 3;

 // print curr and arc
 printf("%d\n", curr);
 printf("%d\n", arc);
}

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ What does this print?

▪ You can assume this compiles
and the print syntax is correct.

▪ Try drawing with boxes and arrows!

61

pollev.com/cis5480

int main() {
 int curr = 6;
 int arc = 12;

 int* ptr = &curr;
 *ptr = 2;
 arc = 3;

 int* other = ptr;
 ptr = &arc;
 *ptr = *other
 *ptr += 3;

 // print curr and arc
 printf("%d\n", curr);
 printf("%d\n", arc);
}

curr 6

arc 12

ptr

other

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ What does this print?

▪ You can assume this compiles
and the print syntax is correct.

▪ Try drawing with boxes and arrows!

62

pollev.com/cis5480

int main() {
 int curr = 6;
 int arc = 12;

 int* ptr = &curr;
 *ptr = 2;
 arc = 3;

 int* other = ptr;
 ptr = &arc;
 *ptr = *other
 *ptr += 3;

 // print curr and arc
 printf("%d\n", curr);
 printf("%d\n", arc);
}

curr 6

arc 12

ptr

other

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ What does this print?

▪ You can assume this compiles
and the print syntax is correct.

▪ Try drawing with boxes and arrows!

63

pollev.com/cis5480

int main() {
 int curr = 6;
 int arc = 12;

 int* ptr = &curr;
 *ptr = 2;
 arc = 3;

 int* other = ptr;
 ptr = &arc;
 *ptr = *other
 *ptr += 3;

 // print curr and arc
 printf("%d\n", curr);
 printf("%d\n", arc);
}

curr 2

arc 3

ptr

other

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ What does this print?

▪ You can assume this compiles
and the print syntax is correct.

▪ Try drawing with boxes and arrows!

64

pollev.com/cis5480

int main() {
 int curr = 6;
 int arc = 12;

 int* ptr = &curr;
 *ptr = 2;
 arc = 3;

 int* other = ptr;
 ptr = &arc;
 *ptr = *other
 *ptr += 3;

 // print curr and arc
 printf("%d\n", curr);
 printf("%d\n", arc);
}

curr 2

arc 3

ptr

other

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ What does this print?

▪ You can assume this compiles
and the print syntax is correct.

▪ Try drawing with boxes and arrows!

65

pollev.com/cis5480

int main() {
 int curr = 6;
 int arc = 12;

 int* ptr = &curr;
 *ptr = 2;
 arc = 3;

 int* other = ptr;
 ptr = &arc;
 *ptr = *other
 *ptr += 3;

 // print curr and arc
 printf("%d\n", curr);
 printf("%d\n", arc);
}

curr 2

arc 3

ptr

other

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ What does this print?

▪ You can assume this compiles
and the print syntax is correct.

▪ Try drawing with boxes and arrows!

66

pollev.com/cis5480

int main() {
 int curr = 6;
 int arc = 12;

 int* ptr = &curr;
 *ptr = 2;
 arc = 3;

 int* other = ptr;
 ptr = &arc;
 *ptr = *other
 *ptr += 3;

 // print curr and arc
 printf("%d\n", curr);
 printf("%d\n", arc);
}

curr 2

arc 2

ptr

other

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointers Poll

❖ What does this print?

▪ You can assume this compiles
and the print syntax is correct.

▪ Try drawing with boxes and arrows!

67

pollev.com/cis5480

int main() {
 int curr = 6;
 int arc = 12;

 int* ptr = &curr;
 *ptr = 2;
 arc = 3;

 int* other = ptr;
 ptr = &arc;
 *ptr = *other
 *ptr += 3;

 // print curr and arc
 printf("%d\n", curr);
 printf("%d\n", arc);
}

curr 2

arc 5

ptr

other

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Aside: NULL

❖ NULL is a memory location that is guaranteed to be invalid

▪ In C on Linux, NULL is 0x0 and an attempt to dereference NULL causes a
segmentation fault

❖ Useful as an indicator of an uninitialized (or currently unused) pointer
or allocation error
▪ It’s better to cause a segfault than to allow the corruption of memory!

