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Administrivia

❖ Midterm will be Thursday, 10/16 during Lecture! (AGH 106B)

❖ Recitation is Today @ 5:15 in Towneeeeeeeee 100!

❖ Check-In 01 will go out sometime tonight and is due Tuesday at 1:45!
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Lecture Outline

❖ Wrapping Up Tuesday

❖ wait & waitpid & busy waiting

❖ Signals Diagram

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ sigsuspend and sigwait

❖ Process diagram updated
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Quick Review: Signals

❖ A Process can be “interrupted” with various types of signals

▪ This interruption can occur in the middle of most code

▪ Really, the control flow of a program can change via the delivery of a signal.

❖ Each signal type has a different meaning, number associated with it, and a way 
it is handled. Let’s see: sys/signal.h

❖ SIGNALS != interrupt
▪ signals only apply to processes. The kernel / some process will deliver the signal.

▪ True Interrupts cause the hardware to poke the kernel and respond

▪ An interrupt could lead to a signal being sent (CTRL + C on keyboard -> SIGINT)

4
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Review: Changing what a Signal Does

5

❖ You can change how a certain signal is handled

❖ signal

❖ int signum

▪ The signals who’d disposition (behavior) is being changed. 

❖ struct sigaction* act
▪ The struct containing the function that will be called upon the delivery of a signal + other 

flags.

❖ struct sigaction* old

▪ The struct containing the old function that would be called upon the delivery of a signal + 
other flags.

❖ You can not change the disposition of SIG_KILL and SIG_STOP.

int sigaction(int signum,
      struct sigaction* act,
              struct sigaction* old);
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Review: struct sigaction

❖ Struct sigaction

❖ Set sa_handler equal to the function (signal handler) we want to use
▪ Set sa_handler to SIG_IGN to set disposition to IGNORE

▪ Set sa_handler to  SIG_DFL for default disposition 

❖ In this class: set sa_flags to SA_RESTART

▪ This makes it so that certain system calls are automatically restart/continue if they are 
interrupted by a signal. (wanna see the list? man 7 signal ☺)

6

struct sigaction {
  void     (*sa_handler)(int);
  int        sa_flags;
  ...
};
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alarm()

❖ Alarm

❖ Delivers the SIGALRM signal to the calling process after the specified number 
of seconds

❖ Default SIGALRM disposition: terminate the process

❖ How to cancel alarms?
▪ I leave this as an exercise for you: its in the man pages!

▪ (or go to recitation they will tell u)

7

unsigned int alarm(unsigned int seconds);

HINT FOR OPTIONAL CHALLENGE: What is the default behavior of SIGALRM? Can you take advantage of the default behavior?
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Demo no_sleep.c

❖ See no_sleep.c

▪ “Sleeps” for 10 seconds without sleeping, using alarm

▪ Brief code demo to see how to use a signal handler & alarm

▪ Signal handler manipulates global state

8
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Lecture Outline

❖ Wrapping Up Tuesday

❖ wait & waitpid & busy waiting

❖ Signals Diagram

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ sigsuspend and sigwait

❖ Process diagram updated
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Review: wait()

❖  

▪ Calling process waits for any of its children to exit

• Also cleans up the child process

▪ Gets the exit status of child process through output parameter wstatus

▪ Returns process ID of child who was waited for or -1 on error

▪ If you need more nuanced behavior, use waitpid()

10

pid_t wait(int *wstatus);
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Process State Lifetime

Process creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process finished

Running Zombie

blocked
Terminated
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Review: waitpid()

❖  

▪ pid is the pid of the child you would like to check the status of

• When pid is set to -1, this is equivalent to waiting for any child

▪ wstatus tells us how the child has changed

▪ options, allow us to dictate when waitpid should return 

▪ Returns process ID of child who triggered the return of waitpid or -1 on error.

