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@ Poll Everywhere pollev.com/cis4480

+» How is penn-vector going?

" | haven’t started

" | have read the spec

= |'ve setup the container
= |'ve started writing code

= |'ve started writing code and | am pretty sure
| understand what is going on

" |’'m done!
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Administrivia

% First Assignment (HWOO penn-vector)
= Released already!
= “Due” This Friday 09/05
= Extended to be due the same time as HWO1 (Friday the 12th)
" Mostly a C refresher

+» Pre semester Survey
" Anonymous
= Short!
= Duye Friday the 5th

+» OH Started Last week, Levine 612! Check out the Course Calendar!
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Administrivia

% Second Assignment (HWO1 penn-shredder)

= Releases after today’s lecture sometime tonight
= Due Friday Next week 09/12

" |ntro to system calls, processes, etc.

= Short Q&A and demo at end of class ©

First Check-in
= Was Due Today! (Extended until the 9t @ 1:45PM...)
" Don’t forget to do them!!!

CIS 5480, Fall 2025
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Administrivia

% Recitation starts this week on Thursday!

® ook out for an announcement on Ed from the TAs with more information sometime soon.
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Lecture Outline

+ Processes & Fork Revisited
% exec

%+ wailt & process states

+» Hardware interrupts

+» Software signals

% Process States updated

% penn-shredder demo
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Processes & Fork Summary

+» Processes are instances of programs that:

= Each have their own independent address space

= Each process is scheduled by the OS

- There is no way to guarantee the order processes are executed, without using some functions
we have not talked about (yet),

" Processes are created by fork() system call

- Only difference between processes is their process id and
the return value from fork() each process gets
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Revisting fork()

pid t fork();

CIS 5480, Fall 2025

= Creates a new process (the “child”) that is an exact clone* of the current process (the “parent”)
" Fork returns the pid of the child in the parent, but 0 in the child.

" The new process has a separate virtual address space from the parent

int main(){

int x = 10;

pid t child = fork();

if(child == @) 10--;

printf("This is the pid: %d\n", child);

*almost everything 8
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Parent vs Child: Separate Address Space

int main(){

—int x=10;
pid_t child = fork();
if(child == 0) 10--;
printf("This is the pid: %d\n", child);

pid = 1160
addr value
Oxfffc 10
Oxfff8
Oxfff4
Oxfff0

il

Stack —=

*almost everything 9
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University of Pennsylvania

Parent vs Child: Separate Address Space

int main(){

intx=10;
——pid_t child = fork();
if(child == 0) 10--;
printf("This is the pid: %d\n", child);

}
pid = 1160 pid = 1161
__, addr value __, addr value
Oxfffc 10 fork(); Oxfffc 16
Stack — Oxfff8 1161 \/’ Stack — Oxfff8 %)
Oxfff4 Oxfft4
OxfffO OxfffO

*almost everything 10
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Parent vs Child: Separate Address Space

int main(){
intx=10;
pid_t child = fork();
if(child == 0) 10--;
— printf("This is the pid: %d\n", child);
}
pid = 1160 pid = 1161
__, addr value __, addr value
oxfffic| 10 fork(); Oxific 2
Stack — Oxfff8 1161 \/ Stack — Oxfff8 %)
Oxfff4 Oxfft4
OxfffO OxfffO

root@eb681338c92b:~/workspace/codeplayground/lecture2# ./simple_fork
This is the pid: 1198
This is the pid: ©

*almost everything 11
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@ Poll Everywhere pollev.com/cis4480

%+ How many times is ":)" printed?

int main(int argc, char* argv([]) {
for (int 1 = 0; 1 < 3; 1i++) {
pid t pid = fork():;
if (pid == 0) {
printf (":)\n");
}

return EXIT SUCCESS;

12
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@ Poll Everywhere pollev.com/cis4480

%+ How many times is ":)" printed?

. — Parent
int main(int argc, char* argv([]) {
for (int 1 = 0; 1 < 3; i++) { Child
pid t pid = fork(); i=0 \\\_:

selene == W) Child Child
printf (":)\n"); i=1 I !
} \\\“ \\\_
}
- (| child G Child | G Child GG Child
return EXIT SUCCESS; N— g

When will pid be equal to 0?
Each time a new process is created!

