
CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

(waitpid) and More On Signals
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla

Vedansh Goenka Joy Liu

TAs:

Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane

Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones

Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng

Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Administrivia

❖ Midterm will be Thursday, 10/16 during Lecture! (AGH 106B)

❖ Recitation is Today @ 5:15 in Towneeeeeeeee 100!

❖ Check-In 01 will go out sometime tonight and is due Tuesday at 1:45!

2

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Lecture Outline

❖ Wrapping Up Tuesday

❖ wait & waitpid & busy waiting

❖ Signals Diagram

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ sigsuspend and sigwait

❖ Process diagram updated

3

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Quick Review: Signals

❖ A Process can be “interrupted” with various types of signals

▪ This interruption can occur in the middle of most code

▪ Really, the control flow of a program can change via the delivery of a signal.

❖ Each signal type has a different meaning, number associated with it, and a way
it is handled. Let’s see: sys/signal.h

❖ SIGNALS != interrupt
▪ signals only apply to processes. The kernel / some process will deliver the signal.

▪ True Interrupts cause the hardware to poke the kernel and respond

▪ An interrupt could lead to a signal being sent (CTRL + C on keyboard -> SIGINT)

4

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Review: Changing what a Signal Does

5

❖ You can change how a certain signal is handled

❖ signal

❖ int signum

▪ The signals who’d disposition (behavior) is being changed.

❖ struct sigaction* act
▪ The struct containing the function that will be called upon the delivery of a signal + other

flags.

❖ struct sigaction* old

▪ The struct containing the old function that would be called upon the delivery of a signal +
other flags.

❖ You can not change the disposition of SIG_KILL and SIG_STOP.

int sigaction(int signum,
 struct sigaction* act,
 struct sigaction* old);

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Review: struct sigaction

❖ Struct sigaction

❖ Set sa_handler equal to the function (signal handler) we want to use
▪ Set sa_handler to SIG_IGN to set disposition to IGNORE

▪ Set sa_handler to SIG_DFL for default disposition

❖ In this class: set sa_flags to SA_RESTART

▪ This makes it so that certain system calls are automatically restart/continue if they are
interrupted by a signal. (wanna see the list? man 7 signal ☺)

6

struct sigaction {
 void (*sa_handler)(int);
 int sa_flags;
 ...
};

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

alarm()

❖ Alarm

❖ Delivers the SIGALRM signal to the calling process after the specified number
of seconds

❖ Default SIGALRM disposition: terminate the process

❖ How to cancel alarms?
▪ I leave this as an exercise for you: its in the man pages!

▪ (or go to recitation they will tell u)

7

unsigned int alarm(unsigned int seconds);

HINT FOR OPTIONAL CHALLENGE: What is the default behavior of SIGALRM? Can you take advantage of the default behavior?

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Demo no_sleep.c

❖ See no_sleep.c

▪ “Sleeps” for 10 seconds without sleeping, using alarm

▪ Brief code demo to see how to use a signal handler & alarm

▪ Signal handler manipulates global state

8

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Lecture Outline

❖ Wrapping Up Tuesday

❖ wait & waitpid & busy waiting

❖ Signals Diagram

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ sigsuspend and sigwait

❖ Process diagram updated

9

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Review: wait()

❖

▪ Calling process waits for any of its children to exit

• Also cleans up the child process

▪ Gets the exit status of child process through output parameter wstatus

▪ Returns process ID of child who was waited for or -1 on error

▪ If you need more nuanced behavior, use waitpid()

10

pid_t wait(int *wstatus);

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Process State Lifetime

Process creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process finished

Running Zombie

blocked
Terminated

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Review: waitpid()

❖

▪ pid is the pid of the child you would like to check the status of

• When pid is set to -1, this is equivalent to waiting for any child

▪ wstatus tells us how the child has changed

▪ options, allow us to dictate when waitpid should return

▪ Returns process ID of child who triggered the return of waitpid or -1 on error.

▪ waitpid(-1, &wstatus, 0) is equivalent to wait(&wstatus)

12

pid_t waitpid(pid_t pid, int *wstatus, int options);

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

New: waitpid()

❖

▪ options, allow us to dictate when waitpid should return

• WUNTRACED: waitpid returns if child was stopped

• WCONTINUED: waitpid returns if child was continued (via SIGCONT)

▪ Without these options, waitpid only returns when a child terminates

▪ options can be or’d together

• waitpid(-1, &status, WUNTRACED | WCONTINUED);

13

pid_t waitpid(pid_t pid, int *wstatus, int options);

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Non blocking wait w/ waitpid()

❖

▪ Can pass in WNOHANG for options to make waitpid() not block or “hang”.

▪ May return

• process ID of child who triggered the return of waitpid

• -1 on error

• 0 if there are no updates in children processes (specific to WNOHANG)

14

pid_t waitpid(pid_t pid, int *wstatus, int options);

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Quick NOHANG Demo

❖ Program will fork a child

❖ make it sleep for 10 seconds

❖ parent will call waitpid with the NOHANG flag

❖ then exit…abandoning it’s child…

❖ When a child has been abandoned, it becomes an orphan…

15quick_nohang.c

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

wait/waitpid() status

❖ status output from wait/waitpid() can be checked via macro!

❖ Fdddddddddddd true iff the child exited normally via exit or return from main

❖ Sss true iff the child was terminated via a signal

❖ Ssss true iff the child stopped via delivery of signal

❖ `````````````````````````````` true iff the child continued via delivery of signal

16

WIFEXITED()

WIFSIGNALED()

WIFSTOPPED()

WIFCONTINUED()

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Why use wait()/waitpid? CPU Utilization

❖ When a process is in a blocked state, it will not be run by the scheduler and
thus will not use the CPU

❖ When analyzing performance, one thing people care about is making maximal
use of the CPU. The CPU is what is executing our instructions.

▪ Avoiding wasting CPU cycles on things that don’t matter

▪ Make sure the CPU is running as much instructions (that matter) as possible

17

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Poll: how are you?

❖ What is the output of this program?

▪ Note: Does it behave as we intend?

18

pollev.com/cis5480

no_hang.c

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Poll: how are you?

❖ Let’s change it to use WNOHANG now.

▪ Is this better?

19

discuss

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Blocking

❖ Calls to wait()/waitpid() block until there is information available about
a child process (unless you use WNOHANG)…

❖ Do we always want to block?

▪ In the simple cases, yes

• If the process can not continue because of a shared resource or dependency, then we should
block…

▪ In more complex cases (like in penn-shell), it may not be desirable…

❖ We can make progress on ‘our’ tasks if we do not block!

▪ If we had blocked, those other tasks are also waiting on that task

▪ More on this later in the semester when we talk about threads

▪ This idea is related to asynchronous programming

20

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Busy Waiting

❖ Busy Waiting: when code ‘repeatedly’ checks some condition, waiting for the
condition to be satisfied.

▪ Sometimes called Spinning, like the phrase “spinning your wheels”

▪ This consumes CPU resources while there might be other more meaningful work ready to
be scheduled.

▪ If we block, then can we allow another process to make progress while we wait…

❖ We just did this before, see no_hang.c

❖ Demo: running no_hang and using the terminal command top to see the
CPU utilization

21

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Lecture Outline

❖ wait & waitpid & busy waiting

❖ Signals Diagram

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ sigsuspend and sigwait

❖ Process diagram updated

22

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Diagram: signals

23

User Processes

OS Process Table

./example

 process id: 100

100
PCB: example
id = 100

status = blocked

sig_dispositions = {

 SIGTOU: SIG_DFL,

 SIGALRM: SIG_IGN,

 SIGINT: handler()

}

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Diagram: signals

24

CTRL + C

User Processes

OS Process Table

./example

 process id: 100

100
PCB: example
id = 100

status = blocked

sig_dispositions = {

 SIGTOU: SIG_DFL,

 SIGALRM: SIG_IGN,

 SIGINT: handler()

}

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Diagram: signals

25

CTRL + C

User Processes

OS Process Table

./example

 process id: 100

100
PCB: example
id = 100

status = blocked

sig_dispositions = {

 SIGTOU: SIG_DFL,

 SIGALRM: SIG_IGN,

 SIGINT: handler()

}

Once a signal is received,
the OS forwards the signal to
the corresponding process.

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

signal dispositions
❖ Every signal has a current disposition

▪ This determines how the process behaves when it is delivered the signal from the OS.

❖ Term
▪ Default action is to terminate the process.

❖ Ign
▪ Default action is to ignore the signal.

❖ Core

▪ Default action is to terminate the process and dump core (see core(5)).

❖ Stop

▪ Default action is to stop the process.

❖ Cont

▪ Default action is to continue the process if it is currently stopped.