▪ waitpid(-1, &wstatus, 0) is equivalent to  wait(&wstatus)

12

pid_t waitpid(pid_t pid, int *wstatus, int options);
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New: waitpid()

❖  

▪ options, allow us to dictate when waitpid should return 

• WUNTRACED: waitpid returns if child was stopped

• WCONTINUED: waitpid returns if child was continued (via SIGCONT)

▪ Without these options, waitpid only returns when a child terminates

▪ options can be or’d together

• waitpid(-1, &status, WUNTRACED | WCONTINUED);

13

pid_t waitpid(pid_t pid, int *wstatus, int options);
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Non blocking wait w/ waitpid()

❖  

▪ Can pass in WNOHANG for options to make waitpid() not block or “hang”.

▪ May return 

• process ID of child who triggered the return of waitpid

• -1 on error

• 0 if there are no updates in children processes (specific to WNOHANG)

14

pid_t waitpid(pid_t pid, int *wstatus, int options);
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Quick NOHANG Demo

❖ Program will fork a child

❖ make it sleep for 10 seconds

❖ parent will call waitpid with the NOHANG flag

❖ then exit…abandoning it’s child…

❖ When a child has been abandoned, it becomes an orphan…

15quick_nohang.c
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wait/waitpid() status

❖ status output from wait/waitpid() can be checked via macro!

❖ Fdddddddddddd   true iff the child exited normally via exit or return from main

❖ Sss                               true iff the child was terminated via a signal

❖ Ssss                             true iff the child stopped via delivery of signal

❖ `````````````````````````````` true iff the child continued via delivery of signal 

16

WIFEXITED()

WIFSIGNALED()

WIFSTOPPED()

WIFCONTINUED()
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Why use wait()/waitpid? CPU Utilization

❖ When a process is in a blocked state, it will not be run by the scheduler and 
thus will not use the CPU

❖ When analyzing performance, one thing people care about is making maximal 
use of the CPU. The CPU is what is executing our instructions.

▪ Avoiding wasting CPU cycles on things that don’t matter

▪ Make sure the CPU is running as much instructions (that matter) as possible

17
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Poll: how are you?

❖ What is the output of this program?

▪ Note: Does it behave as we intend?

18

pollev.com/cis5480

no_hang.c
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Poll: how are you?

❖ Let’s change it to use WNOHANG now.

▪ Is this better? 

19

discuss
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Blocking

❖ Calls to wait()/waitpid() block until there is information available about 
a child process (unless you use WNOHANG)…

❖ Do we always want to block?

▪ In the simple cases, yes

• If the process can not continue because of a shared resource or dependency, then we should 
block…

▪ In more complex cases (like in penn-shell), it may not be desirable…

❖ We can make progress on ‘our’ tasks if we do not block!

▪  If we had blocked, those other tasks are also waiting on that task

▪ More on this later in the semester when we talk about threads

▪ This idea is related to asynchronous programming

20



CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Busy Waiting

❖ Busy Waiting: when code ‘repeatedly’ checks some condition, waiting for the 
condition to be satisfied.

▪ Sometimes called Spinning, like the phrase “spinning your wheels”

▪ This consumes CPU resources while there might be other more meaningful work ready to 
be scheduled.

▪ If we block, then can we allow another process to make progress while we wait…

❖ We just did this before, see no_hang.c

❖ Demo: running no_hang and using the terminal command top to see the 
CPU utilization

21
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Lecture Outline

❖ wait & waitpid & busy waiting

❖ Signals Diagram

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ sigsuspend and sigwait

❖ Process diagram updated
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Diagram: signals

23

User Processes

OS Process Table

./example

  process id: 100

100
PCB:  example
id = 100

status = blocked

sig_dispositions = {

  SIGTOU: SIG_DFL,

  SIGALRM: SIG_IGN,

  SIGINT: handler()

}
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Diagram: signals

24

CTRL + C

User Processes

OS Process Table

./example

  process id: 100

100
PCB:  example
id = 100

status = blocked

sig_dispositions = {

  SIGTOU: SIG_DFL,

  SIGALRM: SIG_IGN,

  SIGINT: handler()

}
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Diagram: signals

25

CTRL + C

User Processes

OS Process Table

./example

  process id: 100

100
PCB:  example
id = 100

status = blocked

sig_dispositions = {

  SIGTOU: SIG_DFL,

  SIGALRM: SIG_IGN,

  SIGINT: handler()

}

Once a signal is received, 
the OS forwards the signal to 
the corresponding process.
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signal dispositions
❖ Every signal has a current disposition

▪ This determines how the process behaves when it is delivered the signal from the OS.