68

int main(int argc, char** argv) {

 int* p = NULL;

 *p = 1; // causes a segmentation fault

 return EXIT_SUCCESS;

}

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Structured Data

❖ A struct is a C datatype that contains a set of fields

▪ Similar to a Java class, but with no methods or constructors or really much else…

▪ Useful for defining new structured types of data

▪ Acts similarly to primitive variables

❖ Generic declaration:

69

// declaring the struct type

struct point {

 float x;

 float y;

};

// declaring a variable

struct point pt;

// declaring the struct type

typedef struct point_st {

 float x;

 float y;

} point;

// declaring a variable

point pt;

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Structured Data Initialization

❖ A struct is a C datatype that contains a set of fields

▪ Acts similarly to primitive variables

❖ Generic declaration:

70

typedef struct point_st {

 float x;

 float y;

} point;

point pt;

point origin = {0.0f, 0.0f};

point other = (point) {

 .x = 3.14f,

 .y = 3.800f,

};

pt = origin; // pt now contains 0.0f, 0.0f

<- Initializer List

Default values are still garbage!

<- with designators

^ same as pt.x = origin.x;

 pt.y = origin.y;

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Structs: Copied not Referenced

❖ When we have two struct variables, we have two structs.

▪ Objects in languages like Java or Python are references

71

typedef struct point_st {
 float x;
 float y;
} Point;

int main() {
 Point pt;
 Point origin = {0.0f, 0.0f};
 pt = origin; // pt now contains 0.0f, 0.0f

 pt.x = 3.0f;
 pt.y = 2.0f;
}

main’s stack frame

pt x = ????
y = ????

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Structs: Copied not Referenced

❖ When we have two struct variables, we have two structs.

▪ Objects in languages like Java or Python are references

72

typedef struct point_st {
 float x;
 float y;
} Point;

int main() {
 Point pt;
 Point origin = {0.0f, 0.0f};
 pt = origin; // pt now contains 0.0f, 0.0f

 pt.x = 3.0f;
 pt.y = 2.0f;
}

main’s stack frame

pt x = ????
y = ????

origin x = 0.0f
y = 0.0f

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Structs: Copied not Referenced

❖ When we have two struct variables, we have two structs.

▪ Objects in languages like Java or Python are references

73

typedef struct point_st {
 float x;
 float y;
} Point;

int main() {
 Point pt;
 Point origin = {0.0f, 0.0f};
 pt = origin; // pt now contains 0.0f, 0.0f

 pt.x = 3.0f;
 pt.y = 2.0f;
}

main’s stack frame

pt x = 0.0f
y = 0.0f

x = 0.0f
y = 0.0f

origin

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Structs: Copied not Referenced

❖ When we have two struct variables, we have two structs.

▪ Objects in languages like Java or Python are references

74

typedef struct point_st {
 float x;
 float y;
} Point;

int main() {
 Point pt;
 Point origin = {0.0f, 0.0f};
 pt = origin; // pt now contains 0.0f, 0.0f

 pt.x = 3.0f;
 pt.y = 2.0f;
}

main’s stack frame

pt x = 0.0f
y = 0.0f

x = 3.0f
y = 0.0f

origin

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Structs: Copied not Referenced

❖ When we have two struct variables, we have two structs.

▪ Objects in languages like Java or Python are references

75

typedef struct point_st {
 float x;
 float y;
} Point;

int main() {
 Point pt;
 Point origin = {0.0f, 0.0f};
 pt = origin; // pt now contains 0.0f, 0.0f

 pt.x = 3.0f;
 pt.y = 2.0f;
}

main’s stack frame

pt x = 0.0f
y = 0.0f

x = 3.0f
y = 2.0f

origin

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Accessing struct Fields

❖ Use “.” to refer to a field in a struct

❖ Use “->” to refer to a field from a struct pointer

▪ Dereferences pointer first, then accesses field

76

struct Point {

 float x, y;

};

int main(int argc, char** argv) {

 Point p1 = {0.0, 0.0};

 Point* p1_ptr = &p1;

 p1.x = 1.0;

 p1_ptr->y = 2.0; // equivalent to (*p1_ptr).y = 2.0;

 return 0;

}

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Poll: how are you?

❖ What does this code print?

77

#include <stdio.h>

#include <stdlib.h>

void modify_int(int x) {

 x = 5;

}

int main() {

 int num = 3;

 modify_int(num);

 printf("%d\n", num);

 return EXIT_SUCCESS;

}

pollev.com/cis5480

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Poll: how are you?

❖ What does this code print?