26

And, as we’ve seen,
you can install your own signal handler;

a user defined ‘disposition’.

https://man7.org/linux/man-pages/man5/core.5.html

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

SIGCHLD handler

❖ When child process is terminated or stopped, a SIGCHLD signal is received by
the parent, and by default ignored.

▪ It’s 'disposition' is Ign

❖ You can install a custom signal handler for SIGCHLD, and use that to help
handle children update statuses:

▪ This allows the parent process to do other things instead of blocking via wait() or
waitpid()

▪ You might expect to receive a SIGCHLD anyways, so why waste time calling waitpid?

▪ You could just call waitpid() when you need to…within a signal handler itself.

▪ Or, set a flag to know to call it later. ☺

❖ Relevant for proj2: penn-shell

27

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Review: kill()

❖ Allows us to send specific signals to a specific process.

❖ D

❖ pid: specifies the process

❖ sig: specifies the signal

❖ Example:

▪ Delivers a SIGKILL to the process with pid child.

❖ Eventually, we’ll see how kill can be used to send signals to multiple processes
at a time.

28

int kill(pid_t pid, int sig);

kill(child, SIGKILL);

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Diagram: signals between processes

❖ './example' is attempting to send a
signal to process with pid 101…

▪ Why is it blocked?

❖ During a system call, we ask the
OS to complete a task for us, so
we can not make progress until
that is done.

29

User Processes

OS

Process Table

./example

 pid = 100

100

PCB: example
id = 100

status = blocked

sig_dispositions = …

/bin/sleep

 pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

kill(101, SIGINT)

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Diagram: signals between processes

30

User Processes

OS

Process Table

./example

 pid = 100

100

PCB: example
id = 100

status = blocked

sig_dispositions = …

/bin/sleep

 pid = 101

PCB: /bin/sleep
id = 101

status = running

…

101

kill(101, SIGINT)

❖ Signals are sent from process to
process via the Operating System.

❖ This ensures security and enforces
that processes only send signals to
those they have permission to
send to.
▪ Would be weird if Discord was

allowed to send a SIGKILL to Chrome.

❖ The OS is here to keep us safe,
even from ourselves.

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

An Impatient Parent Process

31

Initial State:

int sleeps = 0;
int signal_sent = 0;
int status = -1;

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

An Impatient Parent Process

32

pollev.com/cis5480

What gives? What might be the issue here?

Initial State:

int sleeps = 0;
int signal_sent = 0;
int status = -1;

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Lecture Outline

❖ wait & waitpid & busy waiting

❖ Signals Diagram

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ sigsuspend and sigwait

❖ Process diagram updated

35

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Previously: Execution Blocking

❖ When a process calls wait()/waitpid() and there is a process to wait on,
the calling process blocks.

❖ If a process blocks or is blocking it is not scheduled for execution.

▪ It is not run until some condition “unblocks” it

▪ For wait(), it unblocks once the child has transitioned to the “terminated” state.

❖ This happens frequently when a system call is made, that calling process will
block untill the system call is completed.

❖ This is NOT the same as blocking the reception of Signals!

▪ Even If if a process is blocked, it can still ‘receive’ signals…

36

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Signal Blocking

❖ A process maintains a set of signals called a “signal mask”

▪ Signals in that set/mask are “blocked”

▪ Signals that are “blocked” are delayed in being delivered to the process, once unblocked,
the process responds to the signals accordingly according to the corresponding disposition.

▪ Signals are added to a “pending set” of signals to be delivered once unblocked.

❖ This is not the same as ignoring a signal.

❖ Reminder: Process Blocked != Signals are Blocked 37

struct sigaction sa = {0};
sa.sa_handler = SIG_IGN;
sa.sa_flags = SA_RESTART;
sigaction(SIGNAL, &sa, NULL);

When you set a signal’s disposition to
SIG_IGN, then when a process receives

the signal it simply throws it away.

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

…

Aside: a way to implement a set in C

❖ If we have a fixed number of items that can possibly be in the set, then we can
use a bitset

❖ Have at least N bits, each item corresponding to a single bit.

▪ Each items assigned bit can either be a 0 or a 1, 0 to indicate absence in the set, 1 to
indicate presence in the set

❖ Example:

38

… 0 1 0 1 1 1 0 0 1

Item “A”Item “B”

B is not in the set A is in the set

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Poll: how are you?

❖ If we have 39 signals, how many bits do we need to have a bitset to represent all signals?