13



University of Pennsylvania

Lecture Outline

% Processes & Fork Refresher
» exec

+» Wait & process states

+» Hardware interrupts

+» Software signals

% Process States updated

% penn-shredder demo

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Fall 2025
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exec* ()

« A family of functions that load in a new program for execution.

= Replaces the currently running program while using the same process.

+» Things that are newly initialized include

Stack

Heap

Data segments (i.e. globals)

Registers (Stack Pointer, Program Counter, Argument-Registers...)
Text Segment (This one should make sense!)

And more....

CIS 5480, Fall 2025
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execve()

(O [
int execve(const char *file,

char* const argv|[],
char* const envp[]);
J

const char *file

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Fall 2025

executes the program referred to by file.

" The file(path) of the executable to well, execute
char* const argv[] (Anarray of char *s)

" argv[0] MUST have the same contents as the file parameter
= argv must have NULL as the last entry of the array

" int main(int argc, char *argv[])

16
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execve()

(int execve(const char *file,

char* const argv|[],

char* const envp[]);
J

\_

+ char* const envp[]

" |ist of environment vars that become the environment of the exec’d program.
" Notimportant for this course, learn more by doing 'man environ
= Use this: char* const envp[] = {NULL};

« Return Value

" |f successful, there is no return value!
® On failure, execve returns -1

17
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Aside: The Exit Status

void exit(int status);
" |nitiates the ‘tear-down’ of a process. “Graceful” exit.

" Generally called by main () when control falls off main or when main returns
= int status
« EXIT _SUCCESS or EXIT_FAILURE
- The exit status of a child is accessible by its parent process via wait () or
waitpid()..

Typically used as follows:

execve(..);
exit(..); //shouldn’t have reached this..

J

don’t confuse exit() with _exit() 18
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Exec Demo

+ See exec example.c

" Brief code demo to see how exec works
= What happens when we call exec?

= What happens to allocated memory when we call exec?

19
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@ Poll Everywhere

% In each of these, how oftenis " :)

pollev.com/cis4480

\n'" printed? Assume functions don’t fail

rint main(int argc, char* argv[]) {
char* envp[] = { NULL };
pid t pid = fork();
if (pid == 0) {

// we are the child
char* argv[] = {"/bin/echo",

"hello",
execve (argv[0], argv,

envp) ;

}
printf(":) \n");

return EXIT SUCCESS;

NULL} ; }

int main(int argc, char* argv([]) {

pid t pid = fork():;
if (pid == 0) {
// we are the child

return EXIT_SUCCESS;

printf (":) \n");

return EXIT SUCCESS;

20
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@ Poll Everywhere pollev.com/cis4480

int main(int argc, char* argv(]) {

char* envp[] = { NULL}; This code compiles, but doesn’t do what
// fork a process to exec clang

pid_t clang_pid = fork(); we want. The program attempts to
f{clang_pid == 0){ compile some code and then run it.

// we are the child
char* clang_argv[] = {"/bin/clang", "-0",

"hello","hello_world.c", NULL}; Why is this broken?
execve(clang_argv[0], clang_argv, envp); _ .
exit(EXIT_FAILURE); " Clangis a C compiler

} = Assume exec’ing the compiler works

// fork to run the compiled program (heIIo_worId.c compiles)
pid_t hello_pid = fork(); .
if (hello_pid == 0) { " Assume we gave the correct args to execiIn
// the process created by fork both cases
char® hello_argv[] ={"./hello", NULL};
execve(hello_argv[0], hello_argy, envp);
exit(EXIT_FAILURE);

}
return EXIT_SUCCESS;

} broken_autograder.c 21
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@ Poll Everywhere pollev.com/cis4480