78

#include <stdio.h>

#include <stdlib.h>

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point p) {

 p.x = 3800;

 p.y = 4710;

}

int main() {

 Point p = {1100, 2400};

 modify_point(p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

pollev.com/cis5480

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Poll: how are you?

❖ What does this code print?

❖ How could we fix it?
E.g. make modify point
actually modify a point

79

#include <stdio.h>

#include <stdlib.h>

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point p) {

 p.x = 3800;

 p.y = 4710;

}

int main() {

 Point p = {1100, 2400};

 modify_point(p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

pollev.com/cis5480

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Demo: pass_by.c

❖ Everything in C is pass-by value (e.g. a copy is passed to the function)

❖ HOWEVER, we can pass a copy of a pointer (e.g. a reference to something) to
mimic pass-by-reference.

❖ Demo pass_by.c
▪ Note: most lecture code will be available on the course website

80

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Visualization: faulty pass by reference

81

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 ptr = &new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 1100
y = 2400

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Visualization: faulty pass by reference

82

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 ptr = &new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 1100
y = 2400

modify_point’s stack frame

ptr

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Visualization: faulty pass by reference

83

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 ptr = &new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 1100
y = 2400

modify_point’s stack frame

ptr

new_point
x = 3800
y = 4710

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Visualization: faulty pass by reference

84

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 ptr = &new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 1100
y = 2400

modify_point’s stack frame

ptr

new_point
x = 3800
y = 4710

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Visualization: faulty pass by reference

85

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 ptr = &new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 1100
y = 2400

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Gap slide

❖ Slide to make clear that we are moving onto a new example (that looks very
similar)

86

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Visualization: fixed pass by reference (Output Parameters)

87

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 *ptr = new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

Buggy version said:
ptr = &new_point

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

88

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 *ptr = new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 1100
y = 2400

Visualization: fixed pass by reference (Output Parameters)

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

89

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 *ptr = new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 1100
y = 2400

modify_point’s stack frame

ptr

Visualization: fixed pass by reference (Output Parameters)

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

90

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 *ptr = new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 1100
y = 2400

modify_point’s stack frame

ptr

new_point
x = 3800
y = 4710

Visualization: fixed pass by reference (Output Parameters)

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

91

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 *ptr = new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 3800
y = 4710

modify_point’s stack frame

ptr

new_point
x = 3800
y = 4710

Visualization: fixed pass by reference (Output Parameters)

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

92

typedef struct point_st {

 int x;

 int y;

} Point;

void modify_point(Point* ptr) {

 Point new_point = (Point) {

 .x = 3800,

 .y = 4710,

 };

 *ptr = new_point;

}

int main() {

 Point p = {1100, 2400};

 modify_point(&p);

 printf("%d, %d\n", p.x, p.y);

 return EXIT_SUCCESS;

}

main’s stack frame

p x = 3800
y = 4710

Visualization: fixed pass by reference (Output Parameters)

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Lecture Outline

❖ Introduction & Logistics

▪ Course Overview

▪ Assignments & Exams

▪ Policies

❖ C “Refresher”

▪ memory

▪ Pointers

• Output Parameters

▪ Arrays

▪ Strings

▪ Structs

93

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Arrays in C

❖ Definition: type name[size]

▪ Allocates size x sizeof(type) bytes of contiguous memory

▪ Normal usage is a compile-time constant for size
(e.g. int scores[175];)

▪ Initially, array values are “garbage”

❖ Size of an array
▪ Not stored anywhere – array does not know its own size!

▪ The programmer will have to store the length in another variable or hard-code it in

▪ No bounds checking!

94

type name[size]

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Using Arrays

❖ Initialization: type name[size] = {val0,…,valN};
▪ {} initialization can only be used at time of definition

▪ If no size supplied, infers from length of array initializer

❖ Array name used as identifier for “collection of data”
▪ name[index] specifies an element of the array and can be used as an

assignment target or as a value in an expression

▪ Array name (by itself) produces the address of the start of the array

• Cannot be assigned to / changed

95

int primes[6] = {2, 3, 5, 6, 11, 13};

primes[3] = 7;

primes[100] = 0; // memory smash!

type name[size] = {val0,…,valN};

Optional when initializing

No IndexOutOfBounds

Hope for segfault

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Arrays in C

❖ Here is a memory diagram example:

96

int main() {
char c = '\0';

int arr[2] = {1, 2};
}

0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14

'\0' 1 2 …

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F 0x20 0x21 0x22 0x23 0x24 0x25 0x26

…

Pointers as C arrays

❖ Pointers can be set to an array

❖ Pointers can always be indexed into like an array

▪ Pointers don’t always have to point to the beginning of
an array!

