University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

The Heap, Processes
Computer Systems Programming, Fall 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla _—-

Vedansh Goenka Joy Liu

Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane
Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones
Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng
Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

The Dish, Stanford California

University of Pennsylvania LO1: Heap & Processes

Administrivia

% First Assignment (HWOO penn-vector)

= Released already! Should have everything you need after this lecture
= “Due” Friday next week 09/05

" Mostly a C refresher

+» Pre semester Survey
" Anonymous
= Short!
= Qut Yesterday, Due Friday the 5t

CIS 5480, Fall 2025

University of Pennsylvania LO1: Heap & Processes

Administrivia

% Second Assignment (HWO1 penn-shredder)

= Releases after Tuesday’s lecture

= Duye September 12th

" |ntro to system calls, processes, etc.

" Short Q&A and demo in lecture on Tuesday ©

Recitation: Starts next week! Not today!

CIS 5480, Fall 2025

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

Lecture Outline

« C“Refresher”

= Dynamic Memory vs the Stack
= Structs

< Processes

® Overview
= fork()
= exec()

University of Pennsylvania LO1: Heap & Processes

Demo: get_input.c

+ Lets code together a small program that:

Reads at max 100 characters from stdin (user input)
Truncates the input to only the first word
Prints that word out

Not allowed to use scanf, FILE*, printf, etc

CIS 5480, Fall 2025

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis4480

+» Two things are wrong with this function. What are they?
+» How do we fix this function w/o changing the function signature?

(#define MAX INPUT SIZE 100 N

char~* read;stdin() {
char Str[MAX_INPUT_SIZE];

ssize t res = read(STDIN FILENO, str, MAX INPUT SIZE);

// error checking

1f (res <= 0) {
return NULL;

}

return str;

}

// assuming this is how the function is called
\Fhar* result = read stdin();)

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis4480

+» Two things are wrong with this function. What are they?
+» How do we fix this function w/o changing the function signature?

(4define MAX INPUT SIZE 100) The Stack

char* read stdin() { main

char str[MAX INPUT SIZE];

char™ result

ssize t res = read(STDIN FILENO, str, MAX INPUT SIZE);

|

|

// error checking I
1f (res <= 0) { |
return NULL; :

} I
|

|

|

|

|

return str;

}

// assuming this is how the function is called | @ <o oo e e e e e - -
\Fhar* result = read stdin(); Y,

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis4480

+» Two things are wrong with this function. What are they?
+» How do we fix this function w/o changing the function signature?

(4define MAX INPUT SIZE 100 N The Stack

char* read stdin() { main

char str[MAX INPUT SIZE];

char® result

ssize t res = read(STDIN FILENO, str, MAX INPUT SIZE);

read_stdin
// error checking
if (res <= 0) f{ str ['H', 7', ...]

return NULL;

}

}

// assuming this is how the function is called | @ <o oo e e e e e - -
\Fhar* result = read stdin(); Y,

|
|
|
return str; I
|
|

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis4480

+» Two things are wrong with this function. What are they?
+» How do we fix this function w/o changing the function signature?

(4define MAX INPUT SIZE 100) The Stack
char* read stdin() { main
char str[MAX INPUT SIZE]; —
e - : char* result \>

ssize t res = read(STDIN FILENO, str, MAX INPUT SIZE);
|
// error checking I

1f (res <= 0) { PPPPV0PY?
return NULL;

}

return str;

}

// assuming this is how the function is called
\Fhar* result = read stdin();)

University of Pennsylvania

Memory Allocation

LO1: Heap & Processes

So far, we have seen two kinds of memory allocation:

()
int counter = 0; // global var
int main() {

counter++;
printf ("count = %d\n",counter) ;
return 0;
}
\,

" counter isstatically-allocated
- Allocated when program is loaded

- Deallocated when program exits

\.

(int foo(int a) { h
int x = a + 1; // local var
return x;

}

int main() {
int y = foo(10); // local var
5?33??("y = %d\n",vy);
return O;

) J

" a, x,yare automatically-
allocated

- Allocated when function is called

Qm - Deallocated when function returns

CIS 5480, Fall 2025

10

University of Pennsylvania

Aside: sizeof

+» sizeof operator can be applied to a variable or a type and it evaluates to the
size of that type in bytes

+» Examples:

L)

" sizeof (int)-returns the size of an integer

" sizeof (double)-returns the size of a double precision number
" struct my struct s;

- sizeof (s) —returns the size of the struct s
" my type *ptr

- sizeof (*ptr) —returns the size of the type pointed to by ptr

% Very useful for Dynamic Memory

LO1: Heap & Processes CIS 5480, Fall 2025

11

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

What is Dynamic Memory Allocation?

