University of Pennsylvania LO3: signals

(waitpid) and More On Signals
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez
Head TAs: Maya Huizar Akash Kaukuntla
Vedansh Goenka Joy Liu

TAs:
Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane
Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones
Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng
Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

CIS 4480, Fall 2025

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Administrivia

+» Midterm will be Thursday, 10/16 during Lecture! (AGH 106B)

+~ Recitation is Today @ 5:15 in Towneeeeeeeee 100!

+» Check-In 01 will go out sometime tonight and is due Tuesday at 1:45!

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Lecture Outline

+» Wrapping Up Tuesday

+» wait & waitpid & busy waiting

% Signals Diagram

+ Signal blocking vs signal ignoring
+ Signal Safety

+~ sigsuspend and sigwait

% Process diagram updated

CIS 4480, Fall 2025

LO3: signals

University of Pennsylvania

Quick Review: Signals

+» A Process can be “interrupted” with various types of signals
® This interruption can occur in the middle of most code
= Really, the control flow of a program can change via the delivery of a signal.

» Each signal type has a different meaning, number associated with it, and a way
it is handled. Let’s see: sys/signal.h

+» SIGNALS != interrupt

= signals only apply to processes. The kernel / some process will deliver the signal.
®" True Interrupts cause the hardware to poke the kernel and respond
" Aninterrupt could lead to a signal being sent (CTRL + C on keyboard -> SIGINT)

University of Pennsylvania

LO3: signals CIS 4480, Fall 2025

Review: Changing what a Signal Does
int sigaction(int signum,)
struct sigaction* act,
struct sigaction* old);

. J

» int signhum
® The signals who'd disposition (behavior) is being changed.
» struct sigaction* act

" The struct containing the function that will be called upon the delivery of a signal + other
flags.

» struct sigaction™ old

® The struct containing the old function that would be called upon the delivery of a signal +
other flags.

+ You can not change the disposition of SIG_KILLand SIG_STOP.

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Review: struct sigaction

(struct sigaction {
void (*sa_handler)(int);
int sa_flags;
) .

+» Set sa_handler equal to the function (signal handler) we want to use
" Set sa_handler to SIG_IGN to set disposition to IGNORE
" Set sa_handler to SIG DFL for default disposition

+ Inthis class: set sa flags to SA RESTART

" This makes it so that certain system calls are automatically restart/continue if they are
interrupted by a signal. (wanna see the list? man 7 signal ©)

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

alarm()

unsigned int alarm(unsigned int seconds);

+ Delivers the SIGALRM signal to the calling process after the specified number
of seconds

+» Default SIGALRM disposition: terminate the process

+» How to cancel alarms?
" | leave this as an exercise for you: its in the man pages!
= (or go to recitation they will tell u)

HINT FOR OPTIONAL CHALLENGE: What is the default behavior of SIGALRM? Can you take advantage of the default behavior? 7

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Demo no_sleep.c

+ Seeno sleep.c
= “Sleeps” for 10 seconds without sleeping, using alarm
= Brief code demo to see how to use a signal handler & alarm

= Signal handler manipulates global state

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Lecture Outline

+» Wrapping Up Tuesday

+» wait & waitpid & busy waiting
% Signals Diagram

+ Signal blocking vs signal ignoring
+ Signal Safety

+~ sigsuspend and sigwait

% Process diagram updated

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Review: wait ()

#|pid_t wait(int *wstatus);

= Calling process waits for any of its children to exit
- Also cleans up the child process

" Gets the exit status of child process through output parameter wstatus
= Returns process ID of child who was waited for or =1 on error

= |f you need more nuanced behavior, use waitpid()

10

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Process State Lifetime

Process creation

Selected by the
e.g. fork ()

kernel to run

Process finished

~_ _—

After running for a bit
it is another processes “turn”

Terminated

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Review: waitpid()

+|pid_t waitpid(pid t pid, int *wstatus, int options);]

= pid isthe pid of the child you would like to check the status of
- When pid is set to -1, this is equivalent to waiting for any child

" wstatus tells us how the child has changed
= options, allow us to dictate when waitpid should return

" Returns process ID of child who triggered the return of waitpid or -1 on error.

