University of Pennsylvania

Processes (cont.): exec, wait, signal

LO2: Fork, Exec, Wait, Signals, penn-shredder

Computer Systems Programming, Fall 2025

Instructors: Joel Ramirez
Head TAs: Maya Huizar Akash Kaukuntla
Vedansh Goenka Joy Liu

TAs:
Eric Zou Joseph Dattilo Aniket Ghorpade
Zihao Zhou Eric Lee Shruti Agarwal
Connor Cummings Shreya Mukunthan Alexander Mehta
Bo Sun Steven Chang Rania Souissi

Sana Manesh

Shriya Sane
Yemisi Jones
Raymond Feng
Rashi Agrawal

CIS 5480, Fall 2025

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis4480

+» How is penn-vector going?

" | haven’t started

" | have read the spec

= |'ve setup the container
= |'ve started writing code

= |'ve started writing code and | am pretty sure
| understand what is going on

" |’'m done!

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Administrivia

% First Assignment (HWOO penn-vector)
= Released already!
= “Due” This Friday 09/05
= Extended to be due the same time as HWO1 (Friday the 12th)
" Mostly a C refresher

+» Pre semester Survey
" Anonymous
= Short!
= Duye Friday the 5th

+» OH Started Last week, Levine 612! Check out the Course Calendar!

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder

Administrivia

% Second Assignment (HWO1 penn-shredder)

= Releases after today’s lecture sometime tonight
= Due Friday Next week 09/12

" |ntro to system calls, processes, etc.

= Short Q&A and demo at end of class ©

First Check-in
= Was Due Today! (Extended until the 9t @ 1:45PM...)
" Don’t forget to do them!!!

CIS 5480, Fall 2025

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Administrivia

% Recitation starts this week on Thursday!

® ook out for an announcement on Ed from the TAs with more information sometime soon.

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Lecture Outline

+ Processes & Fork Revisited
% exec

%+ wailt & process states

+» Hardware interrupts

+» Software signals

% Process States updated

% penn-shredder demo

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Processes & Fork Summary

+» Processes are instances of programs that:

= Each have their own independent address space

= Each process is scheduled by the OS

- There is no way to guarantee the order processes are executed, without using some functions
we have not talked about (yet),

" Processes are created by fork() system call

- Only difference between processes is their process id and
the return value from fork() each process gets

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

Revisting fork()

pid t fork();

CIS 5480, Fall 2025

= Creates a new process (the “child”) that is an exact clone* of the current process (the “parent”)
" Fork returns the pid of the child in the parent, but 0 in the child.

" The new process has a separate virtual address space from the parent

int main(){

int x = 10;

pid t child = fork();

if(child == @) 10--;

printf("This is the pid: %d\n", child);

*almost everything 8

CIS 5480, Fall 2025

LO2: Fork, Exec, Wait, Signals, penn-shredder

University of Pennsylvania

Parent vs Child: Separate Address Space

int main(){

—int x=10;
pid_t child = fork();
if(child == 0) 10--;
printf("This is the pid: %d\n", child);

pid = 1160
addr value
Oxfffc 10
Oxfff8
Oxfff4
Oxfff0

il

Stack —=

*almost everything 9

LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

University of Pennsylvania

Parent vs Child: Separate Address Space

int main(){

intx=10;
——pid_t child = fork();
if(child == 0) 10--;
printf("This is the pid: %d\n", child);

}
pid = 1160 pid = 1161
__, addr value __, addr value
Oxfffc 10 fork(); Oxfffc 16
Stack — Oxfff8 1161 \/’ Stack — Oxfff8 %)
Oxfff4 Oxfft4
OxfffO OxfffO

*almost everything 10

CIS 5480, Fall 2025

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder

Parent vs Child: Separate Address Space

int main(){
intx=10;
pid_t child = fork();
if(child == 0) 10--;
— printf("This is the pid: %d\n", child);
}
pid = 1160 pid = 1161
__, addr value __, addr value
oxfffic| 10 fork(); Oxific 2
Stack — Oxfff8 1161 \/ Stack — Oxfff8 %)
Oxfff4 Oxfft4
OxfffO OxfffO

root@eb681338c92b:~/workspace/codeplayground/lecture2# ./simple_fork
This is the pid: 1198
This is the pid: ©

*almost everything 11

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis4480

%+ How many times is ":)" printed?

int main(int argc, char* argv([]) {
for (int 1 = 0; 1 < 3; 1i++) {
pid t pid = fork():;
if (pid == 0) {
printf (":)\n");
}

return EXIT SUCCESS;

12

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis4480

%+ How many times is ":)" printed?