+» We want Dynamic Memory Allocation

" Dynamic means “at run-time”

" The compiler and the programmer don’t have enough information to make a final
decision on how much to allocate

" Your program explicitly requests more memory at run time
" The language allocates it at runtime, maybe with help of the OS

+ Dynamically allocated memory persists until either:
= A garbage collector collects it (automatic memory management)
= Your code explicitly deallocates it (manual memory management)

+ Crequires you to manually manage memory

" More control, and more headaches 12

University of Pennsylvania LO1: Heap & Processes

Heap API

%~ Dynamic memory is managed in a location in memory called the "Heap"

" The heap is managed by user-level runetime library (libc)
" |nterface functions found in <stdlib.h>

+» Most used functions:
" void *malloc(size_t size);
- Allocates memory of specified size
" void free (void *ptr);
- Deallocates memory

>

Note: void¥* is “generic pointer”. It holds an address, but doesn’t specify
what it is pointing at.
+ Note 2: size tistheintegertype of sizeof ()

CIS 5480, Fall 2025

13

University of Pennsylvania

LO1: Heap & Processes

malloc ()

[void *malloc(size t size); |

malloc allocates a block of memory of the requested size

® Returns a pointer to the first byte of that memory
« And returns NULL if the memory allocation failed!

" You should assume that the memory initially contains garbage
= You'll typically use sizeof to calculate the size you need

(// allocate a 10-float array w
float* arr = malloc(l0*sizeof (float));
if (arr == NULL)

{
return errcode; *—\\\\\‘-ALMMVKSCHECKT%?RTQMLL
}
// do stuff with arr

CIS 5480, Fall 2025

14

LO1: Heap & Processes CIS 5480, Fall 2025

University of Pennsylvania

free ()

[free(pointer);]

Deallocates the memory pointed-to by the pointer

® Pointer must point to the first byte of heap-allocated memory
« (i.e. something previously returned by malloc)

" Freed memory becomes eligible for future allocation

" The bits in the pointer are not changed by calling free
- Defensive programming: can set pointer to NULL after freeing it

N\

[float* arr = malloc(10*sizeof (float)) :

if (arr == NULL)
return errcode;
.. // do stuff with arr
free (arr) ; [free (NULL) ;]

arr = NULL; // Preferred +—
p.s. This is a No-Op.

\\

15

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

The Heap

The Heap is a large pool of available memory to use for Dynamic allocation

This pool of memory is kept track of with a small data structure indicating
which portions have been allocated, and which portions are currently
available.

malloc:

" searches for a large enough unused block of memory

" marks the memory as allocated.

= Returns a pointer to the beginning of that memory

free:

" Takes in a pointer to a previously allocated address
= Marks the memory as free to use.

16

University of Pennsylvania

Dynamic Memory Example

(#include <stdlib.h> R
int main () {
el
char* ptr = malloc (4*sizeof (char));
if (ptr == NULL)
return EXIT FAILURE;
.. // do stuff with ptr
free(ptr);
}
_ J

LO1: Heap & Processes

addr
0x2001

0x4000
0x4001
0x4002
0x4003
0x4004
0x4005
0x4006
0x4007
0x4008
0x4009

var

ptr

HEAP START

CIS 5480, Fall 2025

17

University of Pennsylvania

LO1: Heap & Processes

Dynamic Memory Example

.

(#include <stdlib.h> R
int main () {
char* ptr = malloc (4*sizeof (char));
if (ptr == NULL)
return EXIT FAILURE;
.. // do stuff with ptr
free(ptr);
}
J

addr
0x2001

0x4000
0x4001
0x4002
0x4003
0x4004
0x4005
0x4006
0x4007
0x4008
0x4009

var value
ptr - =

HEAP START USED

USED

h USED

USED

y USED

\0 USED

Free

Free

USED

CIS 5480, Fall 2025

18

University of Pennsylvania

LO1: Heap & Processes

Dynamic Memory Example

.