" waitpid(-1, &wstatus, 0) isequivalentto wait(&wstatus)

12

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

New: waitpid()

é[pid_t waitpid(pid_t pid, int *wstatus, int options);]

= options, allow us to dictate when waitpid should return

- WUNTRACED: waitpid returns if child was stopped

- WCONTINUED: waitpid returns if child was continued (via SIGCONT)
= Without these options, waitpid only returns when a child terminates
= options can be or'd together

« waitpid(-1, &status, WUNTRACED | WCONTINUED);

13

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Non blocking wait w/ waitpid()

é[pid_t waitpid(pid_t pid, int *wstatus, int options);]

= Can pass in WNOHANG for options to make waitpid() not block or “hang”.

" May return

- process ID of child who triggered the return of waitpid
- -1 onerror

- O if there are no updates in children processes (specific to WNOHANG)

14

CIS 4480, Fall 2025

University of Pennsylvania LO3: signals

Quick NOHANG Demo

% Program will fork a child

+» make it sleep for 10 seconds

+» parent will call waitpid with the NOHANG flag

+ then exit...abandoning it’s child...

%+ When a child has been abandoned, it becomes an orphan...

quick nohang.c 15

LO3: signals CIS 4480, Fall 2025

University of Pennsylvania

wait/waitpid() status

» status output fromwait/waitpid() can be checked via macro!

» | WIFEXITED () | true iff the child exited normally via exit or return from main
»|WIFSIGNALED ()| true iff the child was terminated via a signal

+| WIFSTOPPED () |true iff the child stopped via delivery of signal

+| WIFCONTINUED () | true iff the child continued via delivery of signal

16

University of Pennsylvania

LO3: signals

Why use wait()/waitpid? CPU Utilization

+» When a process is in a blocked state, it will not be run by the scheduler and
thus will not use the CPU

+» When analyzing performance, one thing people care about is making maximal
use of the CPU. The CPU is what is executing our instructions.

= Avoiding wasting CPU cycles on things that don’t matter

= Make sure the CPU is running as much instructions (that matter) as possible

CIS 4480, Fall 2025

17

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

@ Poll Everyw here pollev.com/cis5480

int main(){ + What is the output of this program?

pid_t child_pid = fork();

LF(child_pid < 0)4 = Note: Does it behave as we intend?

perror("Fork failed.\n");
return EXIT_FAILURE;
}

if(child_pid == 0){
char *xargv[] = {"bin/sleep", "10", NULL};
execvp(argv[0], argv); /% Similar to execve, without ENVP. */
return EXIT_FAILURE; /* Should not be reachable x/
} else {
int status;
pid_t res = waitpid(-1, &status, 2);
while(res == 0){ /* No updates. */
printf("Waiting for child...\n");
res = waitpid(-1, &status, WNOHANG);
}
printf("Done waiting for child!");
}
return EXIT_SUCCESS;

no_hang.c 18

LO3: signals CIS 4480, Fall 2025

University of Pennsylvania

@ Poll Everywhere

int _main(){ + Let’s change it to use WNOHANG now.

pid_t child_pid = fork();
" [s this better?

if(child_pid < 0){
perror("Fork failed.\n");

return EXIT_FAILURE;

if(child_pid == @){
char xargv[] = {"bin/sleep", "10", NULL};
execvp(argv[@], argv); /* Similar to execve, without ENVP. */

return EXIT_FAILURE; /* Should not be reachable x/

; else {

pid_t res = waitpid(-1, &status, WNOHANG);
while(res == 0){ /% No updates. */

printf("wWaiting for child...\n");
res = waitpid(-1, &status, WNOHANG);

hy

printf("Done waiting for child!");

}
return EXIT_SUCCESS;

19

University of Pennsylvania

LO3: signals

CIS 4480, Fall 2025

Blocking

» Callstowait()/waitpid() block until there is information available about
a child process (unless you use WNOHANG)...

+ Do we always want to block?

" |nthe simple cases, yes

L)

- If the process can not continue because of a shared resource or dependency, then we should
block...

" |n more complex cases (like in penn-shell), it may not be desirable...

+» We can make progress on ‘our’ tasks if we do not block!
" |f we had blocked, those other tasks are also waiting on that task
" More on this later in the semester when we talk about threads

" This idea is related to asynchronous programming

20

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Busy Waiting

» Busy Waiting: when code ‘repeatedly’ checks some condition, waiting for the
condition to be satisfied.
= Sometimes called Spinning, like the phrase “spinning your wheels”

" This consumes CPU resources while there might be other more meaningful work ready to
be scheduled.

= |f we block, then can we allow another process to make progress while we wait...

» We just did this before, see no hang.c

» Demo: running no hang and using the terminal command top to see the
CPU utilization

21

University of Pennsylvania

LO3: signals

Lecture Outline

+» wait & waitpid & busy waiting

+ Signals Diagram

+ Signal blocking vs signal ignoring
% Signal Safety

+ sigsuspendand sigwait

% Process diagram updated

CIS 4480, Fall 2025

22

University of Pennsylvania

Diagram: signals

User Processes

OS

LO3: signals

./example @*
ISP tacl
process id: 100 :
t
Shared Libraries
t
Heap (malloc/free)
Read/Write Segments
.data, .bss
2 = Read-Only Segments
.text, .rodata
Process Table
100 >
PCB: example
id = 100
status = blocked
sig dispositions = {
SIGTOU: SIG DFL,
SIGALRM: SIG IGN,
SIGINT: handler ()
}

CIS 4480, Fall 2025

23

University of Pennsylvania

Diagram: signals

User Processes

OS

CTRL+ C

LO3: signals

./example
process 1id: 100

SPI=> Stack

P =

!

t

Shared Libraries

t

Read/Write Segments
.data, .bss

Read-Only Segments

Process Table

100

\ 4

PCB: example
id = 100

SIGTOU:
SIGALRM:

v

SIGINT:

status = blocked
sig dispositions = {
SIG DFL,
SIG IGN,
handler ()

CIS 4480, Fall 2025

24

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Diagram: signals

User Processes | . /example [os ternel proteceal |
SPI=> Stack
process id: 100 :
t
Shared Libraries
t
Once a signal is received, e Sgnans
the OS forwards the signal to o= estony segmens
the corresponding process. —
\
OS | Process Table \
100 >
PCB: example \
id = 100
status = blocked
sig dispositions = {
CTRL+ C -

v

SIGTOU: SIG DFL,
SIGALRM: SIG_IGN,//
SIGINT: handler ()

25

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

signal dispositions

+ Every signal has a current disposition

" This determines how the process behaves when it is delivered the signal from the OS.

< lerm

= Default action is to terminate the process. And. as we’ve seen

o Ign you can install your own signal handler;

.. _ _ a user defined ‘disposition’.
= Default action is to ignore the signal.

+» Core

= Default action is to terminate the process and dump core (see core(5)).
« Stop

= Default action is to stop the process.
+» Cont

= Default action is to continue the process if it is currently stopped.

26

https://man7.org/linux/man-pages/man5/core.5.html

University of Pennsylvania LO3: signals

CIS 4480, Fall 2025

SIGCHLD handler

+» When child process is terminated or stopped, a signal is received by
the parent, and by default ignored.
" |t's '"disposition'is Ign

» You can install a custom signal handler for , and use that to help
handle children update statuses:

" This allows the parent process to do other things instead of blocking via wait() or
waitpid()

" You might expect to receive a SIGCHLD anyways, so why waste time calling waitpid?

" You could just call waitpid() when you need to...within a signal handler itself.
= Or, set a flag to know to call it later. ©

+~ Relevant for proj2: penn-shell

27

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Review: kill()

+ Allows us to send specific signals to a specific process.
> |int kill(pid_t pid, int sig); |
+~ pid: specifies the process

» sig: specifies the signal

s Example: [kill(child, SIGKILL); |
= