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Poll: how are you?

❖ How is penn-vector going?

▪ I haven’t started

▪ I have read the spec

▪ I’ve setup the container

▪ I’ve started writing code

▪ I’ve started writing code and I am pretty sure
I understand what is going on

▪ I’m done!

2
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Administrivia

❖ First Assignment (HW00 penn-vector)

▪ Released already!

▪ “Due” This Friday 09/05

▪ Extended to be due the same time as HW01 (Friday the 12th)

▪ Mostly a C refresher

❖ Pre semester Survey
▪ Anonymous

▪ Short!

▪ Due Friday the 5th

❖ OH Started Last week, Levine 612! Check out the Course Calendar!

3
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Administrivia

❖ Second Assignment (HW01 penn-shredder)

▪ Releases after today’s lecture sometime tonight

▪ Due Friday Next week 09/12

▪ Intro to system calls, processes, etc.

▪ Short Q&A and demo at end of class ☺

❖ First Check-in
▪ Was Due Today! (Extended until the 9th @ 1:45PM…) 

▪ Don’t forget to do them!!!

4
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Administrivia

❖ Recitation starts this week on Thursday! 

▪ Look out for an announcement on Ed from the TAs with more information sometime soon. 

5
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Lecture Outline

❖ Processes & Fork Revisited

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo
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Processes & Fork Summary

❖ Processes are instances of programs that:

▪ Each have their own independent address space

▪ Each process is scheduled by the OS

• There is no way to guarantee the order processes are executed, without using some functions 
we have not talked about (yet),

▪ Processes are created by fork() system call

• Only difference between processes is their process id and
the return value from fork() each process gets

7
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Revisting fork()

▪ Creates a new process (the “child”) that is an exact clone* of the current process (the “parent”)

▪ Fork returns the pid of the child in the parent, but 0 in the child.

▪ The new process has a separate virtual address space from the parent

8

pid_t fork();

*almost everything

int main(){

int x = 10;
pid_t child = fork();
if(child == 0) 10--;
printf("This is the pid: %d\n", child);

}
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Parent vs Child: Separate Address Space

9*almost everything

int main(){

int x = 10;
pid_t child = fork();
if(child == 0) 10--;
printf("This is the pid: %d\n", child);

}

addr value

0xfffc 10

0xfff8

0xfff4

0xfff0

pid = 1160 

Stack
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Parent vs Child: Separate Address Space

10*almost everything

int main(){

int x = 10;
pid_t child = fork();
if(child == 0) 10--;
printf("This is the pid: %d\n", child);

}

addr value

0xfffc 10

0xfff8 1161

0xfff4

0xfff0

Stack

fork();

pid = 1160 

addr value

0xfffc 10

0xfff8 0

0xfff4

0xfff0

Stack

pid = 1161 
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Parent vs Child: Separate Address Space

11*almost everything

int main(){

int x = 10;
pid_t child = fork();
if(child == 0) 10--;
printf("This is the pid: %d\n", child);

}

addr value

0xfffc 10

0xfff8 1161

0xfff4

0xfff0

Stack

fork();

pid = 1160 

addr value

0xfffc 9

0xfff8 0

0xfff4

0xfff0

Stack

pid = 1161 



CIS 5480, Fall 2025L02:  Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

❖ How many times is ":)" printed?

12

int main(int argc, char* argv[]) {

  for (int i = 0; i < 3; i++) {

    pid_t pid = fork();

    if(pid == 0) {

 printf(":)\n");

    }

  }

   

  return EXIT_SUCCESS;

}

pollev.com/cis4480
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❖ How many times is ":)" printed?

13

int main(int argc, char* argv[]) {

  for (int i = 0; i < 3; i++) {

    pid_t pid = fork();

    if(pid == 0) {

 printf(":)\n");

    }

  }

   

  return EXIT_SUCCESS;

}

pollev.com/cis4480

Parent

Childi = 0

Child G Child
i = 1

GG ChildG ChildG ChildChildi = 2

When will pid be equal to 0?
Each time a new process is created! 
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Lecture Outline

❖ Processes & Fork Refresher

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

14
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exec*()

❖ A family of functions that load in a new program for execution.