❖ Term 
▪ Default action is to terminate the process.

❖ Ign
▪ Default action is to ignore the signal. 

❖ Core

▪ Default action is to terminate the process and dump core (see core(5)).

❖ Stop

▪ Default action is to stop the process.

❖ Cont

▪ Default action is to continue the process if it is currently stopped. 

26

And, as we’ve seen, 
you can install your own signal handler;

a user defined ‘disposition’.

https://man7.org/linux/man-pages/man5/core.5.html
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SIGCHLD handler

❖ When child process is terminated or stopped, a SIGCHLD signal is received by 
the parent, and by default ignored.

▪ It’s 'disposition' is Ign

❖ You can install a custom signal handler for SIGCHLD, and use that to help 
handle children update statuses: 

▪ This allows the parent process to do other things instead of blocking via wait() or 
waitpid()

▪ You might expect to receive a SIGCHLD anyways, so why waste time calling waitpid?

▪ You could just call waitpid() when you need to…within a signal handler itself. 

▪ Or, set a flag to know to call it later. ☺

❖ Relevant for proj2: penn-shell

27
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Review: kill()

❖ Allows us to send specific signals to a specific process.

❖ D

❖ pid: specifies the process

❖ sig: specifies the signal

❖ Example:

▪ Delivers a SIGKILL to the process with pid child.

❖ Eventually, we’ll see how kill can be used to send signals to multiple processes 
at a time.

28

int kill(pid_t pid, int sig);

kill(child, SIGKILL);
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Diagram: signals between processes

❖ './example' is attempting to send a 
signal to process with pid 101…

▪ Why is it blocked?

❖ During a system call, we ask the 
OS to complete a task for us, so 
we can not make progress until 
that is done.

29

User Processes

OS

Process Table

./example

  pid = 100

100

PCB:  example
id = 100

status = blocked

sig_dispositions = …

/bin/sleep

  pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

kill(101, SIGINT)
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Diagram: signals between processes

30

User Processes

OS

Process Table

./example

  pid = 100

100

PCB:  example
id = 100

status = blocked

sig_dispositions = …

/bin/sleep

  pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

kill(101, SIGINT)

❖ Signals are sent from process to 
process via the Operating System.

❖ This ensures security and enforces 
that processes only send signals to 
those they have permission to 
send to.
▪ Would be weird if Discord was 

allowed to send a SIGKILL to Chrome. 

❖ The OS is here to keep us safe, 
even from ourselves.
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An Impatient Parent Process

31

Initial State:

int sleeps = 0;
int signal_sent = 0;
int status = -1;
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An Impatient Parent Process

32

pollev.com/cis5480

What gives? What might be the issue here?

Initial State:

int sleeps = 0;
int signal_sent = 0;
int status = -1;
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Lecture Outline

❖ wait & waitpid & busy waiting

❖ Signals Diagram

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ sigsuspend and sigwait

❖ Process diagram updated

35
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Previously: Execution Blocking 

❖ When a process calls wait()/waitpid() and there is a process to wait on, 
the calling process blocks.

❖ If a process blocks or is blocking it is not scheduled for execution.

▪ It is not run until some condition “unblocks” it

▪ For wait(), it unblocks once the child has transitioned to the “terminated” state.

❖ This happens frequently when a system call is made, that calling process will 
block untill the system call is completed.

❖ This is NOT the same as blocking the reception of Signals! 