(#include <stdlib.h> R
int main () {
char* ptr = malloc (4*sizeof (char));
if (ptr == NULL)
return EXIT FAILURE;
.. // do stuff with ptr
free(ptr);
}
J

addr
0x2001

0x4000
0x4001
0x4002
0x4003
0x4004
0x4005
0x4006
0x4007
0x4008
0x4009

var value
ptr - =

HEAP START USED

USED

h Free

Free

y Free

\o0 Free

Free

Free

USED

CIS 5480, Fall 2025

19

University of Pennsylvania LO1: Heap & Processes

Demo (continued): get_input.c

+ Lets code together a small program that:

" Reads at max 100 characters from stdin (user input)
" Truncates the input to only the first word

= Prints that word out

= Not allowed to use scanf, FILE*, printf, etc

+ Let’s fix the Stack Array issue!
%+ What was the other issue? (other than not using malloc)

CIS 5480, Fall 2025

20

University of Pennsylvania LO1: Heap & Processes

Partially Fixed read_stdin()

(“4define MAX INPUT SIZE 100

return NULL;

SSiZ@_t TEeE = read(STDIN_FILENO, str, MAX_INPUT_SIZE);
// error checking

1f (res <= 0) {
return NULL;

return str;

char* read stdin() ({
char str = (char*) malloc(sizeof (char) * MAX INPUT SIZE);
if (str == NULL) {

CIS 5480, Fall 2025

21

University of Pennsylvania

LO1: Heap & Processes

Fully Fixed read_stdin()

char* read stdin()
char str = (char*
if (str == NULL)
return NULL;

ssize t res =

// error checking

1f (res <= 0) {
return NULL;

}

str[res] = "\0’;

return str;

(“4define MAX INPUT SIZE 100

{
) malloc(sizeof (char) * MAX INPUT SIZE);

{

read (STDIN FILENO, str, MAXINPUTSIZE);‘////////

——— The Null-Terminator must
be added manually.

CIS 5480, Fall 2025

Reminder: read is a very
exact function in that it
only writes exactly what
there is to read.

22

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis4480

« Which function works as intended?

typedef struct point st { typedef struct point st {
float x; float x;
float y; float y;

} Point; } Point;

Point* make point() { Point make point() {

Point p = (Point) { Point p =
X = 2.0T;
1.01;

Y = f
}s
Point* ptr = &p; return p;

return ptr; }

University of Pennsylvania LO1: Heap & Processes

Dynamic Memory Pitfalls

Buffer Overflows

= E.g. ask for 10 bytes, but write 11 bytes

= Could overwrite information needed to manage the heap
= Common when forgetting the null-terminator on malloc’d strings

Not checking for NULL

= Malloc returns NULL if out of memory
= Should check this after every call to malloc

Giving £ree () a pointer to the middle of an allocated region
= Free won’t recognize the block of memory and probably crash

Giving £free () a pointer that has already been freed

= Will interfere with the management of the heap and likely crash

malloc does NOT initialize memory
= There are other functions like calloc that will zero out memory

CIS 5480, Fall 2025

24

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

Memory Leaks

% The most common Memory Pitfall
+» What happens if we malloc something, but don’t free it?

" That block of memory cannot be reallocated, even if we don’t use it anymore, until it is
freed

= |f this happens enough, we run out of heap space and program may slow down and
eventually crash

+» Garbage Collection

® Cdoesn’t have this. You’re on your own.

25

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

Discuss: What is wrong with this code? (Multiple bugs)

int main() { char* dup_str(char* to _copy) {
char* literal = "Hello!",; size t len = strlen(to copy);
char* duplicate = dup_str(literal); char* res = malloc(sizeof(char) * len);
char* ptr = duplicate; for (size t i =0; 1 < len; i++) {
res[i] = to _copy[i];
while (*ptr I= "\0') { }
printf("%s\n", ptr); return res;

// printf line is fine
ptr += 1;
} strlen()
returns the number of characters before the null-terminator
free(duplicate);
free(ptr);
free(literal);

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

static function variables

« Functions can declare a variable as static

/&include <stdio.h> // for printf ‘\
#include <stdlib.h> // for EXIT SUCCESS

This is how some functions

int next num() ; P y :
- can “remember” things.

int main(int argc, char** argv) {

(
printf ("%d\n", next num()); // prints 1
printf ("$d\n", next num()); // then 2
printf ("$d\n", next num()); // then 3

return EXIT SUCCESS;

int next num() {
// marking this variable as static means that
// the value 1s preserved between calls to the function
// this allows the function to "remember" things

