
CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Processes (cont.): exec, wait, signal
Computer Systems Programming, Fall 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla

Vedansh Goenka Joy Liu

TAs:

Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane

Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones

Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng

Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Poll: how are you?

❖ How is penn-vector going?

▪ I haven’t started

▪ I have read the spec

▪ I’ve setup the container

▪ I’ve started writing code

▪ I’ve started writing code and I am pretty sure
I understand what is going on

▪ I’m done!

2

pollev.com/cis4480

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Administrivia

❖ First Assignment (HW00 penn-vector)

▪ Released already!

▪ “Due” This Friday 09/05

▪ Extended to be due the same time as HW01 (Friday the 12th)

▪ Mostly a C refresher

❖ Pre semester Survey
▪ Anonymous

▪ Short!

▪ Due Friday the 5th

❖ OH Started Last week, Levine 612! Check out the Course Calendar!

3

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Administrivia

❖ Second Assignment (HW01 penn-shredder)

▪ Releases after today’s lecture sometime tonight

▪ Due Friday Next week 09/12

▪ Intro to system calls, processes, etc.

▪ Short Q&A and demo at end of class ☺

❖ First Check-in
▪ Was Due Today! (Extended until the 9th @ 1:45PM…)

▪ Don’t forget to do them!!!

4

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Administrivia

❖ Recitation starts this week on Thursday!

▪ Look out for an announcement on Ed from the TAs with more information sometime soon.

5

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Lecture Outline

❖ Processes & Fork Revisited

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

6

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Processes & Fork Summary

❖ Processes are instances of programs that:

▪ Each have their own independent address space

▪ Each process is scheduled by the OS

• There is no way to guarantee the order processes are executed, without using some functions
we have not talked about (yet),

▪ Processes are created by fork() system call

• Only difference between processes is their process id and
the return value from fork() each process gets

7

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Revisting fork()

▪ Creates a new process (the “child”) that is an exact clone* of the current process (the “parent”)

▪ Fork returns the pid of the child in the parent, but 0 in the child.

▪ The new process has a separate virtual address space from the parent

8

pid_t fork();

*almost everything

int main(){

int x = 10;
pid_t child = fork();
if(child == 0) 10--;
printf("This is the pid: %d\n", child);

}

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Parent vs Child: Separate Address Space

9*almost everything

int main(){

int x = 10;
pid_t child = fork();
if(child == 0) 10--;
printf("This is the pid: %d\n", child);

}

addr value

0xfffc 10

0xfff8

0xfff4

0xfff0

pid = 1160

Stack

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Parent vs Child: Separate Address Space

10*almost everything

int main(){

int x = 10;
pid_t child = fork();
if(child == 0) 10--;
printf("This is the pid: %d\n", child);

}

addr value

0xfffc 10

0xfff8 1161

0xfff4

0xfff0

Stack

fork();

pid = 1160

addr value

0xfffc 10

0xfff8 0

0xfff4

0xfff0

Stack

pid = 1161

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Parent vs Child: Separate Address Space

11*almost everything

int main(){

int x = 10;
pid_t child = fork();
if(child == 0) 10--;
printf("This is the pid: %d\n", child);

}

addr value

0xfffc 10

0xfff8 1161

0xfff4

0xfff0

Stack

fork();

pid = 1160

addr value

0xfffc 9

0xfff8 0

0xfff4

0xfff0

Stack

pid = 1161

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

❖ How many times is ":)" printed?

12

int main(int argc, char* argv[]) {

 for (int i = 0; i < 3; i++) {

 pid_t pid = fork();

 if(pid == 0) {

 printf(":)\n");

 }

 }

 return EXIT_SUCCESS;

}

pollev.com/cis4480

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

❖ How many times is ":)" printed?

13

int main(int argc, char* argv[]) {

 for (int i = 0; i < 3; i++) {

 pid_t pid = fork();

 if(pid == 0) {

 printf(":)\n");

 }

 }

 return EXIT_SUCCESS;

}

pollev.com/cis4480

Parent

Childi = 0

Child G Child
i = 1

GG ChildG ChildG ChildChildi = 2

When will pid be equal to 0?
Each time a new process is created!

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Lecture Outline

❖ Processes & Fork Refresher

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

14

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

exec*()

❖ A family of functions that load in a new program for execution.

▪ Replaces the currently running program while using the same process.