This code is broken. It

main() compiles, but it
f i doesn’t do what we
orkl T execve(compile hello_world) want. Why?
}
exit()
fo‘r'k() " ClangisaC
T~ execve(run hello_world) compiler
| = Assume it compiles
v it
exit) = Assume | gave the
exit()

correct args to exec

22
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Lecture Outline

% Processes & Fork Refresher
» exec

+~ wait & process states

+» Hardware interrupts

+» Software signals

% Process States updated

% penn-shredder demo

LO2: Fork, Exec, Wait, Signals, penn-shredder

CIS 5480, Fall 2025
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From the previous example:

e ) . ™
int main(int argc, char* argv([]) { What dO we need to happen
char* envpl[] = { NULL };
for this to work correctly?
// fork a process to exec clang
pid t clang pid = fork();
1f (clang pid == 0) {
// we are the child
char* clang argv[] = {"/bin/clang", "-o",
"hello","hello world.c", NULL};
execve (clang argv[0], clang argv, envp);
exit(EXIT_FAILURE) ;
}
// fork to run the compiled program
pid t hello pid = fork();
1f (hello pid == 0) {
// the process created by fork
char* hello argv[] = {"./hello", NULL};
execve (hello argv[0], hello argv, envp);
exit(EXIT_FAILURE) ;
}
return BXLT SUCCESS; broken_autograder.c
U _ J 24
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Waiting for Processes to Finish

\/
0’0

CIS 5480, Fall 2025

pid_t wait(int *wstatus);

Calling process waits for any child
process to change status to terminated.

" int *wstatus

« Output parameter containing the status of the terminated child.

® Returns process ID of child who changed states for or =1 on error (e.g. no children to wait for)

int main(){
pid_t pid = fork();
if(pid == 0){
//....
return EXIT_SUCCESS;
}

int status;
pid_t wpid = wait(&status);
// do something with status

25
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Execution Blocking

+» When a process calls wait () and there is a process to wait on, the calling
process blocks

+ |f a process blocks or is blocking it is not scheduled for execution.

" |t is not run until some condition “unblocks” it
" Forwait (), it unblocks once there is a status update in a child

26
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Fixed code from broken_autograder.c

(int main(int argc, char* argv[]) {
char* envp[] = { NULL };
// fork a process to exec clang
pid t clang pid = fork();
if (clang pid == 0) {
// we are the child
char* clang argv[] = {"/bin/clang", "-0",
"hello","hello world.c", NULL};
execve(clang argv[@], clang argv, envp);
exit(EXIT_FAILURE);
}
wait(NULL); // should error check, not enough slide space :(
// fork to run the compiled program
pid t hello pid = fork();
if (hello pid == 0) {
// the process created by fork
char* hello argv[] = {"./hello", NULL};
execve(hello_argv[@], hello_argv, envp);
exit(EXIT_FAILURE);

}
return EXIT_SUCCESS;

autograder.c )

CIS 5480, Fall 2025

27
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Demo: wait example

+ Seewalt example.c

= Brief demo to see how a process blocks when it calls wait()
" Makes use of fork (), execve (), and wait ()

« Execution timeline:

Child exec’s busy

Child exits
@
Program starts \
> @ Y o —
fork () Parent Parent is blocked Parent is unblocked
calls wait finishes wait ()

exits

28
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discuss

% Can a child finish before parent calls wait?

29
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University of Pennsylvania

What if the child finishes first?

+ In the timeline | drew, the parent called wait before the child executed.

" |n our example, it is extremely likely this happens if the child is calling
sleep 10, ./busy, etc.

= What happens if the child finishes before the parent calls wait?
= Will the parent not see the child finish?

30
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Process Tables & Process Control Blocks

+» The OS maintains a table of all processes that aren’t “completely done”

+» Each process in this table has a process control block (PCB) to hold information
about it.

+» A PCB can contain:
" Process ID
" Parent Process ID
" Child process IDs
" Process Group ID
= Status (e.g. running/zombie/etc)

= Other things (file descriptors, register values, etc)

31
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Zombie Process

% Answer: processes that are terminated become “zombies”
= Zombie processes deallocate their address space, don’t run anymore
= still “exists”, has a PCB still, so that a parent can check its status one final time

= |f the parent call’s wait(), the zombie becomes “reaped” all information related to it has
been freed (No more PCB entry)

32
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Diagram: wait_example.c

User Processes

0S
Process Table

33
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Diagram: wait_example.c

User Processes | . /wait example

pid = 100
[estamel oronema |
[SPI=> Stjck

Shared IT.ihraries
Heap (malloc/free)

Read/-\garlt!ae’ ?gimenu

OS PCB: wait_example
Process Table id = 100

100 ’/ status = running

34
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Diagram: wait_example.c

User Processes | . /wait example

pid = 100
[estamel oronema |
[SPI=> St?ck

Shared IT.ihraries
Heap (malloc/free)

Read/-\garlt!ae’ .Sbesgsmenu

OS PCB: wait_example
Process Table id = 100

100 ’/ status = running

35
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Diagram: wait_example.c

User Processes | . /wait example
pid = 100
EEEEEET

[SPI=> Stack
!