. — Parent
int main(int argc, char* argv([]) {
for (int 1 = 0; 1 < 3; i++) { Child
pid t pid = fork(); i=0 _:

selene == W) Child Child
printf (":)\n"); i=1 I !
} \\\“ _
}
- (| child G Child | G Child GG Child
return EXIT SUCCESS; N— g

When will pid be equal to 0?
Each time a new process is created!

13

University of Pennsylvania

Lecture Outline

% Processes & Fork Refresher
» exec

+» Wait & process states

+» Hardware interrupts

+» Software signals

% Process States updated

% penn-shredder demo

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Fall 2025

14

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder

exec* ()

« A family of functions that load in a new program for execution.

= Replaces the currently running program while using the same process.

+» Things that are newly initialized include

Stack

Heap

Data segments (i.e. globals)

Registers (Stack Pointer, Program Counter, Argument-Registers...)
Text Segment (This one should make sense!)

And more....

CIS 5480, Fall 2025

15

University of Pennsylvania

execve()

(O [
int execve(const char *file,

char* const argv|[],
char* const envp[]);
J

const char *file

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Fall 2025

executes the program referred to by file.

" The file(path) of the executable to well, execute
char* const argv[] (Anarray of char *s)

" argv[0] MUST have the same contents as the file parameter
= argv must have NULL as the last entry of the array

" int main(int argc, char *argv[])

16

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

execve()

(int execve(const char *file,

char* const argv|[],

char* const envp[]);
J

_

+ char* const envp[]

" |ist of environment vars that become the environment of the exec’d program.
" Notimportant for this course, learn more by doing 'man environ
= Use this: char* const envp[] = {NULL};

« Return Value

" |f successful, there is no return value!
® On failure, execve returns -1

17

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Aside: The Exit Status

void exit(int status);
" |nitiates the ‘tear-down’ of a process. “Graceful” exit.

" Generally called by main () when control falls off main or when main returns
= int status
« EXIT _SUCCESS or EXIT_FAILURE
- The exit status of a child is accessible by its parent process via wait () or
waitpid()..

Typically used as follows:

execve(..);
exit(..); //shouldn’t have reached this..

J

don’t confuse exit() with _exit() 18

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Exec Demo

+ See exec example.c

" Brief code demo to see how exec works
= What happens when we call exec?

= What happens to allocated memory when we call exec?

19

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Fall 2025

@ Poll Everywhere

% In each of these, how oftenis " :)

pollev.com/cis4480

\n'" printed? Assume functions don’t fail

rint main(int argc, char* argv[]) {
char* envp[] = { NULL };
pid t pid = fork();
if (pid == 0) {

// we are the child
char* argv[] = {"/bin/echo",

"hello",
execve (argv[0], argv,

envp) ;

}
printf(":) \n");

return EXIT SUCCESS;

NULL} ; }

int main(int argc, char* argv([]) {

pid t pid = fork():;
if (pid == 0) {
// we are the child

return EXIT_SUCCESS;

printf (":) \n");

return EXIT SUCCESS;

20

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis4480

int main(int argc, char* argv(]) {

char* envp[] = { NULL}; This code compiles, but doesn’t do what
// fork a process to exec clang

pid_t clang_pid = fork(); we want. The program attempts to
f{clang_pid == 0){ compile some code and then run it.