97

0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14

'\0' 1 2 …

int main() {
char c = '\0';

int arr[2] = {1, 2};

int* ptr = arr;

 int x = ptr[1] + 1;
}

0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F 0x20 0x21 0x22 0x23 0x24 0x25 0x26

0x0000...08 …

0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F 0x20 0x21 0x22 0x23 0x24 0x25 0x26

0x0000...08 3 …

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer as Array Poll

❖ What is the final value of core after this
code is run? Where is ptr pointing to
after this code is run?
▪ Hint: Draw it out!

98

pollev.com/cis5480

void foo() {
int core[3] = {5940, 5930, 5960};

core[1] += 20;

int* ptr = &(core[1]);

ptr[0] -= 900;

ptr[1] = 5000;

core[2] += 20;

// STOP HERE
}

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer as Array Poll

❖ What is the final value of core after this
code is run? Where is ptr pointing to
after this code is run?
▪ Hint: Draw it out!

99

pollev.com/cis5480

void foo() {
int core[3] = {5940, 5930, 5960};

core[1] += 20;

int* ptr = &(core[1]);

ptr[0] -= 900;

ptr[1] = 5000;

core[2] += 20;

// STOP HERE
}0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14

5940 5930 5960 …

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Strings in C

❖ Strings in C are just arrays of characters with a special character at the end to
mark the end of the string: '\0’

▪ Called the “null terminator” character

❖ C-strings are often referred to with a char[] or a char*

❖ Example:

▪ print(str) // Rain

▪ print(ptr_str) // in

100

int main() {
 char c = '\0';

 char str[5] = "Rain";

 char* ptr_str = &(str[2]);
}

0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14

'R' 'a' 'i' 'n' '\0' 0x000…008 …

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer as Array Poll

❖ Finish this code:

▪ This function takes in a string
and returns the length of the string.

▪ Do not call any other function

▪ size_t is just an unsigned integer type

▪ Remember to index into the pointer like
an array!

▪ What marks the end of a string?

▪ You don’t have to use a while loop, but
I think it makes the most sense.

101

pollev.com/cis5480

size_t strlen(char* str) {
 size_t length = 0;

 return length;
}

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer as Array Poll

❖ Finish this code:

▪ This function takes in a string
and returns the length of the string.

▪ Do not call any other function

▪ size_t is just an unsigned integer type

▪ Remember to index into the pointer like
an array!

▪ What marks the end of a string?

▪ You don’t have to use a while loop, but
I think it makes the most sense.

102

pollev.com/cis5480

size_t strlen(char* str) {
 size_t length = 0;

 while (str[length] != '\0') {

 length += 1;

 }

 return length;
}

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Multi-dimensional Arrays

❖ Generic 2D format:
type name[rows][cols];

▪ Still allocates a single, contiguous chunk of memory

▪ C is row-major

▪ Can access elements with multiple indices

• A[0][1] = 7;

• my_int = A[1][2];

▪ The entries in this array are stored in memory in row major order as follows:

•A[0][0], A[0][1], A[0][2], A[1][0], A[1][1], A[1][2]

▪ 2-D arrays normally only useful if size known in advance. Otherwise use dynamically-
allocated data and pointers (later)

103

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Arrays as Parameters

❖ It’s tricky to use arrays as parameters

▪ What happens when you use an array name as an argument?

• It “decays” into a pointer

▪ Pointers (like arrays) do not know their length

104

int sumAll(int a[]) {

 int i, sum = 0;

 for (i = 0; i < ...???

}

Passes in address of start of array

int sumAll(int* a) {

 int i, sum = 0;

 for (i = 0; i < ...???

}

Equivalent

❖ Note: Array syntax works on pointers

▪ E.g. ptr[3] = ...;

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Solution: Pass Size as Parameter

105

int sumAll(int a[], int size) {

 int i, sum = 0;

 for (i = 0; i < size; i++) {

 sum += a[i];

 }

 return sum;

}

❖ Standard idiom in C programs

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through arrays.

106

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

for (int i = 0; i < size; i++) {

 sum += ptr[i];

}

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through arrays.

107

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

0 3 5 9a

size 4

sum 0

ptr

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through arrays.