❖ Things that are newly initialized include
▪ Stack

▪ Heap

▪ Data segments (i.e. globals)

▪ Registers (Stack Pointer, Program Counter, Argument-Registers…)

▪ Text Segment (This one should make sense!)

▪ And more….

15

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

execve()

❖ execvp

❖ const char *file

▪ The file(path) of the executable to well, execute

❖ char* const argv[] (An array of char *s)
▪ argv[0] MUST have the same contents as the file parameter

▪ argv must have NULL as the last entry of the array

▪ int main(int argc, char *argv[])

16

int execve(const char *file,
 char* const argv[],
 char* const envp[]);

executes the program referred to by file.

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

execve()

❖ execvp

❖ char* const envp[]

▪ list of environment vars that become the environment of the exec’d program.

▪ Not important for this course, learn more by doing `man environ`

▪ Use this: char* const envp[] = {NULL};

❖ Return Value

▪ If successful, there is no return value!

▪ On failure, execve returns -1

17

int execve(const char *file,
 char* const argv[],
 char* const envp[]);

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Aside: The Exit Status

❖

▪ Initiates the ‘tear-down’ of a process. “Graceful” exit.

▪ Generally called by main() when control falls off main or when main returns

▪ int status

• EXIT_SUCCESS or EXIT_FAILURE

• The exit status of a child is accessible by its parent process via wait() or
waitpid()…

18

void exit(int status);

execve(…);
exit(…); //shouldn’t have reached this…

don’t confuse exit() with _exit()

Typically used as follows:

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Exec Demo

❖ See exec_example.c

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens to allocated memory when we call exec?

19

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Poll: how are you?

❖ In each of these, how often is ":) \n" printed? Assume functions don’t fail

20

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 char* argv[] = {"/bin/echo", "hello", NULL};

 execve(argv[0], argv, envp);

 }

 printf(":) \n");

 return EXIT_SUCCESS;

}

int main(int argc, char* argv[]) {

 pid_t pid = fork();

 if (pid == 0) {

 // we are the child

 return EXIT_SUCCESS;

 }

 printf(":) \n");

 return EXIT_SUCCESS;

}

pollev.com/cis4480

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Any questions so far?

21

This code compiles, but doesn’t do what
we want. The program attempts to
compile some code and then run it.

Why is this broken?

▪ Clang is a C compiler

▪ Assume exec’ing the compiler works
(hello_world.c compiles)

▪ Assume we gave the correct args to exec in
both cases

broken_autograder.c

pollev.com/cis4480

int main(int argc, char* argv[]) {
 char* envp[] = { NULL };
 // fork a process to exec clang
 pid_t clang_pid = fork();

 if (clang_pid == 0) {
 // we are the child
 char* clang_argv[] = {"/bin/clang", "-o",
 "hello","hello_world.c", NULL};
 execve(clang_argv[0], clang_argv, envp);
 exit(EXIT_FAILURE);
 }

 // fork to run the compiled program
 pid_t hello_pid = fork();
 if (hello_pid == 0) {
 // the process created by fork
 char* hello_argv[] = {"./hello", NULL};
 execve(hello_argv[0], hello_argv, envp);
 exit(EXIT_FAILURE);
 }
 return EXIT_SUCCESS;
}

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Any questions so far?

22

This code is broken. It
compiles, but it
doesn’t do what we
want. Why?

▪ Clang is a C
compiler

▪ Assume it compiles

▪ Assume I gave the
correct args to exec

main()

fork()

fork()

exit()

execve(compile hello_world)

execve(run hello_world)

exit()

exit()

pollev.com/cis4480

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Lecture Outline

❖ Processes & Fork Refresher

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

23

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

From the previous example:

24

int main(int argc, char* argv[]) {

 char* envp[] = { NULL };

 // fork a process to exec clang

 pid_t clang_pid = fork();

 if (clang_pid == 0) {

 // we are the child

 char* clang_argv[] = {"/bin/clang", "-o",

 "hello","hello_world.c", NULL};

 execve(clang_argv[0], clang_argv, envp);

 exit(EXIT_FAILURE);

 }

 // fork to run the compiled program

 pid_t hello_pid = fork();

 if (hello_pid == 0) {

 // the process created by fork

 char* hello_argv[] = {"./hello", NULL};

 execve(hello_argv[0], hello_argv, envp);

 exit(EXIT_FAILURE);

 }

 return EXIT_SUCCESS;

}

What do we need to happen

 for this to work correctly?

broken_autograder.c

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Waiting for Processes to Finish

❖

▪ int *wstatus
• Output parameter containing the status of the terminated child.