// we are the child
char* clang_argv[] = {"/bin/clang", "-0",

"hello","hello_world.c", NULL}; Why is this broken?
execve(clang_argv[0], clang_argv, envp); _ .
exit(EXIT_FAILURE); " Clangis a C compiler

} = Assume exec’ing the compiler works

// fork to run the compiled program (heIIo_worId.c compiles)
pid_t hello_pid = fork(); .
if (hello_pid == 0) { " Assume we gave the correct args to execiIn
// the process created by fork both cases
char® hello_argv[] ={"./hello", NULL};
execve(hello_argv[0], hello_argy, envp);
exit(EXIT_FAILURE);

}
return EXIT_SUCCESS;

} broken_autograder.c 21

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis4480

This code is broken. It

main() compiles, but it
f i doesn’t do what we
orkl T execve(compile hello_world) want. Why?
}
exit()
fo‘r'k() " ClangisaC
T~ execve(run hello_world) compiler
| = Assume it compiles
v it
exit) = Assume | gave the
exit()

correct args to exec

22

University of Pennsylvania

Lecture Outline

% Processes & Fork Refresher
» exec

+~ wait & process states

+» Hardware interrupts

+» Software signals

% Process States updated

% penn-shredder demo

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Fall 2025

23

CIS 5480, Fall 2025

LO2: Fork, Exec, Wait, Signals, penn-shredder

University of Pennsylvania

From the previous example:

e) . ™
int main(int argc, char* argv([]) { What dO we need to happen
char* envpl[] = { NULL };
for this to work correctly?
// fork a process to exec clang
pid t clang pid = fork();
1f (clang pid == 0) {
// we are the child
char* clang argv[] = {"/bin/clang", "-o",
"hello","hello world.c", NULL};
execve (clang argv[0], clang argv, envp);
exit(EXIT_FAILURE) ;
}
// fork to run the compiled program
pid t hello pid = fork();
1f (hello pid == 0) {
// the process created by fork
char* hello argv[] = {"./hello", NULL};
execve (hello argv[0], hello argv, envp);
exit(EXIT_FAILURE) ;
}
return BXLT SUCCESS; broken_autograder.c
U _ J 24

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

Waiting for Processes to Finish

\/
0’0

CIS 5480, Fall 2025

pid_t wait(int *wstatus);

Calling process waits for any child
process to change status to terminated.

" int *wstatus

« Output parameter containing the status of the terminated child.

® Returns process ID of child who changed states for or =1 on error (e.g. no children to wait for)

int main(){
pid_t pid = fork();
if(pid == 0){
//....
return EXIT_SUCCESS;
}

int status;
pid_t wpid = wait(&status);
// do something with status

25

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Execution Blocking

+» When a process calls wait () and there is a process to wait on, the calling
process blocks

+ |f a process blocks or is blocking it is not scheduled for execution.

" |t is not run until some condition “unblocks” it
" Forwait (), it unblocks once there is a status update in a child

26

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder

Fixed code from broken_autograder.c

(int main(int argc, char* argv[]) {
char* envp[] = { NULL };
// fork a process to exec clang
pid t clang pid = fork();
if (clang pid == 0) {
// we are the child
char* clang argv[] = {"/bin/clang", "-0",
"hello","hello world.c", NULL};
execve(clang argv[@], clang argv, envp);
exit(EXIT_FAILURE);
}
wait(NULL); // should error check, not enough slide space :(
// fork to run the compiled program
pid t hello pid = fork();
if (hello pid == 0) {
// the process created by fork
char* hello argv[] = {"./hello", NULL};
execve(hello_argv[@], hello_argv, envp);
exit(EXIT_FAILURE);

}
return EXIT_SUCCESS;

autograder.c)

CIS 5480, Fall 2025

27

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Demo: wait example

+ Seewalt example.c

= Brief demo to see how a process blocks when it calls wait()
" Makes use of fork (), execve (), and wait ()

« Execution timeline:

Child exec’s busy

Child exits
@
Program starts \
> @ Y o —
fork () Parent Parent is blocked Parent is unblocked
calls wait finishes wait ()

exits

28

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

discuss

% Can a child finish before parent calls wait?

29

LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

University of Pennsylvania

What if the child finishes first?

+ In the timeline | drew, the parent called wait before the child executed.

" |n our example, it is extremely likely this happens if the child is calling
sleep 10, ./busy, etc.

= What happens if the child finishes before the parent calls wait?
= Will the parent not see the child finish?

30

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Process Tables & Process Control Blocks

+» The OS maintains a table of all processes that aren’t “completely done”

+» Each process in this table has a process control block (PCB) to hold information
about it.