❖ How many bytes?

39

pollev.com/cis5480

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

❖ sigset_t is a typedef’d bitset to maintain the set of signals blocked

❖ Sigemptyset

▪ initializes a sigset_t to be empty

❖ sigaddset
▪ Adds a signal to the specified signal set

❖ More functions & details in man pages
▪ (man sigemptyset)

❖ Example snippet:

sigset_t

40

int sigemptyset(sigset_t* set);

int sigaddset(sigset_t* set, int signum);

sigset_t mask;
if (sigemptyset(&mask) == -1) {
 // error
}
if (sigaddset(&mask, SIGINT) == -1) {
 // error
}

sigset_t types must be initialized by a call to
sigemptyset() when used with a
number of different sigsetops.
IF NOT THE BEHAVIOR IS UNDEFINED. ☺

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

sigprocmask()

❖ D

▪ Sets the process mask to be the specified process “block” mask

▪ int how

• SIG_BLOCK

– The new mask is the union of the current mask and the specified set.

• SIG_UNBLOCK

– The new mask is the intersection of the current mask and the complement of
the specified set.

• SIG_SETMASK

– The current mask is replaced by the specified set.

41

int sigprocmask(int how, const sigset_t* set, sigset_t* oldset);

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

❖ Use the man page as reference, how do we complete this code?

▪ man sigprocmask

42

discuss

sigset_t mask;

// how do we block SIGINT?

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

❖ Use the man page as reference, how do we complete this code?

▪ man sigprocmask

43

discuss

sigset_t mask;
sigset_t old_mask;
sigemptyset(&mask)
sigaddset(&mask, SIGINT)
sigprocmask(SIG_BLOCK, &mask, &old_mask)

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

sigprocmask()

❖ D

▪ Sets the process mask to be the specified process mask, set, depending
on the value of int how

• “how would you like me to use set?”

▪ const sigset_t* set

• Is the set you would like you use with how

▪ sigset_t* oldset

• Is set to the previous value of the signal mask.

44

int sigprocmask(int how, const sigset_t* set, sigset_t* oldset);

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

❖ Use the man page as reference if necessary!

❖ How can we see the current mask without changing it?

45

discuss

sigset_t previous_set;

sigprocmask(VALUE_A, VALUE_B, VALUE_C); //What should these values be?

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

❖ Use the man page as reference if necessary!

❖ How can we see the current mask without changing it?

46

discuss

sigset_t previous_set;
sigemptyset(&previous_set);
sigprocmask(0, NULL, &previous_set);

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Demo: delay_sigint.c

❖ Demo: delay_sigint.c

▪ Installs a custom signal handler for both SIGINT & SIGALRM to know that they were
received!

▪ Blocks SIGINT (CTRL-C) for the first 5 seconds of the program.

▪ Unblocks SIGINT after 5 seconds…

▪ CTRL-C should now be able to terminate the program.

47

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

❖ What do we need to do so that a CTRL-C terminates the program?

❖ What is the code necessary to fix this?

48

pollev.com/cis5480

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

❖ What do we need to do so that a CTRL-C terminates the program?

49

pollev.com/cis5480

Yup, we forgot to change the disposition of SIGINT to be the default!

Where the default disposition is to terminate the corresponding process.

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Signals are Consumed

❖ Why didn’t the SIGINT kill the program once we restored its disposition?

❖ When signals trigger their handlers, they are consumed.

50

Pending
blocked

unblocked

Disposition
Triggered

unblocked

delivered

Not
IgnoredIncoming

signal

Ignored
(SIG_IGN)

*this is a rather simple diagram: there’s a ton of minutiae regrading signals.

consumed

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Lecture Outline

❖ wait & waitpid & busy waiting

❖ Signals refresher

❖ Sigset

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ sigsuspend and sigwait

❖ Process diagram updated

51

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Concurrent Processes

❖ Each process is a logical control flow.

❖ Two processes run concurrently if their execution is interleaved

❖ Processes are sequential if one is not run until the other is finished.

❖ Examples running on single core:

▪ Concurrent: A & B, A & C

▪ Sequential: B & C

Process A Process B Process C

Time

Note how at any specific moment in time

only one process is running

Black line

indicates that the

process is running

during that time

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

User View of Concurrent Processes

❖ Control flows for concurrent processes are physically
disjoint in time

❖ However, we can think of concurrent processes as
running in parallel with each other

❖ Above is what a User may think is going on. At any
moment in time only one process has its instructions
being executed at a time (ignoring multiple cores).