Sharedlihraries fo r k ( )

1

Heap (malloc/free)

Read/-\garlt!ae’ .Sbesgsmenu
OS PCB: wait_example
Process Table id = 100

100 ’/ status = running

36
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Diagram: wait_example.c

User Processes

OS

./wait example

./wait example

pid = 100 pid = 101
[estamel oronema |
SP=> Stack Sp==y sc:ck
Shared Libraries fo r k ( ) Shared Iihraﬁes
i
Heap (malloc/free) Heap [m:llndﬁee]
Read/-\g a”t‘ae, = > Read”.“d’éﬁ .S;s.gs_menls
. P e
PCB: wait_example
Process Table id = 100
100 / status = running
-

101

1d

PCB: wait_example

status = running

= 101

37



University of Pennsylvania

LO2: Fork, Exec,

Diagram: wait_example.c

User Processes

OS

Wait, Signals, penn-shredder

./wait example

pid

Sp=3

= 100
EEEEEET

Stack

!

Shared Libraries

1

Heap (malloc/free)

Read/Write Segments
.data, .bss

P =

Read-Only Segments
-text, .rodata

pid = 101
[0s ernel fprotectea |

Sp=> Stack
1

1

Shared Libraries
1
Heap (malloc/free)
Read/Write Segments
.data, .bss

> =4 Read-Only Segments
.text, .rodata

walt (&status)

./wait example

Process Table

100

-

_—

101

PCB: wait_example
id = 100
status = blocked

PCB: wait_example
id = 101
status = running

CIS 5480, Fall 2025
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Diagram: wait_example.c

User Processes

OS

LO2: Fork, Exec, Wait, Signals, penn-shredder

./wait example
pid = 100

[SPI=> Stack

= Read-Only Segments

!

Shared Libraries
i
Heap (malloc/free)
Read/Write Segments
.data, .bss

-text, .rodata

pid = 101
[0s ernel fprotectea |

Sp=> Stack
1

1

Shared Libraries
1
Heap (malloc/free)
Read/Write Segments
.data, .bss

> =4 Read-Only Segments
.text, .rodata

wait (&status) exec(./busy)

./wait example

Process Table

100

101

//

PCB: wait_example
id = 100
status = blocked

PCB: wait_example
id = 101
status = running

CIS 5480, Fall 2025
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Diagram: wait_example.c

User Processes

OS

./wait example ./busy
pid = 100 pid = 101
| Jenenens] [emmpesea

1 Stack
P

Shared Libraries

Shared Libraries

1

Heap (malloc/free)

Heap (malloc/free)

Read/Write Segments. Read/Write Segment
.data, .bss .data, .bss
Read-Only Segment
= Read-Only Segments e Py
-text, .rodata

wait (&status) exec(./busy)

PCB: wait_example
Process Table id = 100

100 ,/ status = blocked

101

PCB: /bin/sleep
id = 101
status = running

CIS 5480, Fall 2025
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Diagram: wait_example.c

User Processes

OS

./wait example

pid = 100
[os ke rotecea |

[SPI=> Stack
!

Shared Libraries
1
Heap (malloc/free)
Read/Write Segments
.data, .bss

= Read-Only Segments
-text, .rodata

walt (&status)

./busy
pid = 101
[os feret rotectea |

Stack.

ISEy

Shared Libraries

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
PC== -text, .rodata

exit ()

Process Table id

100 ,/ status = blocked

PCB: wait_example
100

101
PCB: /bin/sleep
id 101
status = running

CIS 5480, Fall 2025
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Diagram: wait_example.c

./wait example

= 100
EEEEEET

pid

Sp=3

Stack

!

Shared Libraries

1

Heap (malloc/free)

Read/Write Segments
.data, .bss

P =

Read-Only Segments
-text, .rodata

walt (&status)

Process Table

100

-

_—

101

PCB: wait_example
id = 100
status = blocked

PCB: /bin/sleep
id = 101
status = ZOMBIE

CIS 5480, Fall 2025
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User Processes

OS
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Diagram: wait_example.c

./wait example

pid = 100
[os ke rotecea |

[SPI=> Stack
!

Shared Libraries
1
Heap (malloc/free)
Read/Write Segments
.data, .bss

= Read-Only Segments
-text, .rodata

walt (&status) <

Process Table id

PCB: wait_example

= 100

100 1 — | status = RUNNING

N
\

101

1d

PCB: /bin/sleep

= 101

status = ZOMBIE

/

CIS 5480, Fall 2025
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Diagram: wait_example.c

User Processes | . /wait example

pid = 100
[estamel oronema |
[SPI=> St?ck

Shared IT.ihraries
Heap (malloc/free)

Read/-\garlt!ae’ .Sbesgsmenu

OS PCB: wait_example
Process Table id = 100

100 1 — | status = RUNNING

44
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Diagram: wait_example.c

User Processes | . /wait example

pid = 100
[estamel oronema |
[SPI=> St?ck
Shared IT.ihraries
Heap (malloc/free)
Read/-\garlt!ae’ .Sbesgsmenu
exit ()
OS PCB: wait_example
Process Table id = 100

100 1 — | status = RUNNING

45




University of Pennsylvania

LO2: Fork, Exec, Wait, Signals, penn-shredder

Diagram: wait_example.c

User Processes

OS

Process Table

CIS 5480, Fall 2025

./wait example
TIs reaped by its
parent. ITn our
example, that is the
terminal shell

46
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Demo: state example

+ See state example.c
" Brief code demo to see the various states of a process
« Running
- Zombie

« Terminated

" Makesuseof sleep(),wait () andexit ()!

= Aside: sleep ()

takes in an integer number of seconds and blocks till those seconds
have passed

47
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But wait(), it gets better.
pid t waitpid(pid t pid, int *wstatus, int options); ]

= pid t pid
- The pid of the child we are waiting for.
- If pid is -1, then we wait for any child process!
= int *wstatus
- Same aswait()
= int options
- A set of bitwise-or’d flags to indicate behavior of waitpid!
- Setting options to 0 makes waitpid return when a child has terminated.
= Returns process ID of child who was waited for or =1 on error

48
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wait() status

+» status output fromwait () can be passed to a macro to see what changed

WIFEXITED () | true iff the child exited nomrally
WIFSIGNALED ()|true iff the child was signaled to exit
WIFSTOPPED () |[true iff the child stopped

WIFCONTINUED () |true iff child continued

49
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Lecture Outline

exec

wait & process states
Hardware interrupts
Software signals
Process States updated
penn-shredder demo

LO2: Fork, Exec, Wait, Signals, penn-shredder
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Control Flow

+ Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

" This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,
inst,

Time insts
inst,
<shutdown>

CIS 5480, Fall 2025
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@ Poll Everywhere pollev.com/cis4480
The bge instruction is being / 11 t0, 5 # load immediate 5 into tO0 \
executed for the first time, 11 tl, 2 # load immediate 2 into tl

. . . - l 2’ O l ' . O . 2
which instruction is executed . t # load immediate 0 into t

next? LOOP
add t2, t2, 1 # t2 = t2 + 1
o A. sub t0, t0, til # t0 = t0 - tlI
bge t0, x0, .LOOP # GOTO .loop if t0 > 0

+ B. add D

5 .END # GOTO .END
« C. sub \ # (infinite loop) Y
o D. ]

+ E. I’m not sure

52
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Altering the Control Flow

+» Up to now: two mechanisms for changing control flow:
" Jumps and branches
= Call and return

React to changes in program state

% Insufficient for a useful system:
Difficult to react to changes in system state
= Data arrives from a disk or a network adapter
" |nstruction divides by zero
= User hits Ctrl-C at the keyboard
= System timer expires

+» System needs mechanisms for “exceptional control flow”