108

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

0 3 5 9a

size 4

sum 0

ptr

end

1 past the end of the array!

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through arrays.

109

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

0 3 5 9a

size 4

sum 0

ptr

end

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through arrays.

110

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

0 3 5 9a

size 4

sum 3

ptr

end

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through arrays.

111

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

0 3 5 9a

size 4

sum 8

ptr

end

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through arrays.

112

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

0 3 5 9a

size 4

sum 17

ptr

end

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

That’s all for now!

❖ If we got through all this, good job!!!

❖ You should have everything you need for the first homework assignment after
next lecture (The Heap, Malloc and Free). If you want to get started now, we
put some of the slides on malloc and free after this slide.

❖ We are going a little fast because we expect you have already seen all or most
of this before!

❖ When we get to new material it usually won’t be as fast

❖ Releasing today or tomorrow:
▪ HW00

▪ Pre-semester Survey
113

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Demo: get_input.c

❖ Lets code together a small program that:

▪ Reads at max 100 characters from stdin (user input)

▪ Truncates the input to only the first word

▪ Prints that word out

▪ Not allowed to use scanf, FILE*, printf, etc

114

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Demo: get_input.c

❖ There are two things wrong with this function

❖ What are they? How do we fix this function w/o changing the function
signature

115

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO, str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

pollev.com/cis5480

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Demo: get_input.c

❖ There are two things wrong with this function

❖ What are they? How do we fix this function w/o changing the function sig?

116

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO,

 str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

// assuming this is how the function is called

char* result = read_stdin();

pollev.com/cis5480

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Demo: get_input.c

❖ There are two things wrong with this function

❖ What are they? How do we fix this function w/o changing the function sig?

117

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO,

 str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

main

The Stack

char* result

// assuming this is how the function is called

char* result = read_stdin();

pollev.com/cis5480

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Demo: get_input.c

❖ There are two things wrong with this function

❖ What are they? How do we fix this function w/o changing the function sig?

118

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO,

 str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

main

The Stack

read_stdin

str ['H', 'i’, …]

char* result

// assuming this is how the function is called

char* result = read_stdin();

pollev.com/cis5480

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Demo: get_input.c

❖ There are two things wrong with this function

❖ What are they? How do we fix this function w/o changing the function sig?

119

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str[MAX_INPUT_SIZE];

 ssize_t res = read(STDIN_FILENO,

 str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

main

The Stack

?????????

char* result

// assuming this is how the function is called

char* result = read_stdin();

pollev.com/cis5480

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory Allocation

❖ So far, we have seen two kinds of memory allocation:

int counter = 0; // global var

int main() {

 counter++;

 printf("count = %d\n",counter);

 return 0;

}

int foo(int a) {

 int x = a + 1; // local var

 return x;

}

int main() {

 int y = foo(10); // local var

 printf("y = %d\n",y);

 return 0;

}▪ counter is statically-allocated

• Allocated when program is loaded

• Deallocated when program exits
▪ a, x, y are automatically-

allocated

• Allocated when function is called

• Deallocated when function returns

120

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Aside: sizeof

❖ sizeof operator can be applied to a variable or a type and it evaluates to the
size of that type in bytes

❖ Examples:
▪ sizeof(int)– returns the size of an integer

▪ sizeof(double)– returns the size of a double precision number

▪ struct my_struct s;

• sizeof(s) – returns the size of the struct s

▪ my_type *ptr

• sizeof (*ptr) – returns the size of the type pointed to by ptr

❖ Very useful for Dynamic Memory

121

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

What is Dynamic Memory Allocation?

❖ We want Dynamic Memory Allocation

▪ Dynamic means “at run-time”

▪ The compiler and the programmer don’t have enough information
to make a final decision on how much to allocate

▪ Your program explicitly requests more memory at run time

▪ The language allocates it at runtime, maybe with help of the OS

❖ Dynamically allocated memory persists until either:

▪ A garbage collector collects it (automatic memory management)

▪ Your code explicitly deallocates it (manual memory management)

❖ C requires you to manually manage memory

▪ More control, and more headaches 122

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Heap API

❖ Dynamic memory is managed in a location in memory called the "Heap"

▪ The heap is managed by user-level runetime library (libc)

▪ Interface functions found in <stdlib.h>

❖ Most used functions:
▪ void *malloc(size_t size);

• Allocates memory of specified size

▪ void free(void *ptr);

• Deallocates memory

❖ Note: void* is “generic pointer”. It holds an address, but doesn’t specify
what it is pointing at.