+» A PCB can contain:
" Process ID
" Parent Process ID
" Child process IDs
" Process Group ID
= Status (e.g. running/zombie/etc)

= Other things (file descriptors, register values, etc)

31

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Fall 2025

Zombie Process

% Answer: processes that are terminated become “zombies”
= Zombie processes deallocate their address space, don’t run anymore
= still “exists”, has a PCB still, so that a parent can check its status one final time

= |f the parent call’s wait(), the zombie becomes “reaped” all information related to it has
been freed (No more PCB entry)

32

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Diagram: wait_example.c

User Processes

0S
Process Table

33

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Diagram: wait_example.c

User Processes | . /wait example

pid = 100
[estamel oronema |
[SPI=> Stjck

Shared IT.ihraries
Heap (malloc/free)

Read/-\garlt!ae’ ?gimenu

OS PCB: wait_example
Process Table id = 100

100 ’/ status = running

34

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Diagram: wait_example.c

User Processes | . /wait example

pid = 100
[estamel oronema |
[SPI=> St?ck

Shared IT.ihraries
Heap (malloc/free)

Read/-\garlt!ae’ .Sbesgsmenu

OS PCB: wait_example
Process Table id = 100

100 ’/ status = running

35

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Diagram: wait_example.c

User Processes | . /wait example
pid = 100
EEEEEET

[SPI=> Stack
!

Sharedlihraries fo r k ()

1

Heap (malloc/free)

Read/-\garlt!ae’ .Sbesgsmenu
OS PCB: wait_example
Process Table id = 100

100 ’/ status = running

36

CT¢C|

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Fall 2025

Diagram: wait_example.c

User Processes

OS

./wait example

./wait example

pid = 100 pid = 101
[estamel oronema |
SP=> Stack Sp==y sc:ck
Shared Libraries fo r k () Shared Iihraﬁes
i
Heap (malloc/free) Heap [m:llndﬁee]
Read/-\g a”t‘ae, = > Read”.“d’éﬁ .S;s.gs_menls
. P e
PCB: wait_example
Process Table id = 100
100 / status = running
-

101

1d

PCB: wait_example

status = running

= 101

37

University of Pennsylvania

LO2: Fork, Exec,

Diagram: wait_example.c

User Processes

OS

Wait, Signals, penn-shredder

./wait example

pid

Sp=3

= 100
EEEEEET

Stack

!

Shared Libraries

1

Heap (malloc/free)

Read/Write Segments
.data, .bss

P =

Read-Only Segments
-text, .rodata

pid = 101
[0s ernel fprotectea |

Sp=> Stack
1

1

Shared Libraries
1
Heap (malloc/free)
Read/Write Segments
.data, .bss

> =4 Read-Only Segments
.text, .rodata

walt (&status)

./wait example

Process Table

100

-

_—

101

PCB: wait_example
id = 100
status = blocked

PCB: wait_example
id = 101
status = running

CIS 5480, Fall 2025

38

University of Pennsylvania

Diagram: wait_example.c

User Processes

OS

LO2: Fork, Exec, Wait, Signals, penn-shredder

./wait example
pid = 100

[SPI=> Stack

= Read-Only Segments

!

Shared Libraries
i
Heap (malloc/free)
Read/Write Segments
.data, .bss

-text, .rodata

pid = 101
[0s ernel fprotectea |

Sp=> Stack
1

1

Shared Libraries
1
Heap (malloc/free)
Read/Write Segments
.data, .bss

> =4 Read-Only Segments
.text, .rodata

wait (&status) exec(./busy)

./wait example

Process Table

100

101

//

PCB: wait_example
id = 100
status = blocked

PCB: wait_example
id = 101
status = running

CIS 5480, Fall 2025

39

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

Diagram: wait_example.c

User Processes

OS

./wait example ./busy
pid = 100 pid = 101
| Jenenens] [emmpesea

1 Stack
P

Shared Libraries

Shared Libraries

1

Heap (malloc/free)

Heap (malloc/free)

Read/Write Segments. Read/Write Segment
.data, .bss .data, .bss
Read-Only Segment
= Read-Only Segments e Py
-text, .rodata

wait (&status) exec(./busy)

PCB: wait_example
Process Table id = 100

100 ,/ status = blocked

101

PCB: /bin/sleep
id = 101
status = running

CIS 5480, Fall 2025

40

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

Diagram: wait_example.c

User Processes

OS

./wait example

pid = 100
[os ke rotecea |

[SPI=> Stack
!