▪ Even If if a process is blocked, it can still ‘receive’ signals…

36
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Signal Blocking 

❖ A process maintains a set of signals called a “signal mask”

▪ Signals in that set/mask are “blocked”

▪ Signals that are “blocked” are delayed in being delivered to the process, once unblocked, 
the process responds to the signals accordingly according to the corresponding disposition.

▪ Signals are added to a “pending set” of signals to be delivered once unblocked.

❖ This is not the same as ignoring a signal.

❖ Reminder: Process Blocked != Signals are Blocked 37

struct sigaction sa = {0};
sa.sa_handler = SIG_IGN;
sa.sa_flags = SA_RESTART;
sigaction(SIGNAL, &sa, NULL);

When you set a signal’s disposition to 
SIG_IGN, then when a process receives 

the signal it simply throws it away.
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…

Aside: a way to implement a set in C

❖ If we have a fixed number of items that can possibly be in the set, then we can 
use a bitset

❖ Have at least N bits, each item corresponding to a single bit.

▪ Each items assigned bit can either be a 0 or a 1, 0 to indicate absence in the set, 1 to 
indicate presence in the set

❖ Example:

38

… 0 1 0 1 1 1 0 0 1

Item “A”Item “B”

B is not in the set A is in the set
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Poll: how are you?

❖ If we have 39 signals, how many bits do we need to have a bitset to represent all signals? 

❖ How many bytes?

39

pollev.com/cis5480
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❖ sigset_t is a typedef’d bitset to maintain the set of signals blocked

❖ Sigemptyset

▪ initializes a sigset_t to be empty

❖ sigaddset
▪ Adds a signal to the specified signal set

❖ More functions & details in man pages
▪ (man sigemptyset)

❖ Example snippet:

sigset_t

40

int sigemptyset(sigset_t* set);

int sigaddset(sigset_t* set, int signum);

sigset_t mask;
if (sigemptyset(&mask) == -1) {
  // error
}
if (sigaddset(&mask, SIGINT) == -1) {
  // error
}

sigset_t types must be initialized by a call to 
sigemptyset() when used with a 
number of different sigsetops.
IF NOT THE BEHAVIOR IS UNDEFINED. ☺
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sigprocmask()

❖ D

▪ Sets the process mask to be the specified process “block” mask

▪ int how

• SIG_BLOCK

– The new mask is the union of the current mask and the specified set.

• SIG_UNBLOCK  

– The new mask is the intersection of the current mask and the complement of 
the specified set.

• SIG_SETMASK  

– The current mask is replaced by the specified set.

41

int sigprocmask(int how, const sigset_t* set, sigset_t* oldset);
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❖ Use the man page as reference, how do we complete this code?

▪ man sigprocmask

42

discuss

sigset_t mask;

// how do we block SIGINT?
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❖ Use the man page as reference, how do we complete this code?

▪ man sigprocmask

43

discuss

sigset_t mask;
sigset_t old_mask;
sigemptyset(&mask) 
sigaddset(&mask, SIGINT)
sigprocmask(SIG_BLOCK, &mask, &old_mask)
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sigprocmask()

❖ D

▪ Sets the process mask to be the specified process mask, set, depending 
on the value of int how

• “how would you like me to use set?”

▪ const sigset_t* set

• Is the set you would like you use with how

▪ sigset_t* oldset

• Is set to the previous value of the signal mask.

44

int sigprocmask(int how, const sigset_t* set, sigset_t* oldset);
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❖ Use the man page as reference if necessary!

❖ How can we see the current mask without changing it?

45

discuss

sigset_t previous_set;

sigprocmask(VALUE_A, VALUE_B, VALUE_C); //What should these values be?



CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

❖ Use the man page as reference if necessary!

❖ How can we see the current mask without changing it?

46

discuss

sigset_t previous_set;
sigemptyset(&previous_set);
sigprocmask(0, NULL, &previous_set);
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Demo: delay_sigint.c

❖ Demo: delay_sigint.c

▪ Installs a custom signal handler for both SIGINT & SIGALRM to know that they were 
received!

▪ Blocks SIGINT (CTRL-C) for the first 5 seconds of the program.