❖ Note 2: size_t is the integer type of sizeof()

123

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

malloc()

❖ d

❖ malloc allocates a block of memory of the requested
size

▪ Returns a pointer to the first byte of that memory

• And returns NULL if the memory allocation failed!

▪ You should assume that the memory initially contains garbage

▪ You’ll typically use sizeof to calculate the size you need

void *malloc(size_t size);

// allocate a 10-float array

float* arr = malloc(10*sizeof(float));

if (arr == NULL) {

 return errcode;

}

... // do stuff with arr

124

ALWAYS CHECK FOR NULL

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

free()

❖ Usage: free(pointer);

❖ Deallocates the memory pointed-to by the pointer
▪ Pointer must point to the first byte of heap-allocated memory (i.e.

something previously returned by malloc)

▪ Freed memory becomes eligible for future allocation

▪ does nothing.

▪ The bits in the pointer are not changed by calling free

• Defensive programming: can set pointer to NULL after freeing it

125

free(pointer);

float* arr = malloc(10*sizeof(float));

if (arr == NULL)

 return errcode;

... // do stuff with arr

free(arr);

arr = NULL; // OPTIONAL

free(NULL);

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

The Heap

❖ The Heap is a large pool of available memory to use for Dynamic allocation

❖ This pool of memory is kept track of with a small data structure indicating
which portions have been allocated, and which portions are currently
available.

❖ malloc:

▪ searches for a large enough unused block of memory

▪ marks the memory as allocated.

▪ Returns a pointer to the beginning of that memory

❖ free:

▪ Takes in a pointer to a previously allocated address

▪ Marks the memory as free to use.

126

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Dynamic Memory Example

127

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 if (ptr == NULL)

 return EXIT_FAILURE;

 ... // do stuff with ptr

 free(ptr);

}

addr var value

0x2001 ptr --

... ... --

0x4000 HEAP START USED

0x4001 USED

0x4002

0x4003

0x4004

0x4005

0x4006

0x4007

0x4008 USED

0x4009 USED

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Dynamic Memory Example

128

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 if (ptr == NULL)

 return EXIT_FAILURE;

 ... // do stuff with ptr

 free(ptr);

}

addr var value

0x2001 ptr 0x4002

... ... --

0x4000 HEAP START USED

0x4001 USED

0x4002 USED

0x4003 USED

0x4004 USED

0x4005 USED

0x4006

0x4007

0x4008 USED

0x4009 USED

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Dynamic Memory Example

129

#include <stdlib.h>

int main() {

 char* ptr = malloc(4*sizeof(char));

 if (ptr == NULL)

 return EXIT_FAILURE;

 ... // do stuff with ptr

 free(ptr);

}

addr var value

0x2001 ptr 0x4002

... ... --

0x4000 HEAP START USED

0x4001 USED

0x4002

0x4003

0x4004

0x4005

0x4006

0x4007

0x4008 USED

0x4009 USED

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Fixed read_stdin()

130

#define MAX_INPUT_SIZE 100

char* read_stdin() {

 char str = (char*) malloc(sizeof(char) * MAX_INPUT_SIZE);

 if (str == NULL) {

 return NULL;

 }

 ssize_t res = read(STDIN_FILENO, str, MAX_INPUT_SIZE);

 // error checking

 if (res <= 0) {

 return NULL;

 }

 return str;

}

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Demo (continued): get_input.c

❖ Lets code together a small program that:

▪ Reads at max 100 characters from stdin (user input)

▪ Truncates the input to only the first word

▪ Prints that word out

▪ Not allowed to use scanf, FILE*, printf, etc

❖ What was the other issue? (other than not using malloc)

131

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Dynamic Memory Pitfalls

❖ Buffer Overflows
▪ E.g. ask for 10 bytes, but write 11 bytes

▪ Could overwrite information needed to manage the heap

▪ Common when forgetting the null-terminator on malloc’d strings

❖ Not checking for NULL

▪ Malloc returns NULL if out of memory

▪ Should check this after every call to malloc

❖ Giving free() a pointer to the middle of an allocated region

▪ Free won’t recognize the block of memory and probably crash

❖ Giving free() a pointer that has already been freed
▪ Will interfere with the management of the heap and likely crash

❖ malloc does NOT initialize memory

▪ There are other functions like calloc that will zero out memory

132

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory Leaks

❖ The most common Memory Pitfall

❖ What happens if we malloc something, but don’t free it?