Shared Libraries
1
Heap (malloc/free)
Read/Write Segments
.data, .bss

= Read-Only Segments
-text, .rodata

walt (&status)

./busy
pid = 101
[os feret rotectea |

Stack.

ISEy

Shared Libraries

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
PC== -text, .rodata

exit ()

Process Table id

100 ,/ status = blocked

PCB: wait_example
100

101
PCB: /bin/sleep
id 101
status = running

CIS 5480, Fall 2025

41

University of Pennsylvania

User Processes

OS

LO2: Fork, Exec, Wait, Signals, penn-shredder

Diagram: wait_example.c

./wait example

= 100
EEEEEET

pid

Sp=3

Stack

!

Shared Libraries

1

Heap (malloc/free)

Read/Write Segments
.data, .bss

P =

Read-Only Segments
-text, .rodata

walt (&status)

Process Table

100

-

_—

101

PCB: wait_example
id = 100
status = blocked

PCB: /bin/sleep
id = 101
status = ZOMBIE

CIS 5480, Fall 2025

42

University of Pennsylvania

User Processes

OS

LO2: Fork, Exec, Wait, Signals, penn-shredder

Diagram: wait_example.c

./wait example

pid = 100
[os ke rotecea |

[SPI=> Stack
!

Shared Libraries
1
Heap (malloc/free)
Read/Write Segments
.data, .bss

= Read-Only Segments
-text, .rodata

walt (&status) <

Process Table id

PCB: wait_example

= 100

100 1 — | status = RUNNING

N
\

101

1d

PCB: /bin/sleep

= 101

status = ZOMBIE

/

CIS 5480, Fall 2025

43

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Diagram: wait_example.c

User Processes | . /wait example

pid = 100
[estamel oronema |
[SPI=> St?ck

Shared IT.ihraries
Heap (malloc/free)

Read/-\garlt!ae’ .Sbesgsmenu

OS PCB: wait_example
Process Table id = 100

100 1 — | status = RUNNING

44

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Diagram: wait_example.c

User Processes | . /wait example

pid = 100
[estamel oronema |
[SPI=> St?ck
Shared IT.ihraries
Heap (malloc/free)
Read/-\garlt!ae’ .Sbesgsmenu
exit ()
OS PCB: wait_example
Process Table id = 100

100 1 — | status = RUNNING

45

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

Diagram: wait_example.c

User Processes

OS

Process Table

CIS 5480, Fall 2025

./wait example
TIs reaped by its
parent. ITn our
example, that is the
terminal shell

46

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Fall 2025

Demo: state example

+ See state example.c
" Brief code demo to see the various states of a process
« Running
- Zombie

« Terminated

" Makesuseof sleep(),wait () andexit ()!

= Aside: sleep ()

takes in an integer number of seconds and blocks till those seconds
have passed

47

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

But wait(), it gets better.
pid t waitpid(pid t pid, int *wstatus, int options);]

= pid t pid
- The pid of the child we are waiting for.
- If pid is -1, then we wait for any child process!
= int *wstatus
- Same aswait()
= int options
- A set of bitwise-or’d flags to indicate behavior of waitpid!
- Setting options to 0 makes waitpid return when a child has terminated.
= Returns process ID of child who was waited for or =1 on error

48

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

wait() status

+» status output fromwait () can be passed to a macro to see what changed

WIFEXITED () | true iff the child exited nomrally
WIFSIGNALED ()|true iff the child was signaled to exit
WIFSTOPPED () |[true iff the child stopped

WIFCONTINUED () |true iff child continued

49

University of Pennsylvania

Lecture Outline

exec

wait & process states
Hardware interrupts
Software signals
Process States updated
penn-shredder demo

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Fall 2025

50

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

Control Flow

+ Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

" This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,
inst,

Time insts
inst,
<shutdown>

CIS 5480, Fall 2025

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

@ Poll Everywhere pollev.com/cis4480
The bge instruction is being / 11 t0, 5 # load immediate 5 into tO0 \
executed for the first time, 11 tl, 2 # load immediate 2 into tl

. . . - l 2’ O l ' . O . 2
which instruction is executed . t # load immediate 0 into t

next? LOOP
add t2, t2, 1 # t2 = t2 + 1
o A. sub t0, t0, til # t0 = t0 - tlI
bge t0, x0, .LOOP # GOTO .loop if t0 > 0

+ B. add D

5 .END # GOTO .END
« C. sub \ # (infinite loop) Y
o D.]