▪ Unblocks SIGINT after 5 seconds…

▪ CTRL-C should now be able to terminate the program. 

47
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❖ What do we need to do so that a CTRL-C terminates the program? 

❖ What is the code necessary to fix this?

48

pollev.com/cis5480
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❖ What do we need to do so that a CTRL-C terminates the program? 

49

pollev.com/cis5480

Yup, we forgot to change the disposition of SIGINT to be the default!

Where the default disposition is to terminate the corresponding process.  
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Signals are Consumed 

❖ Why didn’t the SIGINT kill the program once we restored its disposition?

❖ When signals trigger their handlers, they are consumed. 

50

Pending
blocked 

unblocked 

Disposition
Triggered

unblocked 

delivered 

Not 
IgnoredIncoming 

signal

Ignored
(SIG_IGN)

*this is a rather simple diagram: there’s a ton of minutiae regrading signals. 

consumed
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Lecture Outline

❖ wait & waitpid & busy waiting

❖ Signals refresher

❖ Sigset

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ sigsuspend and sigwait

❖ Process diagram updated

51
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Concurrent Processes

❖ Each process is a logical control flow. 

❖ Two processes run concurrently if their execution is interleaved

❖ Processes are sequential if one is not run until the other is finished.

❖ Examples running on single core:

▪ Concurrent: A & B, A & C

▪ Sequential: B & C

Process A Process B Process C

Time

Note how at any specific moment in time 

only one process is running

Black line 

indicates that the 

process is running 

during that time
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User View of Concurrent Processes

❖ Control flows for concurrent processes are physically 
disjoint in time

❖ However, we can think of concurrent processes as 
running in parallel with each other

❖ Above is what a User may think is going on. At any
moment in time only one process has its instructions
being executed at a time (ignoring multiple cores).

Time

Process A Process B Process C
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Parallel Processes

❖ Each process is a logical control flow.

❖ Two processes run parallel if their flows overlap at a
specific point in time. (Multiple instructions are

performed on the CPU at the same time

❖ Examples (running on dual core):

▪ Parallel: A & B, A & C

▪ Sequential: B & C

54

Assuming 

more than one 

CPU/CORE

Process A Process B Process C

Time
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Critical Sections

❖ There can be issues when one or more resources are accessed concurrently that 
causes the program to be put in an unexpected, invalid, or error state.

❖ These sections of code where these accesses happen, called critical sections, need 
to be protected from concurrent accesses happening during it

❖ With concurrent processes accessing OS resources, the OS will handle critical 
sections for us

❖ Even if we have one process, we can have signal handlers execute at any time, 
leading to possible concurrent access of memory, which is not default protected 
for us

55
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It gets worse: Signals Can Interrupt Other Signals

❖ See code demo: interrupt.c

▪ Handler registered for SIGALRM and SIGINT

▪ Once SIGALRM goes off, it continuously loops and prints

▪ SIGINT can be input and run its handler even if SIGALRM was running its handler

56
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57

// assume this works
void list_push(list *this, float to_push){
    Node *node = malloc(sizeof(Node));
    if (node == NULL)
     exit(EXIT_FAILURE);
    node->value = to_push;
    node->next = NULL;
    this->tail->next = node;
    this->tail = node;
}
void handler(int signo){
    list_push(list, 4.48);
}
int main(int argc, char *argv[]){ 
    //sa setup omitted, handler set, etc.
    sigaction(SIGINT, &sa, NULL);

    float f;
    while (list_size(list) < 20){
     read_float(stdin, &f);
     list_push(list, f);
    }
}

This code is broken. It compiles, but it 
doesn’t always do what we want. Why?

▪ Assume we have implemented a linked list, 
and it works

▪ Assume list is an initialized global linked 
list

pollev.com/cis5480
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Critical Section

58

void handler(int signo){
    list_push(list, 4.48);
}
int main(int argc, char *argv[]){ 
    //sa setup omitted, handler set, 
etc.
    sigaction(SIGINT, &sa, NULL);

    float f;
    while (list_size(list) < 20){
     read_float(stdin, &f);
     list_push(list, f);
    }
}

❖ There is a critical section in this code! 