CIS 5480, Fall 2025



University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder

Exceptional Control Flow

+ Exists at all levels of a computer system

+ Low level mechanisms what we will be lookiVl@ at today

= 1. Hardware Interrupts

- Change in control flow in response to a system event
(i.e., change in system state)

- Implemented using combination of hardware and OS software

+ Higher level mechanisms
= 2. Process context switch
- Implemented by OS software and hardware timer
= 3. Signals
- Implemented by OS software

CIS 5480, Fall 2025
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Interrupts

« An Interrupt is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)
= Kernel is the memory-resident part of the OS

= Examples of events: Divide by 0, arithmetic overflow, page fault, 1/0
request completes, typing Ctrl-C

User code Kernel code

Event = |_current Exception R
|_next Exception processing
by exception handler

<

* Return to |_current
* Return to | _next
*Abort
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Interrupt Tables

Interrupt
Numbers

Interrupt
wvTable

0

1| @

P

LO2: Fork, Exec, Wait, Signals, penn-shredder

Code for
interrupt handler O

Code for
interrupt handler 1

Code for
interrupt handler 2

A 4

Code for
interrupt handler n-1

+ Each type of event has a
unique number k

+ k=index into table
(a.k.a. interrupt vector)

« Handler k is called each time
interrupt k occurs

CIS 5480, Fall 2025
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Asynchronous Interrupts

+» Caused by events external to the processor
" |ndicated by setting the processor’s interrupt pin

® Handler returns to “next” instruction

+» Examples:
" Timer interrupt

- Every few ms, an external timer chip triggers an interrupt
- Used by the kernel to take back control from user programs

= |/O interrupt from external device

- Hitting Ctrl-C at the keyboard
- Arrival of a packet from a network
- Arrival of data from a disk

CIS 5480, Fall 2025
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Synchronous Interrupts

+» Caused by events that occur as a result of executing an
instruction:

FUN FACT: the termivology and definitions aren’t fully agreed npow.
" Traps

WMany people may use these nterchangeably
- Intentional

- Examples: system calls, breakpoint traps, special instructions
« Returns control to “next” instruction

" Faults
- Unintentional but theoretically recoverable

- Examples: page faults (recoverable), protection faults
(recoverable sometimes), floating point exceptions

- Either re-executes faulting (“current”) instruction or aborts
= Aborts

« Unintentional and unrecoverable

- Examples: illegal instruction, parity error, machine check
- Aborts current program
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Lecture Outline

% Processes & Fork Refresher
» exec

+» Wait & process states

+» Hardware interrupts

+» Software signals

% Process States updated

% penn-shredder demo

LO2: Fork, Exec, Wait, Signals, penn-shredder
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Signals

+ A Process can be interrupted with various types of signals

" This interruption can occur in the middle of most code

+» Each signal type has a different meaning, number associated with it, and a way
it is handled

%+ These are different from an interrupt, but similar idea

" signals are “higher level” and apply to a process. The kernel / some process will deliver the

signal.

Interrupts are lower level mechanisms that cause the hardware to poke the kernel and
respond

= Some interrupts lead to a signal being sent (CTRL + C on keyboard -> SIGINT)
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Signals

+ A Process can be interrupted with various types of signals

LO2: Fork, Exec, Wait, Signals, penn-shredder

® This interruption can occur in the middle of most code

CIS 5480, Fall 2025

+» Each signal type has a different meaning, number associated with it, and a way
it is handled (disposition)

Examples:

SIGCHLD

— Default Disposition: ignore

SIGINT
SIGKILL
SIGALRM

Default Disposition: terminate the process

/

SIGSEGV

_____——— Default Disposition : terminate & core dump
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sigaction ()

% You can change how a certain signal is handled

+|int sigaction(int signum, struct sigaction* act,
struct sigaction* old);

- 1nt signum -> is the signal

» Usesthe struct sigaction type to specify which signal handler to run
and other options for how the signal should be handled

» Returns previous handler & behavior for that signal through the old output
parameter

+ You can not change the disposition of SIG_KILLand SIG_STOP.
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[ex e .
E Univer

S

+» Has 5 different fields to specify the behaviour of how a signal should be

sity of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder

truct sigaction

handled. For today, we only care about sa_handler and sa_flags

-

struct sigaction {
void (*sa_handler) (int);
void (*sa_sigaction)(int, siginfo t *, void *);
sigset t  sa mask;
int sa_flags;
void (*sa_restorer)(void);

s
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struct sigaction

(struct sigaction {
void (*sa_handler)(int);
int sa_flags;
) )