Time

Process A Process B Process C

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Parallel Processes

❖ Each process is a logical control flow.

❖ Two processes run parallel if their flows overlap at a
specific point in time. (Multiple instructions are

performed on the CPU at the same time

❖ Examples (running on dual core):

▪ Parallel: A & B, A & C

▪ Sequential: B & C

54

Assuming

more than one

CPU/CORE

Process A Process B Process C

Time

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Critical Sections

❖ There can be issues when one or more resources are accessed concurrently that
causes the program to be put in an unexpected, invalid, or error state.

❖ These sections of code where these accesses happen, called critical sections, need
to be protected from concurrent accesses happening during it

❖ With concurrent processes accessing OS resources, the OS will handle critical
sections for us

❖ Even if we have one process, we can have signal handlers execute at any time,
leading to possible concurrent access of memory, which is not default protected
for us

55

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

It gets worse: Signals Can Interrupt Other Signals

❖ See code demo: interrupt.c

▪ Handler registered for SIGALRM and SIGINT

▪ Once SIGALRM goes off, it continuously loops and prints

▪ SIGINT can be input and run its handler even if SIGALRM was running its handler

56

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

57

// assume this works
void list_push(list *this, float to_push){
 Node *node = malloc(sizeof(Node));
 if (node == NULL)
 exit(EXIT_FAILURE);
 node->value = to_push;
 node->next = NULL;
 this->tail->next = node;
 this->tail = node;
}
void handler(int signo){
 list_push(list, 4.48);
}
int main(int argc, char *argv[]){
 //sa setup omitted, handler set, etc.
 sigaction(SIGINT, &sa, NULL);

 float f;
 while (list_size(list) < 20){
 read_float(stdin, &f);
 list_push(list, f);
 }
}

This code is broken. It compiles, but it
doesn’t always do what we want. Why?

▪ Assume we have implemented a linked list,
and it works

▪ Assume list is an initialized global linked
list

pollev.com/cis5480

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Critical Section

58

void handler(int signo){
 list_push(list, 4.48);
}
int main(int argc, char *argv[]){
 //sa setup omitted, handler set,
etc.
 sigaction(SIGINT, &sa, NULL);

 float f;
 while (list_size(list) < 20){
 read_float(stdin, &f);
 list_push(list, f);
 }
}

❖ There is a critical section in this code!

Process A Process A
signal handler

Time list_push list_push

If list_push is interrupted during the pointer rearrangement,
we could be left with a malformed linked-list!

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Critical Section Walkthrough

59

// assume this works
void list_push(list* this, float f) {
 Node* node = malloc(sizeof(Node));
 if (node == NULL) {
 exit(EXIT_FAILURE);
 }
 node->value = f;
 node->next = NULL;
 this->tail->next = node;
 this->tail = node;
}

Process A

Time

list tail

...

value

next

3.14

NULL

You may assume we also have a “head”
pointer that just isn’t shown here.

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Critical Section Walkthrough

60

//assume this works
void list_push(list* this, float f) {
 Node* node = malloc(sizeof(Node));
 if (node == NULL) {
 exit(EXIT_FAILURE);
 }
 node->value = f;
 node->next = NULL;
 this->tail->next = node; //to completion
 this->tail = node;
}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

//assume this works
void list_push(list* this, float f) {
 Node* node = malloc(sizeof(Node));
 if (node == NULL) {
 exit(EXIT_FAILURE);
 }
 node->value = f;
 node->next = NULL;
 this->tail->next = node; //to completion
 this->tail = node;
}

Critical Section Walkthrough

61

!CALLED FROM THE SIGNAL HANDLER!
void list_push(list* this, float f) {
 Node* node = malloc(sizeof(Node));
 if (node == NULL) {
 exit(EXIT_FAILURE);
 }
 node->value = f;
 node->next = NULL;
 this->tail->next = node;
 this->tail = node;
}

Process A

Time list_push

Process A
signal handler

list_push

value

next

4.48

NULL

Signal handler interrupts and
runs list_push to completion…

list tail

...

value

next

3.14 value

next

3.80

NULL

Handler
Made
Node

}

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

//assume this works
void list_push(list* this, float f) {
 Node* node = malloc(sizeof(Node));
 if (node == NULL) {
 exit(EXIT_FAILURE);
 }
 node->value = f;
 node->next = NULL;
 this->tail->next = node; //to completion
 this->tail = node;
}