▪ That block of memory cannot be reallocated, even if we don’t use it anymore, until it is
freed

▪ If this happens enough, we run out of heap space and program may slow down and
eventually crash

❖ Garbage Collection

▪ Automatically “frees” anything once the program has lost all references to it

▪ Affects performance, but avoid memory leaks

▪ Java has this, C doesn’t

133

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

static function variables

❖ Functions can declare a variable as static

134

#include <stdio.h> // for printf

#include <stdlib.h> // for EXIT_SUCCESS

int next_num();

int main(int argc, char** argv) {

 printf("%d\n", next_num()); // prints 1

 printf("%d\n", next_num()); // then 2

 printf("%d\n", next_num()); // then 3

 return EXIT_SUCCESS;

}

int next_num() {

 // marking this variable as static means that

 // the value is preserved between calls to the function

 // this allows the function to "remember" things

 static int counter = 0;

 counter++;

 return counter;

}

Can be thought of as a

global variable that is

“private” to a function

This is how some functions

(like one in proj0) can

“remember” things.

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

❖ Which line below is first to (most likely) cause a crash?

▪ Yes, there are a lot of bugs, but not all cause a crash ☺

▪ See if you can
find all the bugs!

135

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5;

 b[0] += 2;

 c = b+3;

 free(&(a[0]));

 free(b);

 free(b);

 b[0] = 5;

 return 0;

}

1

2

3

4

5

6

7

Practice Question pollev.com/cis5480

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory Corruption - What Happens?

136

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?
?

Note: Arrow points
to next instruction.

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory Corruption - What Happens?

137

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

?

?

?

Note: Arrow points
to next instruction.

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory Corruption - What Happens?

138

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

?

?

?

5

Note: Arrow points
to next instruction.

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory Corruption - What Happens?

139

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

?

5

Note: Arrow points
to next instruction.

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory Corruption - What Happens?

140

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

5

???
Note: Arrow points
to next instruction.

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory Corruption - What Happens?

141

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

5

???
Note: Arrow points
to next instruction.

Crash!

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory Corruption - What Happens?

142

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

5

???

X
Note: Arrow points
to next instruction.

This “double free”

would also cause the

program to crash

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory Corruption - What Happens?

143

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

?

?

5

???

X
Note: Arrow points
to next instruction.

CIS 5480, Fall 2025L00: Intro, & C RefresherUniversity of Pennsylvania

Memory Corruption - What Happens?

144

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int a[2];

 int* b = malloc(2*sizeof(int));

 int* c;

 a[2] = 5; // assigns past the end of an array

 b[0] += 2; // assumes malloc zeros out memory

 c = b+3; // Ok, but if we use c, problem

 free(&(a[0])); // free something not malloc'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a freed (dangling) pointer

 // any many more!

 return 0;

}

memcorrupt.c

heap:

main

a

b

c

?

?

5

?

5

???

X
Note: Arrow points
to next instruction.