. . — 0;

statlc 1nt counter CaMbG*WWM@M+Ofﬁ56%

counter++; . X
global variable that is
“private” to a function

return counter;

4/ 27

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

Lecture Outline

» C “Refresher”

= Dynamic Memory vs the Stack
= Structs

<+ Processes

= Overview
= fork()
= exec()

28

CIS 5480, Fall 2025

University of Pennsylvania LO1: Heap & Processes

Definition: Process

Definition: An instance of a program that is
being executed (or is ready for execution)

Consists of:
" Memory (code, heap, stack, etc)

= Registers used to manage execution
(stack pointer, program counter, ...)

= Other resources

*This isu't duite true
more in a future lecture

SP

Stack

!

1

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

. Read-Only Segments

text, .rodata

29

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

Computers as we know them now

% In CIS 2400, you learned about hardware, transistors, CMQOS, gates, etc.
+» Once we got to programming, our computer looks something like:

Process
What 1S missim@/wrom@ with this?

«» This model is still useful, and can be
used in many settings

30

University of Pennsylvania

LO1: Heap & Processes

Multiple Processes

+» Computers run multiple processes “at the same time”

%~ One or more processes for each
of the programs on your computer

+» Each process has its own...
" Memory space
" Registers
" Resources

P1 P2 P3 g Pn

Operating System

CIS 5480, Fall 2025

31

University of Pennsylvania LO1: Heap & Processes

CIS 5480, Fall 2025

OS: Protection System

+» OS isolates process from each other
= Each process seems to have exclusive use of
memory and the processor.
« Thisis anillusion

- More on Memory when we talk about virtual
memory later in the course

= OS permits controlled sharing between processes
- E.g. through files, the network, etc.

+» OS isolates itself from processes

= Must prevent processes from accessing the hardware
directly

Process A
(untrusted)

Q
“0

Process B
(untrusted)
Process C
(untrusted)
Process D
(untrusted)

OS
(trusted)

HW (trusted)

32

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data cos Data
Code Code Code
CPU CPU CPU

Registers Registers Registers

%~ Computer runs many processes simultaneously
= Applications for one or more users
- Web browsers, email clients, editors, ...

= Background tasks
- Monitoring network & 1/O devices

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data vee Data
Code : Code Code
Saved Saved Saved
registers registers registers

CPU

Registers

+ Single processor executes multiple processes concurrently
" Process executions interleaved (multitasking)
= Address spaces managed by virtual memory system (later in course)

= Register values for nonexecuting processes saved in memory 34

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data ves Data
Code Code Code
Saved : Saved Saved
registers | - registers registers
CPU
Registers

1. Save current registers in memory

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

1. Save current registers in memory
2. Schedule next process for execution

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory
2. Schedule next process for execution
3. Load saved registers and switch address space (context switch)

Memory
Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

University of Pennsylvania

LO1: Heap & Processes

Multiprocessing: The (Traditional) Reality

Multiple CPUs on single chip

Memory

Stack Stack Stack

Heap Heap Heap

Data Data Data

Code Code Code

Saved Saved Saved
registers registers registers

VA A «» Multicore processors

CPU PU

Registers Registers
Share memory

Core 1 Core 2

Each can execute a separate process
« Scheduling of processors onto cores done by kernel
This is called “Parallelism”

CIS 5480, Fall 2025

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis4480

+» What | just went through was the big picture of processes. Many details left,
some will be gone over in future lectures

+» Any questions, comments or concerns so far?

39

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

Creating New Processes

pid t fork();

= Creates a new process (the “child”) that is an exact clone* of the current process (the
“parent”)

- *almost everything
" The new process has a separate virtual address space from the parent
" Returns apid t whichisan integer type.

- The parent receives the real pid

 The child receives 0.

40

University of Pennsylvania

fork () and Address Spaces

Fork causes the OS to clone the
address space

= The copies of the memory segments

are (nearly) identical

= The new process has copies of the
parent’s data, stack-allocated
variables, open file descriptors, etc.