Critical Section Walkthrough

62

!CALLED FROM THE SIGNAL HANDLER!
void list_push(list* this, float f) {
 Node* node = malloc(sizeof(Node));
 if (node == NULL) {
 exit(EXIT_FAILURE);
 }
 node->value = f;
 node->next = NULL;
 this->tail->next = node;
 this->tail = node;
}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL

Process A
signal handler

list_push

value

next

4.48

NULL

Signal handler interrupts and
runs list_push to completion…

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Critical Section Walkthrough

63

// assume this works
void list_push(list* this, float f) {
 Node* node = malloc(sizeof(Node));
 if (node == NULL) {
 exit(EXIT_FAILURE);
 }
 node->value = f;
 node->next = NULL;
 this->tail->next = node;
 this->tail = node; //our next line to execute.
}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL

Process A
signal handler

list_push

value

next

4.48

NULLSignal handler finishes…
We return to where we left off…

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Critical Section Walkthrough

64

// assume this works
void list_push(list* this, float f) {
 Node* node = malloc(sizeof(Node));
 if (node == NULL) {
 exit(EXIT_FAILURE);
 }
 node->value = f;
 node->next = NULL;
 this->tail->next = node;
 this->tail = node;
}

Process A

Time list_push

list tail

...

value

next

3.14 value

next

3.80

NULL

Process A
signal handler

list_push

value

next

4.48

NULLSignal handler finishes…
We return to where we left off…

And we ruined the linked-list.

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

❖ What can we do to make sure the critical
section is safe?

▪ Or, how can we make sure it finished to
completion when entered?

65

// assume this works
void list_push(list* this, float to_push) {
 Node* node = malloc(sizeof(Node));
 if (node == NULL) exit(EXIT_FAILURE);
 node->value = to_push;
 node->next = NULL;
 this->tail->next = node;
 this->tail = node;
}
void handler(int signo) {
 list_push(list, 4.48);
}

int main(int argc, char* argv[]) {
 //signal handler installation
 float f;
 while(list_size(list) < 20) {
 read_float(stdin, &f);
 list_push(list, f);
 }
 // omitted: do stuff with list
}

pollev.com/cis5480

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Signal Handlers Block Signals Too

❖ When a signal handler is triggered, it blocks the signal that triggered it.

❖ Once the handler is done, it unblocks the signal!

❖ sa_mask
▪ Is the mask of signals that are blocked upon the entry of the handler!

▪ Even if you set it to empty, it will block the signal that triggered the handler.

66

struct sigaction {
 void (*sa_handler)(int);
 int sa_flags;
 sigset_t sa_mask;
 ...
};

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Signal Safety

❖ From man 7 signal-safety

▪ To avoid problems with unsafe functions, there are two possible choices:

• (a) Ensure that (1) the signal handler calls only async-signal- safe functions, and

(2) the signal handler itself is reentrant with respect to global variables in the

main program.

– Prefer this when possible

• (b) Block signal delivery in the main program when calling functions that are

unsafe or operating on global data that is also accessed by the signal handler.

– Notably: printf, malloc, free, and many functions are not signal safe

– We can do this with sigprocmask, but (a) is preferred when possible

▪ Read more by typing `man 7 signal-safety` into the terminal or google

67

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Lecture Outline

❖ wait & waitpid & busy waiting

❖ Signals refresher

❖ Sigset

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ sigsuspend and sigwait

❖ Process diagram updated

68

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

sigsuspend()

▪ Temporarily replaces process mask with specified one and suspends execution until a
signal that is not blocked is received

▪ If signal that is not blocked is received, the process ‘returns’ from sigsuspend

• The signal first triggers its’ handler. Then the mask in place before the suspend call is restored.

• If the signal received terminates the program, then the process never ‘returns’ from
sigsuspend.

❖ Instead of busy waiting and wasting CPU cycles (that can be used by other
processes), we can suspend process execution instead.

❖ Demo: suspend_sigint.c

▪ Compare to previous code: delay_sigint.c

▪ Less CPU resources used ☺

69

int sigsuspend(const sigset_t* mask);

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

sigwait()

▪ Temporarily suspends execution until a signal in mask becomes pending.

• IT DOES NOT INSTALL A MASK!

▪ Once a signal in the mask becomes pending, it removes it from the pending set and
returns it in the int *sig, parameter.