	Default Section
	Slide 1: Introductions, C Refresher Operating Systems, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Instructor: Joel
	Slide 6: Instructor: Joel
	Slide 7: Instructor: Joel
	Slide 8: Instructor: Joel
	Slide 9: Instructor: Joel
	Slide 10: We Care
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: “Lies-to-children”
	Slide 20: “Lies-to-children”
	Slide 21: Question
	Slide 22: Question
	Slide 23: We lied to you (but in a good way)
	Slide 24
	Slide 25
	Slide 26
	Slide 27: We’re going to lie to you (but in a good way)
	Slide 28: Prerequisites
	Slide 29: CIS 5480 Learning Objectives
	Slide 30: Disclaimer
	Slide 31: Course Components: Textbook
	Slide 32: Course Components: Part 1
	Slide 33: Course Components: Part 2
	Slide 34: Programming Facilities
	Slide 35: Project 0
	Slide 36: Project 1 & 2
	Slide 37: PennOS
	Slide 38: PennOS
	Slide 39: HW Policies
	Slide 40: Collaboration Policy Violation
	Slide 41: Collaboration Policy Violation
	Slide 42: Course Grading
	Slide 43: Course Infrastructure
	Slide 44: Getting Help
	Slide 45: We Care
	Slide 46: Poll: how are you?
	Slide 47: Lecture Outline
	Slide 48: Memory
	Slide 49: Memory as an array of bytes
	Slide 50: Pointers
	Slide 51: Memory is Huge
	Slide 52: Pointer Operators
	Slide 53: Memory as an array of bytes
	Slide 54: Pointer Example
	Slide 55: Pointer Example
	Slide 56: Pointer Example
	Slide 57: Pointer Example
	Slide 58: Pointer Example
	Slide 59: Pointers as References
	Slide 60: Pointers Poll
	Slide 61: Pointers Poll
	Slide 62: Pointers Poll
	Slide 63: Pointers Poll
	Slide 64: Pointers Poll
	Slide 65: Pointers Poll
	Slide 66: Pointers Poll
	Slide 67: Pointers Poll
	Slide 68: Aside: NULL
	Slide 69: Structured Data
	Slide 70: Structured Data Initialization
	Slide 71: Structs: Copied not Referenced
	Slide 72: Structs: Copied not Referenced
	Slide 73: Structs: Copied not Referenced
	Slide 74: Structs: Copied not Referenced
	Slide 75: Structs: Copied not Referenced
	Slide 76: Accessing struct Fields
	Slide 77: Poll: how are you?
	Slide 78: Poll: how are you?
	Slide 79: Poll: how are you?
	Slide 80: Demo: pass_by.c
	Slide 81: Visualization: faulty pass by reference
	Slide 82: Visualization: faulty pass by reference
	Slide 83: Visualization: faulty pass by reference
	Slide 84: Visualization: faulty pass by reference
	Slide 85: Visualization: faulty pass by reference
	Slide 86: Gap slide
	Slide 87: Visualization: fixed pass by reference (Output Parameters)
	Slide 88: Visualization: fixed pass by reference (Output Parameters)
	Slide 89: Visualization: fixed pass by reference (Output Parameters)
	Slide 90: Visualization: fixed pass by reference (Output Parameters)
	Slide 91: Visualization: fixed pass by reference (Output Parameters)
	Slide 92: Visualization: fixed pass by reference (Output Parameters)
	Slide 93: Lecture Outline
	Slide 94: Arrays in C
	Slide 95: Using Arrays
	Slide 96: Arrays in C
	Slide 97: Pointers as C arrays
	Slide 98: Pointer as Array Poll
	Slide 99: Pointer as Array Poll
	Slide 100: Strings in C
	Slide 101: Pointer as Array Poll
	Slide 102: Pointer as Array Poll
	Slide 103: Multi-dimensional Arrays
	Slide 104: Arrays as Parameters
	Slide 105: Solution: Pass Size as Parameter
	Slide 106: Pointer Arithmetic
	Slide 107: Pointer Arithmetic
	Slide 108: Pointer Arithmetic
	Slide 109: Pointer Arithmetic
	Slide 110: Pointer Arithmetic
	Slide 111: Pointer Arithmetic
	Slide 112: Pointer Arithmetic
	Slide 113: That’s all for now!
	Slide 114: Demo: get_input.c
	Slide 115: Demo: get_input.c
	Slide 116: Demo: get_input.c
	Slide 117: Demo: get_input.c
	Slide 118: Demo: get_input.c
	Slide 119: Demo: get_input.c
	Slide 120: Memory Allocation
	Slide 121: Aside: sizeof
	Slide 122: What is Dynamic Memory Allocation?
	Slide 123: Heap API
	Slide 124: malloc()
	Slide 125: free()
	Slide 126: The Heap
	Slide 127: Dynamic Memory Example
	Slide 128: Dynamic Memory Example
	Slide 129: Dynamic Memory Example
	Slide 130: Fixed read_stdin()
	Slide 131: Demo (continued): get_input.c
	Slide 132: Dynamic Memory Pitfalls
	Slide 133: Memory Leaks
	Slide 134: static function variables
	Slide 135: Practice Question
	Slide 136: Memory Corruption - What Happens?
	Slide 137: Memory Corruption - What Happens?
	Slide 138: Memory Corruption - What Happens?
	Slide 139: Memory Corruption - What Happens?
	Slide 140: Memory Corruption - What Happens?
	Slide 141: Memory Corruption - What Happens?
	Slide 142: Memory Corruption - What Happens?
	Slide 143: Memory Corruption - What Happens?
	Slide 144: Memory Corruption - What Happens?