LO1: Heap & Processes

Shared Libraries

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
' .text, .rodata

PARENT

Stack

SP ==

|
1

Shared Libraries

1

Heap (malloc/free)

Read/Write Segment
.data, .bss

PC==

Read-Only Segment
.text, .rodata

fork ()

CHILD

CIS 5480, Fall 2025

% University of Pennsylvania

fork ()

« fork () has peculiar semantics
" The parent invokes fork ()
®" The OS clones the parent

" Both the parent and the child return
from fork

- Parent receives child’s pid
- Child receives a 0

LO1: Heap & Processes

fork ()

CIS 5480, Fall 2025

42

% University of Pennsylvania

fork ()

« fork () has peculiar semantics -
parent

" The parent invokes fork ()
®" The OS clones the parent

" Both the parent and the child return
from fork

- Parent receives child’s pid
- Child receives a 0

LO1: Heap & Processes

clone

-~

OS

CIS 5480, Fall 2025

43

% University of Pennsylvania

fork ()

« fork () has peculiar semantics
" The parent invokes fork ()
®" The OS clones the parent

" Both the parent and the child return
from fork

- Parent receives child’s pid
- Child receives a 0

LO1: Heap & Processes

child pid

CIS 5480, Fall 2025

44

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

"simple" fork () example

fork()
printf ("Hello!\n");

+» What does this print?

45

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

"simple" fork () example

Parent Process (PID = X) Child Process (PID =Y)
fork(); fork () ;

—_— —_—
printf ("Hello!\n"); printf ("Hello!\n");

+» What does this print?

+» "Hello!\n" is printed twice

46

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis4480

fork () ;
fork () ;
printf ("Hello!\n");

+» What does this print?

47

University of Pennsylvania

@ Poll Everywhere

LO1: Heap & Processes

fork
fork
prin

()
()7
tf ("Hello!\n");

+» What does this print?

“hello!” four times!

Child

Parent

CIS 5480, Fall 2025

pollev.com/cis4480

Child First Fork

Grandchild Second Fork.

48

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis4480

int x = 3;

fork () ;

X++;

printf ("%d\n", x);

+» What does this print?

49

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

0 Poll Everywhere discusssss

—ppid t fork ret = fork();

if (fork ret == 0) {
printf ("Child\n");
} else {

printf ("Parent\n") ;
}

+» What does this print?

50

University of Pennsylvania

fork () example

Parent Process (PID = X)

LO1: Heap & Processes

if (fork ret == 0) {
printf ("Child\n");
} else {

printf ("Parent\n") ;
}

—ppid t fork ret = fork();

Child Process (PID =Y)

—ppid t fork ret = fork();

if (fork ret == 0) {
printf ("Child\n");
} else {

printf ("Parent\n") ;
}

fork ()

CIS 5480, Fall 2025

51

University of Pennsylvania

fork () example

Parent Process (PID = X)

if (fork ret == 0) {
printf ("Child\n");
} else {

printf ("Parent\n") ;
}

LO1: Heap & Processes

Child Process (PID =Y)

—ppid t fork ret = fork();

—ppid t fork ret = fork();

if (fork ret == 0) {
printf ("Child\n");
} else {

printf ("Parent\n") ;
}

fork ret
pid t fork ret = fork():;
if (fork ret == 0) {
printf ("Child\n");
} else {

= printf ("Parent\n");
}

fork ret =

Prints "Parent”

pid t fork ret = fork():

if (fork ret == 0) {

= printf ("Child\n");

} else {

printf ("Parent\n") ;
}

Which prints first? Prints "Child

CIS 5480, Fall 2025

CIS 5480, Fall 2025

University of Pennsylvania LO1: Heap & Processes

Process States (incomplete)

FOR NOW, we can think of a process
as being in one of three states:

More states in
% Running future lectures

" Process is currently executing

+ Ready
" Process is waiting to be executed and will eventually be scheduled (i.e.,
chosen to execute) by the kernel
Scheduler +o be covered

. m a later lecture
« Terminated

" Process is stopped permanently

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

Process State Lifetime (incomplete)

Wore states v

Process creation future lectures

Selected by the
e.g. fork ()

kernel to run .
Process finished

Ready Terminated

~_ _—

After running for a bit
itis another processes “turn”

Processes can be “interrupted” to
stop rumming. Through sometivg
like a hardware timer interrupt

University of Pennsylvania

Context Switching

+» Processes are managed by a shared chunk of memory-resident OS code

called the kernel

" |mportant: the kernel is not a separate process, but rather runs as part of some

existing process.