+ E. I’m not sure

52

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder

Altering the Control Flow

+» Up to now: two mechanisms for changing control flow:
" Jumps and branches
= Call and return

React to changes in program state

% Insufficient for a useful system:
Difficult to react to changes in system state
= Data arrives from a disk or a network adapter
" |nstruction divides by zero
= User hits Ctrl-C at the keyboard
= System timer expires

+» System needs mechanisms for “exceptional control flow”

CIS 5480, Fall 2025

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder

Exceptional Control Flow

+ Exists at all levels of a computer system

+ Low level mechanisms what we will be lookiVl@ at today

= 1. Hardware Interrupts

- Change in control flow in response to a system event
(i.e., change in system state)

- Implemented using combination of hardware and OS software

+ Higher level mechanisms
= 2. Process context switch
- Implemented by OS software and hardware timer
= 3. Signals
- Implemented by OS software

CIS 5480, Fall 2025

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Interrupts

« An Interrupt is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)
= Kernel is the memory-resident part of the OS

= Examples of events: Divide by 0, arithmetic overflow, page fault, 1/0
request completes, typing Ctrl-C

User code Kernel code

Event = |_current Exception R
|_next Exception processing
by exception handler

<

* Return to |_current
* Return to | _next
*Abort

University of Pennsylvania

Interrupt Tables

Interrupt
Numbers

Interrupt
wvTable

0

1| @

P

LO2: Fork, Exec, Wait, Signals, penn-shredder

Code for
interrupt handler O

Code for
interrupt handler 1

Code for
interrupt handler 2

A 4

Code for
interrupt handler n-1

+ Each type of event has a
unique number k

+ k=index into table
(a.k.a. interrupt vector)

« Handler k is called each time
interrupt k occurs

CIS 5480, Fall 2025

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder

Asynchronous Interrupts

+» Caused by events external to the processor
" |ndicated by setting the processor’s interrupt pin

® Handler returns to “next” instruction

+» Examples:
" Timer interrupt

- Every few ms, an external timer chip triggers an interrupt
- Used by the kernel to take back control from user programs

= |/O interrupt from external device

- Hitting Ctrl-C at the keyboard
- Arrival of a packet from a network
- Arrival of data from a disk

CIS 5480, Fall 2025

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Fall 2025

Synchronous Interrupts

+» Caused by events that occur as a result of executing an
instruction:

FUN FACT: the termivology and definitions aren’t fully agreed npow.
" Traps

WMany people may use these nterchangeably
- Intentional

- Examples: system calls, breakpoint traps, special instructions
« Returns control to “next” instruction

" Faults
- Unintentional but theoretically recoverable

- Examples: page faults (recoverable), protection faults
(recoverable sometimes), floating point exceptions

- Either re-executes faulting (“current”) instruction or aborts
= Aborts

« Unintentional and unrecoverable

- Examples: illegal instruction, parity error, machine check
- Aborts current program

University of Pennsylvania

Lecture Outline

% Processes & Fork Refresher
» exec

+» Wait & process states

+» Hardware interrupts

+» Software signals

% Process States updated

% penn-shredder demo

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Fall 2025

59

University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Signals

+ A Process can be interrupted with various types of signals

" This interruption can occur in the middle of most code

+» Each signal type has a different meaning, number associated with it, and a way
it is handled

%+ These are different from an interrupt, but similar idea

" signals are “higher level” and apply to a process. The kernel / some process will deliver the

signal.