❖ For a signal to be pending, you would need to block it using sigprocmask

❖ Demo: sigwait_sigint.c
▪ …be amazed

70

int sigwait(const sigset_t *mask, int *sig);

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

volatile sig_atomic_t

❖ If you need to communicate with a signal handler, we have been using global
variables...

▪ Modifying global variables is generally unsafe in signals.

❖ In “real world” code if you want to modify shared data within a signal handler,
you should use global variable type: volatile sig_atomic_t
▪ volatile sig_atomic_t is an integer type with interesting properties.

❖ We will not enforce this in these projects, but we felt like it was worth letting
you know.

71

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Lecture Outline

❖ wait & waitpid & busy waiting

❖ Signals refresher

❖ Sigset

❖ Signal blocking vs signal ignoring

❖ Signal Safety

❖ sigsuspend and sigwait

❖ Process diagram updated

72

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Stopped Jobs

❖ Processes can be in a state slightly different than being blocked. // This is
relevant for penn-shell

▪ When a process gets the signal SIGSTOP, the process will not run on the CPU until it is
resumed by the SIGCONT signal

❖ Demo:
▪ In terminal: ping google.com

▪ Hit CTRL + Z to stop

▪ Command: "jobs" to see that it is still there, just stopped

▪ Can type either "%<job_num>" or "fg" to resume it

73

CIS 4480, Fall 2025L03: signalsUniversity of Pennsylvania

Process State Lifetime

Process creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process
finished

Running Zombie

Blocked
Terminated

stopped

SIGSTOP
(ctrl + Z)

SIGCONT
received

e.g. wait()

	Default Section
	Slide 1: (waitpid) and More On Signals Computer Operating Systems, Fall 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: Quick Review: Signals
	Slide 5: Review: Changing what a Signal Does
	Slide 6: Review: struct sigaction
	Slide 7: alarm()
	Slide 8: Demo no_sleep.c
	Slide 9: Lecture Outline
	Slide 10: Review: wait()
	Slide 11: Process State Lifetime
	Slide 12: Review: waitpid()
	Slide 13: New: waitpid()
	Slide 14: Non blocking wait w/ waitpid()
	Slide 15: Quick NOHANG Demo
	Slide 16: wait/waitpid() status
	Slide 17: Why use wait()/waitpid? CPU Utilization
	Slide 18: Poll: how are you?
	Slide 19: Poll: how are you?
	Slide 20: Blocking
	Slide 21: Busy Waiting
	Slide 22: Lecture Outline
	Slide 23: Diagram: signals
	Slide 24: Diagram: signals
	Slide 25: Diagram: signals
	Slide 26: signal dispositions
	Slide 27: SIGCHLD handler
	Slide 28: Review: kill()
	Slide 29: Diagram: signals between processes
	Slide 30: Diagram: signals between processes
	Slide 31: An Impatient Parent Process
	Slide 32: An Impatient Parent Process
	Slide 35: Lecture Outline
	Slide 36: Previously: Execution Blocking
	Slide 37: Signal Blocking
	Slide 38: Aside: a way to implement a set in C
	Slide 39: Poll: how are you?
	Slide 40: sigset_t
	Slide 41: sigprocmask()
	Slide 42
	Slide 43
	Slide 44: sigprocmask()
	Slide 45
	Slide 46
	Slide 47: Demo: delay_sigint.c
	Slide 48
	Slide 49
	Slide 50: Signals are Consumed
	Slide 51: Lecture Outline
	Slide 52: Concurrent Processes
	Slide 53: User View of Concurrent Processes
	Slide 54: Parallel Processes
	Slide 55: Critical Sections
	Slide 56: It gets worse: Signals Can Interrupt Other Signals
	Slide 57
	Slide 58: Critical Section
	Slide 59: Critical Section Walkthrough
	Slide 60: Critical Section Walkthrough
	Slide 61: Critical Section Walkthrough
	Slide 62: Critical Section Walkthrough
	Slide 63: Critical Section Walkthrough
	Slide 64: Critical Section Walkthrough
	Slide 65
	Slide 66: Signal Handlers Block Signals Too
	Slide 67: Signal Safety
	Slide 68: Lecture Outline
	Slide 69: sigsuspend()
	Slide 70: sigwait()
	Slide 71: volatile sig_atomic_t
	Slide 72: Lecture Outline
	Slide 73: Stopped Jobs
	Slide 74: Process State Lifetime