▪ Replaces the currently running program while using the same process.

❖ Things that are newly initialized include
▪ Stack

▪ Heap

▪ Data segments (i.e. globals)

▪ Registers (Stack Pointer, Program Counter, Argument-Registers…)

▪ Text Segment (This one should make sense!)

▪ And more….

15
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execve()

❖ execvp

❖ const char *file

▪ The file(path) of the executable to well, execute

❖ char* const argv[] (An array of char *s) 
▪ argv[0] MUST have the same contents as the file parameter

▪ argv must have NULL as the last entry of the array

▪ int main(int argc, char *argv[])

16

int execve(const char *file, 
           char* const argv[],
   char* const envp[]);

executes the program referred to by file.
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execve()

❖ execvp

❖ char* const envp[] 

▪ list of environment vars that become the environment of the exec’d program. 

▪ Not important for this course, learn more by doing `man environ`

▪ Use this: char* const envp[] = {NULL};

❖ Return Value

▪ If successful, there is no return value!

▪ On failure, execve returns -1 

17

int execve(const char *file, 
           char* const argv[],
   char* const envp[]);
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Aside: The Exit Status

❖  

▪ Initiates the ‘tear-down’ of a process. “Graceful” exit. 

▪ Generally called by main() when control falls off main or when main returns

▪ int status 

• EXIT_SUCCESS or EXIT_FAILURE

• The exit status of a child is accessible by its parent process via wait() or 
waitpid()…

18

void exit(int status);

execve(…);
exit(…); //shouldn’t have reached this…

don’t confuse exit() with _exit()

Typically used as follows: 



CIS 5480, Fall 2025L02:  Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Exec Demo

❖ See exec_example.c

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens to allocated memory when we call exec?

19
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Poll: how are you?

❖ In each of these, how often is ":) \n" printed? Assume functions don’t fail

20

int main(int argc, char* argv[]) {

  char* envp[] = { NULL };

 

  pid_t pid = fork();

  if (pid == 0) {

    // we are the child

    char* argv[] = {"/bin/echo", "hello", NULL};

    execve(argv[0], argv, envp);

  }

   printf(":) \n");

  return EXIT_SUCCESS;

}

int main(int argc, char* argv[]) {

 

  pid_t pid = fork();

  if (pid == 0) {

    // we are the child

    return EXIT_SUCCESS;

  }

   printf(":) \n");

  return EXIT_SUCCESS;

}

pollev.com/cis4480
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Any questions so far?

21

This code compiles, but doesn’t do what 
we want. The program attempts to 
compile some code and then run it.

Why is this broken?

▪ Clang is a C compiler

▪ Assume exec’ing the compiler works 
(hello_world.c compiles)

▪ Assume we gave the correct args to exec in 
both cases

broken_autograder.c

pollev.com/cis4480

int main(int argc, char* argv[]) {
  char* envp[] = { NULL };
  // fork a process to exec clang
  pid_t clang_pid = fork();

  if (clang_pid == 0) {
    // we are the child
    char* clang_argv[] = {"/bin/clang", "-o",
              "hello","hello_world.c", NULL};
    execve(clang_argv[0], clang_argv, envp);
    exit(EXIT_FAILURE);
  }

  // fork to run the compiled program
  pid_t hello_pid = fork();
  if (hello_pid == 0) {
    // the process created by fork
    char* hello_argv[] = {"./hello", NULL};
    execve(hello_argv[0], hello_argv, envp);
    exit(EXIT_FAILURE);
  }
  return EXIT_SUCCESS;
}
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Any questions so far?

22

This code is broken. It 
compiles, but it 
doesn’t do what we 
want. Why?

▪ Clang is a C 
compiler

▪ Assume it compiles

▪ Assume I gave the 
correct args to exec

main()

fork()

fork()

exit()

execve(compile hello_world)

execve(run hello_world)

exit()

exit()

pollev.com/cis4480
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Lecture Outline

❖ Processes & Fork Refresher

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

23
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From the previous example:

24

int main(int argc, char* argv[]) {

  char* envp[] = { NULL };

  // fork a process to exec clang

  pid_t clang_pid = fork();

  if (clang_pid == 0) {

    // we are the child

    char* clang_argv[] = {"/bin/clang", "-o",

              "hello","hello_world.c", NULL};

    execve(clang_argv[0], clang_argv, envp);

    exit(EXIT_FAILURE);

  }

  // fork to run the compiled program

  pid_t hello_pid = fork();

  if (hello_pid == 0) {

    // the process created by fork

    char* hello_argv[] = {"./hello", NULL};

    execve(hello_argv[0], hello_argv, envp);

    exit(EXIT_FAILURE);

  }

  return EXIT_SUCCESS;

}

What do we need to happen

 for this to work correctly?

broken_autograder.c
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Waiting for Processes to Finish

❖  

▪ int *wstatus
• Output parameter containing the status of the terminated child.

▪ Returns process ID of child who changed states for or -1 on error (e.g. no children to wait for)

25

pid_t wait(int *wstatus); Calling process waits for any child 
process to change status to terminated.

int main(){
  pid_t pid = fork();
  if(pid == 0){
    //....
    return EXIT_SUCCESS;
  }
  int status;
  pid_t wpid = wait(&status);
  // do something with status
}
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Execution Blocking 

❖ When a process calls wait() and there is a process to wait on, the calling 
process blocks

❖ If a process blocks or is blocking it is not scheduled for execution.

▪ It is not run until some condition “unblocks” it

▪ For wait(), it unblocks once there is a status update in a child

26
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Fixed code from broken_autograder.c

27

int main(int argc, char* argv[]) {
  char* envp[] = { NULL };
  // fork a process to exec clang
  pid_t clang_pid = fork();
  if (clang_pid == 0) {
    // we are the child
    char* clang_argv[] = {"/bin/clang", "-o",
              "hello","hello_world.c", NULL};
    execve(clang_argv[0], clang_argv, envp);
    exit(EXIT_FAILURE);
  }
  wait(NULL); // should error check, not enough slide space :(
  // fork to run the compiled program
  pid_t hello_pid = fork();
  if (hello_pid == 0) {
    // the process created by fork
    char* hello_argv[] = {"./hello", NULL};
    execve(hello_argv[0], hello_argv, envp);
    exit(EXIT_FAILURE);
  }
  return EXIT_SUCCESS;
} autograder.c
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Demo: wait_example

❖ See wait_example.c

▪ Brief demo to see how a process blocks when it calls wait()

▪ Makes use of fork(), execve(), and wait()

❖ Execution timeline:

28

Program starts

fork() Parent
calls wait

Child exec’s busy
Child exits

Parent is blocked Parent is unblocked
finishes wait()
exits
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Poll: how are you?

❖ Can a child finish before parent calls wait?

29

discuss



CIS 5480, Fall 2025L02:  Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

What if the child finishes first?

❖ In the timeline I drew, the parent called wait before the child executed. 

▪ In our example, it is extremely likely this happens if the child is calling                              
sleep 10,./busy, etc.

▪ What happens if the child finishes before the parent calls wait?

▪ Will the parent not see the child finish?

30
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Process Tables & Process Control Blocks

❖ The OS maintains a table of all processes that aren’t “completely done”

❖ Each process in this table has a process control block (PCB) to hold information 
about it.

❖ A PCB can contain:

▪ Process ID

▪ Parent Process ID

▪ Child process IDs

▪ Process Group ID

▪ Status  (e.g. running/zombie/etc)

▪ Other things (file descriptors, register values, etc)

31



CIS 5480, Fall 2025L02:  Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Zombie Process

❖ Answer: processes that are terminated become “zombies”

▪ Zombie processes deallocate their address space, don’t run anymore

▪ still “exists”, has a PCB still, so that a parent can check its status one final time

▪ If the parent call’s wait(), the zombie becomes “reaped” all information related to it has 
been freed (No more PCB entry)

32
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Diagram: wait_example.c

33

Process Table

User Processes

OS
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Diagram: wait_example.c

34

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = running

…
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Diagram: wait_example.c

35

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = running

…
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Diagram: wait_example.c

36

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = running

…

fork()
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Diagram: wait_example.c

37

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = running

…

fork()

./wait_example

  pid = 101

PCB: wait_example
id = 101

status = running

…

101
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Diagram: wait_example.c

38

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./wait_example

  pid = 101

PCB: wait_example
id = 101

status = running

…

101

wait(&status)
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Diagram: wait_example.c

39

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./wait_example

  pid = 101

PCB: wait_example
id = 101

status = running

…

101

wait(&status) exec(./busy)
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Diagram: wait_example.c

40

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./busy

  pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

wait(&status) exec(./busy)
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Diagram: wait_example.c

41

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./busy

  pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

wait(&status) exit()
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Diagram: wait_example.c

42

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

PCB: /bin/sleep
id = 101

status = ZOMBIE

…

101

wait(&status)
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Diagram: wait_example.c

43

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

PCB: /bin/sleep
id = 101

status = ZOMBIE

…

101

wait(&status)
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Diagram: wait_example.c

44

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…
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Diagram: wait_example.c

45

User Processes

OS

Process Table

./wait_example

  pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

exit()
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Diagram: wait_example.c

46

User Processes

OS

Process Table

./wait_example 

Is reaped by its 

parent. In our 

example, that is the 

terminal shell
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Demo: state_example

❖ See state_example.c

▪ Brief code demo to see the various states of a process

• Running

• Zombie

• Terminated

▪ Makes use of sleep(), wait() and exit()!

▪ Aside: sleep() takes in an integer number of seconds and blocks till those seconds 
have passed

47
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But wait(), it gets better.

❖  

▪ pid_t pid
• The pid of the child we are waiting for. 

• If pid is -1, then we wait for any child process!

▪ int *wstatus
• Same as wait()

▪ int options 
• A set of bitwise-or’d flags to indicate behavior of waitpid!

• Setting options to 0 makes waitpid return when a child has terminated.

▪ Returns process ID of child who was waited for or -1 on error

48

pid_t waitpid(pid_t pid, int *wstatus, int options);
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wait() status

❖ status output from wait() can be passed to a macro to see what changed

❖ Fdddddddddddd   true iff the child exited nomrally

❖ Sss                               true iff the child was signaled to exit

❖ Ssss                             true iff the child stopped

❖ Ssssddddddddddddd   true iff child continued

49

WIFEXITED()

WIFSIGNALED()

WIFSTOPPED()

WIFCONTINUED()
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Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

50
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Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

❖ Processors do only one thing:

▪ From startup to shutdown, a CPU simply reads and executes 
(interprets) a sequence of instructions, one at a time

▪ This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time
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The bge instruction is being
executed for the first time,
which instruction is executed
next?

❖ A. bge

❖ B.   add

❖ C. sub

❖ D. j

❖ E. I’m not sure

52

li    t0, 5  # load immediate 5 into t0

 li    t1, 2  # load immediate 2 into t1

 li    t2, 0  # load immediate 0 into t2

.LOOP

 add t2, t2, 1     # t2 = t2 + 1

 sub t0, t0, t1    # t0 = t0 - t1

 bge t0, x0, .LOOP # GOTO .loop if t0 > 0

.END

 j .END            # GOTO .END

                         # (infinite loop)

pollev.com/cis4480
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Altering the Control Flow

❖ Up to now: two mechanisms for changing control flow:

▪ Jumps and branches

▪ Call and return

React to changes in program state

❖ Insufficient  for a useful system: 
Difficult to react to changes in system state 

▪ Data arrives from a disk or a network adapter

▪ Instruction divides by zero

▪ User hits Ctrl-C at the keyboard

▪ System timer expires

❖ System needs mechanisms for “exceptional control flow”
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Exceptional Control Flow