Process A Process A
signal handler

Time list_push list_push

If list_push is interrupted during the pointer rearrangement, 
we could be left with a malformed linked-list!
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Critical Section Walkthrough

59

// assume this works
void list_push(list* this, float f) {
  Node* node = malloc(sizeof(Node));
  if (node == NULL) {
    exit(EXIT_FAILURE);
  }
  node->value = f;
  node->next = NULL;
  this->tail->next = node;
  this->tail = node;
}

Process A

Time

list tail

...

value

next

3.14

NULL

You may assume we also have a “head” 
pointer that just isn’t shown here. 
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Critical Section Walkthrough

60

//assume this works
void list_push(list* this, float f) {
  Node* node = malloc(sizeof(Node));
  if (node == NULL) {
    exit(EXIT_FAILURE);
  }
  node->value = f;
  node->next = NULL;
  this->tail->next = node; //to completion
  this->tail = node;
}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL
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//assume this works
void list_push(list* this, float f) {
  Node* node = malloc(sizeof(Node));
  if (node == NULL) {
    exit(EXIT_FAILURE);
  }
  node->value = f;
  node->next = NULL;
  this->tail->next = node; //to completion
  this->tail = node;
}

Critical Section Walkthrough

61

!CALLED FROM THE SIGNAL HANDLER!
void list_push(list* this, float f) {
  Node* node = malloc(sizeof(Node));
  if (node == NULL) {
    exit(EXIT_FAILURE);
  }
  node->value = f;
  node->next = NULL;
  this->tail->next = node;
  this->tail = node;
}

Process A

Time list_push

Process A
signal handler

list_push

value

next

4.48

NULL

Signal handler interrupts and
runs list_push to completion…

list tail

...

value

next

3.14 value

next

3.80

NULL

Handler 
Made 
Node

}
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//assume this works
void list_push(list* this, float f) {
  Node* node = malloc(sizeof(Node));
  if (node == NULL) {
    exit(EXIT_FAILURE);
  }
  node->value = f;
  node->next = NULL;
  this->tail->next = node; //to completion
  this->tail = node;
}

Critical Section Walkthrough
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!CALLED FROM THE SIGNAL HANDLER!
void list_push(list* this, float f) {
  Node* node = malloc(sizeof(Node));
  if (node == NULL) {
    exit(EXIT_FAILURE);
  }
  node->value = f;
  node->next = NULL;
  this->tail->next = node;
  this->tail = node;
}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL

Process A
signal handler

list_push

value

next

4.48

NULL

Signal handler interrupts and
runs list_push to completion…
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Critical Section Walkthrough
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// assume this works
void list_push(list* this, float f) {
  Node* node = malloc(sizeof(Node));
  if (node == NULL) {
    exit(EXIT_FAILURE);
  }
  node->value = f;
  node->next = NULL;
  this->tail->next = node;
  this->tail = node; //our next line to execute.
}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL

Process A
signal handler

list_push

value

next

4.48

NULLSignal handler finishes…
We return to where we left off…
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Critical Section Walkthrough
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// assume this works
void list_push(list* this, float f) {
  Node* node = malloc(sizeof(Node));
  if (node == NULL) {
    exit(EXIT_FAILURE);
  }
  node->value = f;
  node->next = NULL;
  this->tail->next = node;
  this->tail = node;
}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL

Process A
signal handler

list_push

value

next

4.48

NULLSignal handler finishes…
We return to where we left off…

And we ruined the linked-list.
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❖ What can we do to make sure the critical 
section is safe?

▪ Or, how can we make sure it finished to 
completion when entered?
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// assume this works
void list_push(list* this, float to_push) {
  Node* node = malloc(sizeof(Node));
  if (node == NULL) exit(EXIT_FAILURE);
  node->value = to_push;
  node->next = NULL;
  this->tail->next = node;
  this->tail = node;
}
void handler(int signo) {
  list_push(list, 4.48);
}

int main(int argc, char* argv[]) {
  //signal handler installation
  float f;
  while(list_size(list) < 20) {
    read_float(stdin, &f);
    list_push(list, f);
  }
  // omitted: do stuff with list
}

pollev.com/cis5480
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Signal Handlers Block Signals Too

❖ When a signal handler is triggered, it blocks the signal that triggered it.

❖ Once the handler is done, it unblocks the signal!

❖ sa_mask
▪ Is the mask of signals that are blocked upon the entry of the handler!

▪ Even if you set it to empty, it will block the signal that triggered the handler. 

66

struct sigaction {
  void     (*sa_handler)(int);
  int        sa_flags;
 sigset_t   sa_mask;
  ...
};
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Signal Safety

❖ From man 7 signal-safety

▪ To avoid problems with unsafe functions, there are two possible choices:

• (a) Ensure that (1) the signal handler calls only async-signal- safe functions, and 

(2) the signal handler itself is reentrant with respect to global variables in the 

main program.

– Prefer this when possible

• (b) Block signal delivery in the main program when calling functions that are 

unsafe or operating on global data that is also accessed by the signal handler. 

– Notably: printf, malloc, free, and many functions are not signal safe

– We can do this with sigprocmask, but (a) is preferred when possible

▪ Read more by typing `man 7 signal-safety` into the terminal or google

67
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Lecture Outline

❖ wait & waitpid & busy waiting

❖ Signals refresher

❖ Sigset

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ sigsuspend and sigwait

❖ Process diagram updated
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sigsuspend()

▪ Temporarily replaces process mask with specified one and suspends execution until a 
signal that is not blocked is received

▪ If signal that is not blocked is received, the process ‘returns’ from sigsuspend

• The signal first triggers its’ handler. Then the mask in place before the suspend call is restored.

• If the signal received terminates the program, then the process never ‘returns’ from 
sigsuspend.

❖ Instead of busy waiting and wasting CPU cycles (that can be used by other 
processes), we can suspend process execution instead.

❖ Demo: suspend_sigint.c

▪ Compare to previous code: delay_sigint.c

▪ Less CPU resources used ☺
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int sigsuspend(const sigset_t* mask);
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sigwait()

▪ Temporarily suspends execution until a signal in mask becomes pending.

• IT DOES NOT INSTALL A MASK!

▪ Once a signal in the mask becomes pending, it removes it from the pending set and 
returns it in the int *sig, parameter.

❖ For a signal to be pending, you would need to block it using sigprocmask

❖ Demo: sigwait_sigint.c
▪ …be amazed

70

int sigwait(const sigset_t *mask, int *sig);
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volatile sig_atomic_t

❖ If you need to communicate with a signal handler, we have been using global 
variables...

▪ Modifying global variables is generally unsafe in signals. 

❖ In “real world” code if you want to modify shared data within a signal handler, 
you should use global variable type: volatile sig_atomic_t
▪ volatile sig_atomic_t is an integer type with interesting properties.

❖ We will not enforce this in these projects, but we felt like it was worth letting 
you know.

71
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Lecture Outline

❖ wait & waitpid & busy waiting

❖ Signals refresher

❖ Sigset

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ sigsuspend and sigwait

❖ Process diagram updated
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Stopped Jobs

❖ Processes can be in a state slightly different than being blocked. // This is 
relevant for penn-shell

▪ When a process gets the signal SIGSTOP, the process will not run on the CPU until it is 
resumed by the SIGCONT signal

❖ Demo:
▪ In terminal: ping google.com

▪ Hit CTRL + Z to stop

▪ Command: "jobs" to see that it is still there, just stopped

▪ Can type either "%<job_num>" or "fg" to resume it
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Process State Lifetime

Process creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process
finished

Running Zombie

Blocked
Terminated

stopped

SIGSTOP
(ctrl + Z)

SIGCONT
received

e.g. wait()
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