Interrupts are lower level mechanisms that cause the hardware to poke the kernel and
respond

= Some interrupts lead to a signal being sent (CTRL + C on keyboard -> SIGINT)

60

University of Pennsylvania

Signals

+ A Process can be interrupted with various types of signals

LO2: Fork, Exec, Wait, Signals, penn-shredder

® This interruption can occur in the middle of most code

CIS 5480, Fall 2025

+» Each signal type has a different meaning, number associated with it, and a way
it is handled (disposition)

Examples:

SIGCHLD

— Default Disposition: ignore

SIGINT
SIGKILL
SIGALRM

Default Disposition: terminate the process

/

SIGSEGV

_____——— Default Disposition : terminate & core dump

61

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

sigaction ()

% You can change how a certain signal is handled

+|int sigaction(int signum, struct sigaction* act,
struct sigaction* old);

- 1nt signum -> is the signal

» Usesthe struct sigaction type to specify which signal handler to run
and other options for how the signal should be handled

» Returns previous handler & behavior for that signal through the old output
parameter

+ You can not change the disposition of SIG_KILLand SIG_STOP.

62

CIS 5480, Fall 2025

[ex e .
E Univer

S

+» Has 5 different fields to specify the behaviour of how a signal should be

sity of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder

truct sigaction

handled. For today, we only care about sa_handler and sa_flags

-

struct sigaction {
void (*sa_handler) (int);
void (*sa_sigaction)(int, siginfo t *, void *);
sigset t sa mask;
int sa_flags;
void (*sa_restorer)(void);

s

63

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

struct sigaction

(struct sigaction {
void (*sa_handler)(int);
int sa_flags;
))

+~ Set sa_handler equal to the signal handler we want to use
" Set sa_handler to SIG_IGN to set disposition to IGNORE
" Set sa_handler to SIG DFL for default disposition

+ Inthis class: set sa flags to SA RESTART

" This makes it so that certain system calls are automatically restart/continue if they are

interrupted by a signal. (wanna see the list? man 7 signal ©)
64

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Signal handlers

typedef void (*sighandler t) (int);

% A function that takes in as parameter, the signal number that raised this
handler. Return type is void

» |s automatically called when your process is interrupted by a signal

+» Can manipulate global state

- If you change signal behavior within the handler, it will be undone when you
return

+ Signal handlers set by a process will be retained in any children that are
created (think about why?)

65

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Demo ctric.c

« Seectrlc.c

" Brief code demo to see how to use a signal handler

= Blocks the ctrl + c signal: SIGINT

= Note: will have to terminate the process with the ki1l command in the terminal, use ps
—u to fine the process id

66

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

alarm()

unsigned int alarm(unsigned int seconds);

» Delivers the SIGALRM signal to the calling process after the specified number
of seconds

» Default SIGALRM disposition: terminate the process

» How to cancel alarms?
= | leave this as an exercise for you: try reading the man pages

» HINT FOR OPTIONAL CHALLENGE: What is the default behavior of SIGALRM?
Can you take advantage of the default behavior?

67

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

discuss

% Finish this program
+ After 15 seconds, print a message and then exit
+ Can’t use the sleep () function, must use alarm ()

int main(int argc, char* argv[]) {
alarm(150) ;

return EXIT SUCCESS;
}

% Currently: program calls alarm then immediately exits

68

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Demo no_sleep.c

+ Seeno sleep.c
= “Sleeps” for 10 seconds without sleeping, using alarm
= Brief code demo to see how to use a signal handler & alarm

= Signal handler manipulates global state

69

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

int kill(pid t pid, int sig);

+ System call that sends a signal to a process (has a somewhat dramatic name).
« pid t pid

= Specifies the process to send the signal to
» int sig

" The signal to forward!

» If for some reason kill() is not recognized and you #include everything you

need: Put this at the top of your penn-shredder.c file (before #includes) to use
kill ()

i define POSIX C SOURCE 1

70

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Non blocking wait w/ waitpid ()

»|pid t waitpid(pid t pid, int *wstatus, int options);

® Qur first option! WNOHANG
= WNOHANG makes waitpid immediately return

- Either: there is no update in a child’s state or there was.
® You must check the return value of waitpid
WITH THIS OPTION WAITPID Returns process ID of child who was waited for or -1 on

error or O if there are no updates in children processes

71

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

Demo impatient.c

+» See impatient.c

= Parent forks a child, checks if it finishes every second for 5 seconds, if child doesn’t finish
send SIGKILL

" In penn-shredder waitpid () IS NOT ALLOWED so don’t copy
this. ©

® Plus, using sleep () AND alarm() together can cause issues
because on some systems, sleep uses alarm, go figure.