+» Control flow passes from one process to another via a context switch

Time

Process A

LO1: Heap & Processes

Process B

user code
kernel code } context switch

user code

kernel code } context switch

user code

CIS 5480, Fall 2025

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

OS: The Scheduler

>

When switching between processes, the OS will run some kernel code called
the “Scheduler”

The scheduler runs when a process:

= starts (“arrives to be scheduled”),

" Finishes

= Blocks (e.g., waiting on something, usually some form of |/0)
® Has run for a certain amount of time

It is responsible for scheduling processes
" Choosing which one to run

® Deciding how long to run it

56

CIS 5480, Fall 2025

University of Pennsylvania LO1: Heap & Processes

Scheduler Considerations

+ The scheduler has a scheduling algorithm to decide what runs next.

» Algorithms are designed to consider many factors:
= Fairness: Every program gets to run
= Liveness: That “something” will eventually happen
= Throughput: Number of “tasks” completed over an interval of
time
= Wait time: Average time a “task” is “alive” but not running
= A lot more...

» More on this later. For now: think of scheduling as non-
deterministic, details handled by the OS.

57

University of Pennsylvania

fork () example

LO1: Heap & Processes

—pprintf ("Hello!\n");

pid t fork ret = fork();
int x;

1f (fork ret == 0) {
X = 1234;

} else {
x = 5678;

}

printf ("3d\n", x);

Always prints "Hello"

CIS 5480, Fall 2025

58

University of Pennsylvania

fork () example

LO1: Heap & Processes

printf ("Hello!\n");

-pp01id t fork ret = fork();

int x;

1f (fork ret == 0) {
X = 1234;

} else {
x = 5678;

}

printf ("3d\n", x);

Always prints "Hello"

CIS 5480, Fall 2025

59

University of Pennsylvania

LO1: Heap & Processes

CIS 5480, Fall 2025

fork () example
Parent Process (PID = X) Child Process (PID =Y)

printf ("Hello!\n");
—ppid t fork ret = fork();

printf ("Hello!\n");
=Pl 01d t fork ret = fork();

int x; int x;

1f (fork ret == 0) { 1f (fork ret == 0) {
x = 1234; x = 1234;

} else { } else {
X = 5678; X = 5678;

}

}
printf ("$d\n", x);

printf ("$d\n", x);
fork ret =Y fork ret = 0
— Fork () —
Always prints "Hello" Does NOT privt "Hello"

60

University of Pennsylvania

LO1: Heap & Processes

CIS 5480, Fall 2025

fork () example
Parent Process (PID = X) Child Process (PID =Y)

printf ("Hello!\n");
pid t fork ret = fork();
int x;

printf ("Hello!\n");
pid t fork ret = fork();

int x;
1f (fork ret == 0) { 1f (fork ret == 0) {
x = 1234; - x = 1234;
} else { } else {
=P x = 5678; X = 5678;

}

}
printf ("$d\n", x);

printf ("%d\n", x);

fork ret =Y fork ret = 0
- fork () —

Always prints "Hello"

Always prints "5678" Always prints "1234"

61

University of Pennsylvania LO1: Heap & Processes

Exiting a Process

vold exit(int status);

= Causes the current process to exit normally
= Automatically called by main () when main returns
= Exits with a return status (e.g. EXIT SUCCESS or EXIT FAILURE)
« This is the same int returned by main ()
= The exit status is accessible by the parent process with wait () orwaitpid().

CIS 5480, Fall 2025

62

University of Pennsylvania

@ Poll Everywhere

int global num = 1;

volid function () {
global num++;

printf ("%d\n", global num);

}

int main() {
pid t id = fork();

1t (id == 0) {
function() ;
id = fork () ;
1f (id == 0) {
function() ;

}
return EXIT SUCCESS;

}
global num += 2;

printf ("$d\n", global num);
return EXIT SUCCESS;

CIS 5480, Fall 2025

LO1: Heap & Processes

pollev.com/cis4480
<~ How many numbers are printed?

<+ What number(s) get printed from
each process?