▪ Returns process ID of child who changed states for or -1 on error (e.g. no children to wait for)

25

pid_t wait(int *wstatus); Calling process waits for any child
process to change status to terminated.

int main(){
 pid_t pid = fork();
 if(pid == 0){
 //....
 return EXIT_SUCCESS;
 }
 int status;
 pid_t wpid = wait(&status);
 // do something with status
}

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Execution Blocking

❖ When a process calls wait() and there is a process to wait on, the calling
process blocks

❖ If a process blocks or is blocking it is not scheduled for execution.

▪ It is not run until some condition “unblocks” it

▪ For wait(), it unblocks once there is a status update in a child

26

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Fixed code from broken_autograder.c

27

int main(int argc, char* argv[]) {
 char* envp[] = { NULL };
 // fork a process to exec clang
 pid_t clang_pid = fork();
 if (clang_pid == 0) {
 // we are the child
 char* clang_argv[] = {"/bin/clang", "-o",
 "hello","hello_world.c", NULL};
 execve(clang_argv[0], clang_argv, envp);
 exit(EXIT_FAILURE);
 }
 wait(NULL); // should error check, not enough slide space :(
 // fork to run the compiled program
 pid_t hello_pid = fork();
 if (hello_pid == 0) {
 // the process created by fork
 char* hello_argv[] = {"./hello", NULL};
 execve(hello_argv[0], hello_argv, envp);
 exit(EXIT_FAILURE);
 }
 return EXIT_SUCCESS;
} autograder.c

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Demo: wait_example

❖ See wait_example.c

▪ Brief demo to see how a process blocks when it calls wait()

▪ Makes use of fork(), execve(), and wait()

❖ Execution timeline:

28

Program starts

fork() Parent
calls wait

Child exec’s busy
Child exits

Parent is blocked Parent is unblocked
finishes wait()
exits

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Poll: how are you?

❖ Can a child finish before parent calls wait?

29

discuss

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

What if the child finishes first?

❖ In the timeline I drew, the parent called wait before the child executed.

▪ In our example, it is extremely likely this happens if the child is calling
sleep 10,./busy, etc.

▪ What happens if the child finishes before the parent calls wait?

▪ Will the parent not see the child finish?

30

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Process Tables & Process Control Blocks

❖ The OS maintains a table of all processes that aren’t “completely done”

❖ Each process in this table has a process control block (PCB) to hold information
about it.

❖ A PCB can contain:

▪ Process ID

▪ Parent Process ID

▪ Child process IDs

▪ Process Group ID

▪ Status (e.g. running/zombie/etc)

▪ Other things (file descriptors, register values, etc)

31

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Zombie Process

❖ Answer: processes that are terminated become “zombies”

▪ Zombie processes deallocate their address space, don’t run anymore

▪ still “exists”, has a PCB still, so that a parent can check its status one final time

▪ If the parent call’s wait(), the zombie becomes “reaped” all information related to it has
been freed (No more PCB entry)

32

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

33

Process Table

User Processes

OS

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

34

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

35

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

36

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

fork()

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

37

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = running

…

fork()

./wait_example

 pid = 101

PCB: wait_example
id = 101

status = running

…

101

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

38

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./wait_example

 pid = 101

PCB: wait_example
id = 101

status = running

…

101

wait(&status)

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

39

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./wait_example

 pid = 101

PCB: wait_example
id = 101

status = running

…

101

wait(&status) exec(./busy)

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

40

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./busy

 pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

wait(&status) exec(./busy)

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

41

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

./busy

 pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

wait(&status) exit()

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

42

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = blocked

…

PCB: /bin/sleep
id = 101

status = ZOMBIE

…

101

wait(&status)

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

43

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

PCB: /bin/sleep
id = 101

status = ZOMBIE

…

101

wait(&status)

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

44

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

45

User Processes

OS

Process Table

./wait_example

 pid = 100

100

PCB: wait_example
id = 100

status = RUNNING

…

exit()

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Diagram: wait_example.c

46

User Processes

OS

Process Table

./wait_example

Is reaped by its

parent. In our

example, that is the

terminal shell

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Demo: state_example

❖ See state_example.c

▪ Brief code demo to see the various states of a process

• Running

• Zombie

• Terminated

▪ Makes use of sleep(), wait() and exit()!