+~ Set sa_handler equal to the signal handler we want to use
" Set sa_handler to SIG_IGN to set disposition to IGNORE
" Set sa_handler to SIG DFL for default disposition

+ Inthis class: set sa flags to SA RESTART

" This makes it so that certain system calls are automatically restart/continue if they are

interrupted by a signal. (wanna see the list? man 7 signal ©)
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Signal handlers

typedef void (*sighandler t) (int);

% A function that takes in as parameter, the signal number that raised this
handler. Return type is void

» |s automatically called when your process is interrupted by a signal

+» Can manipulate global state

- If you change signal behavior within the handler, it will be undone when you
return

+ Signal handlers set by a process will be retained in any children that are
created (think about why?)
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Demo ctric.c

« Seectrlc.c

" Brief code demo to see how to use a signal handler

= Blocks the ctrl + c signal: SIGINT

= Note: will have to terminate the process with the ki1l command in the terminal, use ps
—u to fine the process id

66



University of Pennsylvania LO2: Fork, Exec, Wait, Signals, penn-shredder CIS 5480, Fall 2025

alarm()

unsigned int alarm(unsigned int seconds);

» Delivers the SIGALRM signal to the calling process after the specified number
of seconds

» Default SIGALRM disposition: terminate the process

» How to cancel alarms?
= | leave this as an exercise for you: try reading the man pages

» HINT FOR OPTIONAL CHALLENGE: What is the default behavior of SIGALRM?
Can you take advantage of the default behavior?
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discuss

% Finish this program
+ After 15 seconds, print a message and then exit
+ Can’t use the sleep () function, must use alarm ()

int main(int argc, char* argv[]) {
alarm(150) ;

return EXIT SUCCESS;
}

% Currently: program calls alarm then immediately exits
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Demo no_sleep.c

+ Seeno sleep.c
= “Sleeps” for 10 seconds without sleeping, using alarm
= Brief code demo to see how to use a signal handler & alarm

= Signal handler manipulates global state
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int kill(pid t pid, int sig);

+ System call that sends a signal to a process (has a somewhat dramatic name).
« pid t pid

= Specifies the process to send the signal to
» int sig

" The signal to forward!

» If for some reason kill() is not recognized and you #include everything you

need: Put this at the top of your penn-shredder.c file (before #includes) to use
kill ()

i define POSIX C SOURCE 1
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Non blocking wait w/ waitpid ()

»|pid t waitpid(pid t pid, int *wstatus, int options);

® Qur first option! WNOHANG
= WNOHANG makes waitpid immediately return

- Either: there is no update in a child’s state or there was.
® You must check the return value of waitpid
WITH THIS OPTION WAITPID Returns process ID of child who was waited for or -1 on

error or O if there are no updates in children processes
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Demo impatient.c

+» See impatient.c

= Parent forks a child, checks if it finishes every second for 5 seconds, if child doesn’t finish
send SIGKILL

" In penn-shredder waitpid () IS NOT ALLOWED so don’t copy
this. ©

® Plus, using sleep () AND alarm() together can cause issues
because on some systems, sleep uses alarm, go figure.
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SIGCHLD handler

+ Whenever a child process updates, a STGCHLD signal is received, and by
default ignored.

% You can write a signal handler for SIGCHLD, and use that to help handle

children update statuses: allowing the parent process to do other things
instead of callingwait () orwaitpid()

» Relevant for proj2: penn-shell
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Lecture Outline

% Processes & Fork Refresher
» exec

+» Wait & process states

+» Hardware interrupts

+» Software signals

% Process States updated

% penn-shredder demo
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Process State Lifetime

Process creation

Selected by the
e.g. fork ()

kernel to run

Process finished

~_ _—

After running for a bit
it is another processes “turn”

Terminated

CIS 5480, Fall 2025
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Lecture Outline

% Processes & Fork Refresher
» exec

+» Wait & process states

+» Hardware interrupts

+» Software signals

% Process States updated

+» penn-shredder demo
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