❖ Exists at all levels of a computer system

❖ Low level mechanisms

▪ 1. Hardware Interrupts 

• Change in control flow in response to a system event 
(i.e.,  change in system state)

• Implemented using combination of hardware and OS software
 

❖ Higher level mechanisms

▪ 2. Process context switch

• Implemented by OS software and hardware timer

▪ 3. Signals

• Implemented by OS software 

What we will be looking at today
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Interrupts

❖ An Interrupt is a transfer of control to the OS kernel in 
response to some event  (i.e., change in processor state)

▪ Kernel is the memory-resident part of the OS

▪ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O 
request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next
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0

1

2

...
n-1

Interrupt Tables

❖ Each type of event has a 
unique number k

❖ k = index into table 
(a.k.a. interrupt vector)

❖ Handler k is called each time 
interrupt k occurs

Interrupt
Table

Code for  
interrupt handler 0

Code for 
interrupt handler 1

Code for
interrupt handler 2

Code for 
interrupt handler n-1

...

Interrupt
Numbers
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Asynchronous Interrupts

❖ Caused by events external to the processor

▪ Indicated by setting the processor’s interrupt pin

▪ Handler returns to “next” instruction

❖ Examples:
▪ Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

• Used by the kernel to take back control from user programs

▪  I/O interrupt from external device

• Hitting Ctrl-C at the keyboard

• Arrival of a packet from a network

• Arrival of data from a disk
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Synchronous Interrupts
❖ Caused by events that occur as a result of executing an 

instruction:
▪ Traps

• Intentional

• Examples: system calls, breakpoint traps, special instructions

• Returns control to “next” instruction

▪ Faults
• Unintentional but theoretically recoverable 

• Examples: page faults (recoverable), protection faults 
(recoverable sometimes), floating point exceptions

• Either re-executes faulting (“current”) instruction or aborts

▪ Aborts
• Unintentional and unrecoverable

• Examples: illegal instruction, parity error, machine check

• Aborts current program

FUN FACT: the terminology and definitions aren’t fully agreed upon. 

Many people may use these interchangeably
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Lecture Outline

❖ Processes & Fork Refresher

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

59
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Signals

❖ A Process can be interrupted with various types of signals

▪ This interruption can occur in the middle of most code

❖ Each signal type has a different meaning, number associated with it, and a way 
it is handled

❖ These are different from an interrupt, but similar idea

▪ signals are “higher level” and apply to a process. The kernel / some process will deliver the 
signal.

▪ Interrupts are lower level mechanisms that cause the hardware to poke the kernel and 
respond

▪ Some interrupts lead to a signal being sent (CTRL + C on keyboard -> SIGINT)

60
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Signals

❖ A Process can be interrupted with various types of signals

▪ This interruption can occur in the middle of most code

❖ Each signal type has a different meaning, number associated with it, and a way 
it is handled (disposition)

❖ Examples:
▪ SIGCHLD

▪ SIGINT

▪ SIGKILL

▪ SIGALRM

▪ SIGSEGV

61

Default Disposition: ignore

Default Disposition: terminate the process

Default Disposition : terminate & core dump
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sigaction()

❖ You can change how a certain signal is handled

❖ signal

❖ int signum -> is the signal

❖ Uses the struct sigaction type to specify which signal handler to run 
and other options for how the signal should be handled

❖ Returns previous handler & behavior for that signal through the old output 
parameter

❖ You can not change the disposition of SIG_KILL and SIG_STOP.