72

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

SIGCHLD handler

+ Whenever a child process updates, a STGCHLD signal is received, and by
default ignored.

% You can write a signal handler for SIGCHLD, and use that to help handle

children update statuses: allowing the parent process to do other things
instead of callingwait () orwaitpid()

» Relevant for proj2: penn-shell

73

University of Pennsylvania

Lecture Outline

% Processes & Fork Refresher
» exec

+» Wait & process states

+» Hardware interrupts

+» Software signals

% Process States updated

% penn-shredder demo

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Fall 2025

74

University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder

Process State Lifetime

Process creation

Selected by the
e.g. fork ()

kernel to run

Process finished

~_ _—

After running for a bit
it is another processes “turn”

Terminated

CIS 5480, Fall 2025

University of Pennsylvania

Lecture Outline

% Processes & Fork Refresher
» exec

+» Wait & process states

+» Hardware interrupts

+» Software signals

% Process States updated

+» penn-shredder demo

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Fall 2025

76

	Default Section
	Slide 1: Processes (cont.): exec, wait, signal Computer Systems Programming, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Administrivia
	Slide 6: Lecture Outline
	Slide 7: Processes & Fork Summary
	Slide 8: Revisting fork()
	Slide 9: Parent vs Child: Separate Address Space
	Slide 10: Parent vs Child: Separate Address Space
	Slide 11: Parent vs Child: Separate Address Space
	Slide 12
	Slide 13
	Slide 14: Lecture Outline
	Slide 15: exec*()
	Slide 16: execve()
	Slide 17: execve()
	Slide 18: Aside: The Exit Status
	Slide 19: Exec Demo
	Slide 20: Poll: how are you?
	Slide 21: Any questions so far?
	Slide 22: Any questions so far?
	Slide 23: Lecture Outline
	Slide 24: From the previous example:
	Slide 25: Waiting for Processes to Finish
	Slide 26: Execution Blocking
	Slide 27: Fixed code from broken_autograder.c
	Slide 28: Demo: wait_example
	Slide 29: Poll: how are you?
	Slide 30: What if the child finishes first?
	Slide 31: Process Tables & Process Control Blocks
	Slide 32: Zombie Process
	Slide 33: Diagram: wait_example.c
	Slide 34: Diagram: wait_example.c
	Slide 35: Diagram: wait_example.c
	Slide 36: Diagram: wait_example.c
	Slide 37: Diagram: wait_example.c
	Slide 38: Diagram: wait_example.c
	Slide 39: Diagram: wait_example.c
	Slide 40: Diagram: wait_example.c
	Slide 41: Diagram: wait_example.c
	Slide 42: Diagram: wait_example.c
	Slide 43: Diagram: wait_example.c
	Slide 44: Diagram: wait_example.c
	Slide 45: Diagram: wait_example.c
	Slide 46: Diagram: wait_example.c
	Slide 47: Demo: state_example
	Slide 48: But wait(), it gets better.
	Slide 49: wait() status
	Slide 50: Lecture Outline
	Slide 51: Control Flow
	Slide 52
	Slide 53: Altering the Control Flow
	Slide 54: Exceptional Control Flow
	Slide 55: Interrupts
	Slide 56: Interrupt Tables
	Slide 57: Asynchronous Interrupts
	Slide 58: Synchronous Interrupts
	Slide 59: Lecture Outline
	Slide 60: Signals
	Slide 61: Signals
	Slide 62: sigaction()
	Slide 63: struct sigaction
	Slide 64: struct sigaction
	Slide 65: Signal handlers
	Slide 66: Demo ctrlc.c
	Slide 67: alarm()
	Slide 68: Poll: how are you?
	Slide 69: Demo no_sleep.c
	Slide 70: kill()
	Slide 71: Non blocking wait w/ waitpid()
	Slide 72: Demo impatient.c
	Slide 73: SIGCHLD handler
	Slide 74: Lecture Outline
	Slide 75: Process State Lifetime
	Slide 76: Lecture Outline