63

CIS 5480, Fall 2025

LO1: Heap & Processes

University of Pennsylvania

pollev.com/cis4480

@ Poll Everywhere

int global num = 1;
void function () { Parent
global num++;
printf ("%d\n", global num) ; Child
}
int main() { .
pid t id = fork(); function(); //2
it (id == 0) { Grandchild
function () ;
id = fork () ;
i1f (id == 0) {
function () ;
} function(); //3
return EXIT SUCCESS; t
}
13 v Exit. v Exit.
global num += 2;
rintf ("%d\n", global num);] .]]
ietum T —— SUCgEss- - *Remember, the child starts with an identical |
) - copy of the it’s parents memory. o
_)

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis4480

%+ How many times is ":)" printed?

int main(int argc, char* argv[]) {
for (int 1 = 0; 1 < 4; i++) {
fork () ;
}

printf(":)\n"); // "\n" is similar to endl
return EXIT SUCCESS;

}

65

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis4480

%+ How many times is ":)" printed?

Parent

int main(int argc, char* argv[]) {

for (int 1 = 0; 1 < 4; i++) { =0 Child

fork () ;
} - Child G Child
| =

printf(":)\n"); // "\n" is similar to endl

} SR BA_BUICLECE .- | Child G Child [G Child GG Child

66

University of Pennsylvania LO1: Heap & Processes

Processes & Fork Summary

+» Processes are instances of programs that:

= Each have their own independent address space (more on that later!)

= Each process is scheduled by the OS

- Without using some functions we have not talked about (yet),
there is no way to guarantee the order processes are executed

" Processes are created by fork() system call

- Only difference between processes is their process id and
the return value from fork() each process gets

CIS 5480, Fall 2025

67

University of Pennsylvania

Lecture Outline

» C “Refresher”

= Dynamic Memory vs the Stack
= Structs
+» Processes

® Qverview
= fork()
= exec()

LO1: Heap & Processes

CIS 5480, Fall 2025

68

University of Pennsylvania LO1: Heap & Processes CIS 5480, Fall 2025

That’s all!

+» See y’all on Tuesday! Enjoy your extended weekend!
% Check-In 00 will be released tonight!

76

	Default Section
	Slide 1: The Heap, Processes Computer Systems Programming, Fall 2025
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Demo: get_input.c
	Slide 6: Demo: get_input.c
	Slide 7: Demo: get_input.c
	Slide 8: Demo: get_input.c
	Slide 9: Demo: get_input.c
	Slide 10: Memory Allocation
	Slide 11: Aside: sizeof
	Slide 12: What is Dynamic Memory Allocation?
	Slide 13: Heap API
	Slide 14: malloc()
	Slide 15: free()
	Slide 16: The Heap
	Slide 17: Dynamic Memory Example
	Slide 18: Dynamic Memory Example
	Slide 19: Dynamic Memory Example
	Slide 20: Demo (continued): get_input.c
	Slide 21: Partially Fixed read_stdin()
	Slide 22: Fully Fixed read_stdin()
	Slide 23: Poll: Struct Return
	Slide 24: Dynamic Memory Pitfalls
	Slide 25: Memory Leaks
	Slide 26: Discuss: What is wrong with this code? (Multiple bugs)
	Slide 27: static function variables
	Slide 28: Lecture Outline
	Slide 29: Definition: Process
	Slide 30: Computers as we know them now
	Slide 31: Multiple Processes
	Slide 32: OS: Protection System
	Slide 33: Multiprocessing: The Illusion
	Slide 34: Multiprocessing: The (Traditional) Reality
	Slide 35: Multiprocessing: The (Traditional) Reality
	Slide 36: Multiprocessing: The (Traditional) Reality
	Slide 37: Multiprocessing: The (Traditional) Reality
	Slide 38: Multiprocessing: The (Traditional) Reality
	Slide 39: Any questions so far?
	Slide 40: Creating New Processes
	Slide 41: fork() and Address Spaces
	Slide 42: fork()
	Slide 43: fork()
	Slide 44: fork()
	Slide 45: "simple" fork() example
	Slide 46: "simple" fork() example
	Slide 47: "simple" fork() example
	Slide 48: "simple" fork() example
	Slide 49: "simple" fork() example
	Slide 50: fork() example
	Slide 51: fork() example
	Slide 52: fork() example
	Slide 53: Process States (incomplete)
	Slide 54: Process State Lifetime (incomplete)
	Slide 55: Context Switching
	Slide 56: OS: The Scheduler
	Slide 57: Scheduler Considerations
	Slide 58: fork() example
	Slide 59: fork() example
	Slide 60: fork() example
	Slide 61: fork() example
	Slide 62: Exiting a Process
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Processes & Fork Summary
	Slide 68: Lecture Outline
	Slide 76: That’s all!