▪ Aside: sleep() takes in an integer number of seconds and blocks till those seconds
have passed

47

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

But wait(), it gets better.

❖

▪ pid_t pid
• The pid of the child we are waiting for.

• If pid is -1, then we wait for any child process!

▪ int *wstatus
• Same as wait()

▪ int options
• A set of bitwise-or’d flags to indicate behavior of waitpid!

• Setting options to 0 makes waitpid return when a child has terminated.

▪ Returns process ID of child who was waited for or -1 on error

48

pid_t waitpid(pid_t pid, int *wstatus, int options);

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

wait() status

❖ status output from wait() can be passed to a macro to see what changed

❖ Fdddddddddddd true iff the child exited nomrally

❖ Sss true iff the child was signaled to exit

❖ Ssss true iff the child stopped

❖ Ssssddddddddddddd true iff child continued

49

WIFEXITED()

WIFSIGNALED()

WIFSTOPPED()

WIFCONTINUED()

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Lecture Outline

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

50

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

❖ Processors do only one thing:

▪ From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

▪ This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

The bge instruction is being
executed for the first time,
which instruction is executed
next?

❖ A. bge

❖ B. add

❖ C. sub

❖ D. j

❖ E. I’m not sure

52

li t0, 5 # load immediate 5 into t0

 li t1, 2 # load immediate 2 into t1

 li t2, 0 # load immediate 0 into t2

.LOOP

 add t2, t2, 1 # t2 = t2 + 1

 sub t0, t0, t1 # t0 = t0 - t1

 bge t0, x0, .LOOP # GOTO .loop if t0 > 0

.END

 j .END # GOTO .END

 # (infinite loop)

pollev.com/cis4480

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Altering the Control Flow

❖ Up to now: two mechanisms for changing control flow:

▪ Jumps and branches

▪ Call and return

React to changes in program state

❖ Insufficient for a useful system:
Difficult to react to changes in system state

▪ Data arrives from a disk or a network adapter

▪ Instruction divides by zero

▪ User hits Ctrl-C at the keyboard

▪ System timer expires

❖ System needs mechanisms for “exceptional control flow”

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Exceptional Control Flow

❖ Exists at all levels of a computer system

❖ Low level mechanisms

▪ 1. Hardware Interrupts

• Change in control flow in response to a system event
(i.e., change in system state)

• Implemented using combination of hardware and OS software

❖ Higher level mechanisms

▪ 2. Process context switch

• Implemented by OS software and hardware timer

▪ 3. Signals

• Implemented by OS software

What we will be looking at today

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Interrupts

❖ An Interrupt is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

▪ Kernel is the memory-resident part of the OS

▪ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O
request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

0

1

2

...
n-1

Interrupt Tables

❖ Each type of event has a
unique number k

❖ k = index into table
(a.k.a. interrupt vector)

❖ Handler k is called each time
interrupt k occurs

Interrupt
Table

Code for
interrupt handler 0

Code for
interrupt handler 1

Code for
interrupt handler 2

Code for
interrupt handler n-1

...

Interrupt
Numbers

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Asynchronous Interrupts

❖ Caused by events external to the processor

▪ Indicated by setting the processor’s interrupt pin

▪ Handler returns to “next” instruction

❖ Examples:
▪ Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

• Used by the kernel to take back control from user programs

▪ I/O interrupt from external device

• Hitting Ctrl-C at the keyboard

• Arrival of a packet from a network

• Arrival of data from a disk

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Synchronous Interrupts
❖ Caused by events that occur as a result of executing an

instruction:
▪ Traps

• Intentional

• Examples: system calls, breakpoint traps, special instructions

• Returns control to “next” instruction

▪ Faults
• Unintentional but theoretically recoverable

• Examples: page faults (recoverable), protection faults
(recoverable sometimes), floating point exceptions

• Either re-executes faulting (“current”) instruction or aborts

▪ Aborts
• Unintentional and unrecoverable

• Examples: illegal instruction, parity error, machine check

• Aborts current program

FUN FACT: the terminology and definitions aren’t fully agreed upon.

Many people may use these interchangeably

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Lecture Outline

❖ Processes & Fork Refresher

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

59

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Signals

❖ A Process can be interrupted with various types of signals

▪ This interruption can occur in the middle of most code

❖ Each signal type has a different meaning, number associated with it, and a way
it is handled

❖ These are different from an interrupt, but similar idea

▪ signals are “higher level” and apply to a process. The kernel / some process will deliver the
signal.

▪ Interrupts are lower level mechanisms that cause the hardware to poke the kernel and
respond

▪ Some interrupts lead to a signal being sent (CTRL + C on keyboard -> SIGINT)

60

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Signals

❖ A Process can be interrupted with various types of signals

▪ This interruption can occur in the middle of most code

❖ Each signal type has a different meaning, number associated with it, and a way
it is handled (disposition)

❖ Examples:
▪ SIGCHLD

▪ SIGINT

▪ SIGKILL

▪ SIGALRM

▪ SIGSEGV

61

Default Disposition: ignore

Default Disposition: terminate the process

Default Disposition : terminate & core dump

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

sigaction()

❖ You can change how a certain signal is handled

❖ signal

❖ int signum -> is the signal

❖ Uses the struct sigaction type to specify which signal handler to run
and other options for how the signal should be handled

❖ Returns previous handler & behavior for that signal through the old output
parameter

❖ You can not change the disposition of SIG_KILL and SIG_STOP.

62

int sigaction(int signum, struct sigaction* act,
 struct sigaction* old);

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

struct sigaction

❖ Has 5 different fields to specify the behaviour of how a signal should be
handled. For today, we only care about sa_handler and sa_flags

▪ (for now)

63

struct sigaction {
 void (*sa_handler)(int);
 void (*sa_sigaction)(int, siginfo_t *, void *);
 sigset_t sa_mask;
 int sa_flags;
 void (*sa_restorer)(void);
};

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

struct sigaction

❖ Struct sigaction

❖ Set sa_handler equal to the signal handler we want to use
▪ Set sa_handler to SIG_IGN to set disposition to IGNORE

▪ Set sa_handler to SIG_DFL for default disposition

❖ In this class: set sa_flags to SA_RESTART

▪ This makes it so that certain system calls are automatically restart/continue if they are
interrupted by a signal. (wanna see the list? man 7 signal ☺)

64

struct sigaction {
 void (*sa_handler)(int);
 int sa_flags;
 ...
};

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Signal handlers

❖ d

❖ A function that takes in as parameter, the signal number that raised this
handler. Return type is void

❖ Is automatically called when your process is interrupted by a signal

❖ Can manipulate global state

❖ If you change signal behavior within the handler, it will be undone when you
return

❖ Signal handlers set by a process will be retained in any children that are
created (think about why?)

65

typedef void (*sighandler_t)(int);

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Demo ctrlc.c

❖ See ctrlc.c

▪ Brief code demo to see how to use a signal handler

▪ Blocks the ctrl + c signal: SIGINT

▪ Note: will have to terminate the process with the kill command in the terminal, use ps
–u to fine the process id

66

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

alarm()

❖ Alarm

❖ Delivers the SIGALRM signal to the calling process after the specified number
of seconds

❖ Default SIGALRM disposition: terminate the process

❖ How to cancel alarms?
▪ I leave this as an exercise for you: try reading the man pages

❖ HINT FOR OPTIONAL CHALLENGE: What is the default behavior of SIGALRM?
Can you take advantage of the default behavior? 67

unsigned int alarm(unsigned int seconds);

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Poll: how are you?

❖ Finish this program

❖ After 15 seconds, print a message and then exit

❖ Can’t use the sleep() function, must use alarm()

❖ Currently: program calls alarm then immediately exits

68

discuss

int main(int argc, char* argv[]) {

 alarm(15U);

 return EXIT_SUCCESS;

}

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Demo no_sleep.c

❖ See no_sleep.c

▪ “Sleeps” for 10 seconds without sleeping, using alarm

▪ Brief code demo to see how to use a signal handler & alarm

▪ Signal handler manipulates global state

69

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

kill()

❖ System call that sends a signal to a process (has a somewhat dramatic name).

❖ pid_t pid
▪ Specifies the process to send the signal to

❖ int sig
▪ The signal to forward!

❖ If for some reason kill() is not recognized and you #include everything you
need: Put this at the top of your penn-shredder.c file (before #includes) to use
kill()

70

int kill(pid_t pid, int sig);

#define _POSIX_C_SOURCE 1

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Non blocking wait w/ waitpid()

❖

▪ Our first option! WNOHANG

▪ WNOHANG makes waitpid immediately return

• Either: there is no update in a child’s state or there was.

▪ You must check the return value of waitpid

▪ WITH THIS OPTION WAITPID Returns process ID of child who was waited for or -1 on

error or 0 if there are no updates in children processes

71

pid_t waitpid(pid_t pid, int *wstatus, int options);

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Demo impatient.c

❖ See impatient.c

▪ Parent forks a child, checks if it finishes every second for 5 seconds, if child doesn’t finish
send SIGKILL

▪ In penn-shredder waitpid() IS NOT ALLOWED so don’t copy
this. ☺

▪ Plus, using sleep() AND alarm() together can cause issues
because on some systems, sleep uses alarm, go figure.

72

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

SIGCHLD handler

❖ Whenever a child process updates, a SIGCHLD signal is received, and by
default ignored.

❖ You can write a signal handler for SIGCHLD, and use that to help handle
children update statuses: allowing the parent process to do other things
instead of calling wait() or waitpid()

❖ Relevant for proj2: penn-shell

73

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Lecture Outline

❖ Processes & Fork Refresher

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

74

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Process State Lifetime

Process creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process finished

Running Zombie

blocked
Terminated

CIS 5480, Fall 2025L02: Fork, Exec, Wait, Signals, penn-shredderUniversity of Pennsylvania

Lecture Outline

❖ Processes & Fork Refresher

❖ exec

❖ wait & process states

❖ Hardware interrupts

❖ Software signals

❖ Process States updated

❖ penn-shredder demo

76

	Default Section
	Slide 1: Processes (cont.): exec, wait, signal Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Administrivia
	Slide 6: Lecture Outline
	Slide 7: Processes & Fork Summary
	Slide 8: Revisting fork()
	Slide 9: Parent vs Child: Separate Address Space
	Slide 10: Parent vs Child: Separate Address Space
	Slide 11: Parent vs Child: Separate Address Space
	Slide 12
	Slide 13
	Slide 14: Lecture Outline
	Slide 15: exec*()
	Slide 16: execve()
	Slide 17: execve()
	Slide 18: Aside: The Exit Status
	Slide 19: Exec Demo
	Slide 20: Poll: how are you?
	Slide 21: Any questions so far?
	Slide 22: Any questions so far?
	Slide 23: Lecture Outline
	Slide 24: From the previous example:
	Slide 25: Waiting for Processes to Finish
	Slide 26: Execution Blocking
	Slide 27: Fixed code from broken_autograder.c
	Slide 28: Demo: wait_example
	Slide 29: Poll: how are you?
	Slide 30: What if the child finishes first?
	Slide 31: Process Tables & Process Control Blocks
	Slide 32: Zombie Process
	Slide 33: Diagram: wait_example.c
	Slide 34: Diagram: wait_example.c
	Slide 35: Diagram: wait_example.c
	Slide 36: Diagram: wait_example.c
	Slide 37: Diagram: wait_example.c
	Slide 38: Diagram: wait_example.c
	Slide 39: Diagram: wait_example.c
	Slide 40: Diagram: wait_example.c
	Slide 41: Diagram: wait_example.c
	Slide 42: Diagram: wait_example.c
	Slide 43: Diagram: wait_example.c
	Slide 44: Diagram: wait_example.c
	Slide 45: Diagram: wait_example.c
	Slide 46: Diagram: wait_example.c
	Slide 47: Demo: state_example
	Slide 48: But wait(), it gets better.
	Slide 49: wait() status
	Slide 50: Lecture Outline
	Slide 51: Control Flow
	Slide 52
	Slide 53: Altering the Control Flow
	Slide 54: Exceptional Control Flow
	Slide 55: Interrupts
	Slide 56: Interrupt Tables
	Slide 57: Asynchronous Interrupts
	Slide 58: Synchronous Interrupts
	Slide 59: Lecture Outline
	Slide 60: Signals
	Slide 61: Signals
	Slide 62: sigaction()
	Slide 63: struct sigaction
	Slide 64: struct sigaction
	Slide 65: Signal handlers
	Slide 66: Demo ctrlc.c
	Slide 67: alarm()
	Slide 68: Poll: how are you?
	Slide 69: Demo no_sleep.c
	Slide 70: kill()
	Slide 71: Non blocking wait w/ waitpid()
	Slide 72: Demo impatient.c
	Slide 73: SIGCHLD handler
	Slide 74: Lecture Outline
	Slide 75: Process State Lifetime
	Slide 76: Lecture Outline