62

int sigaction(int signum, struct sigaction* act,
                           struct sigaction* old);
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struct sigaction

❖ Has 5 different fields to specify the behaviour of how a signal should be 
handled. For today, we only care about sa_handler and sa_flags

▪ (for now)

63

struct sigaction {
  void     (*sa_handler)(int);
  void     (*sa_sigaction)(int, siginfo_t *, void *);
  sigset_t   sa_mask;
  int        sa_flags;
  void     (*sa_restorer)(void);
};
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struct sigaction

❖ Struct sigaction

❖ Set sa_handler equal to the signal handler we want to use
▪ Set sa_handler to SIG_IGN to set disposition to IGNORE

▪ Set sa_handler to  SIG_DFL for default disposition 

❖ In this class: set sa_flags to SA_RESTART

▪ This makes it so that certain system calls are automatically restart/continue if they are 
interrupted by a signal. (wanna see the list? man 7 signal ☺)

64

struct sigaction {
  void     (*sa_handler)(int);
  int        sa_flags;
  ...
};
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Signal handlers

❖ d

❖ A function that takes in as parameter, the signal number that raised this 
handler. Return type is void

❖ Is automatically called when your process is interrupted by a signal

❖ Can manipulate global state

❖ If you change signal behavior within the handler, it will be undone when you 
return

❖ Signal handlers set by a process will be retained in any children that are 
created (think about why?)

65

typedef void (*sighandler_t)(int);
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Demo ctrlc.c

❖ See ctrlc.c

▪ Brief code demo to see how to use a signal handler

▪ Blocks the ctrl + c signal: SIGINT

▪ Note: will have to terminate the process with the kill command in the terminal, use ps 
–u to fine the process id

66
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alarm()

❖ Alarm

❖ Delivers the SIGALRM signal to the calling process after the specified number 
of seconds

❖ Default SIGALRM disposition: terminate the process

❖ How to cancel alarms?
▪ I leave this as an exercise for you: try reading the man pages

❖ HINT FOR OPTIONAL CHALLENGE: What is the default behavior of SIGALRM? 
Can you take advantage of the default behavior? 67

unsigned int alarm(unsigned int seconds);
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Poll: how are you?

❖ Finish this program

❖ After 15 seconds, print a message and then exit

❖ Can’t use the sleep() function, must use alarm()

❖ Currently: program calls alarm then immediately exits

68

discuss

int main(int argc, char* argv[]) {

  alarm(15U);

  return EXIT_SUCCESS;

}
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Demo no_sleep.c

❖ See no_sleep.c

▪ “Sleeps” for 10 seconds without sleeping, using alarm

▪ Brief code demo to see how to use a signal handler & alarm

▪ Signal handler manipulates global state

69
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kill()

❖ System call that sends a signal to a process (has a somewhat dramatic name).

❖ pid_t pid
▪ Specifies the process to send the signal to

❖ int sig
▪ The signal to forward!

❖ If for some reason kill() is not recognized and you #include everything you 
need: Put this at the top of your  penn-shredder.c file (before #includes) to use 
kill()

70

int kill(pid_t pid, int sig);

#define _POSIX_C_SOURCE 1



CIS 5480, Fall 2025L02:  Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Non blocking wait w/ waitpid()

❖  

▪ Our first option! WNOHANG

▪ WNOHANG makes waitpid immediately return 

• Either: there is no update in a child’s state or there was. 

▪ You must check the return value of waitpid

▪ WITH THIS OPTION WAITPID Returns process ID of child who was waited for or -1 on 

error or 0 if there are no updates in children processes

71

pid_t waitpid(pid_t pid, int *wstatus, int options);
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Demo impatient.c

❖ See impatient.c

▪ Parent forks a child, checks if it finishes every second for 5 seconds, if child doesn’t finish 
send SIGKILL

▪ In penn-shredder waitpid() IS NOT ALLOWED so don’t copy 
this. ☺ 

▪ Plus, using sleep() AND alarm() together can cause issues 
because on some systems, sleep uses alarm, go figure. 

72
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SIGCHLD handler

❖ Whenever a child process updates, a SIGCHLD signal is received, and by 
default ignored.

❖ You can write a signal handler for SIGCHLD, and use that to help handle 
children update statuses: allowing the parent process to do other things 
instead of calling wait() or waitpid()

❖ Relevant for proj2: penn-shell

73
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Lecture Outline

❖ Processes & Fork Refresher

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

74
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Process State Lifetime

Process creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process finished

Running Zombie

blocked
Terminated
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Lecture Outline

❖ Processes & Fork Refresher

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo
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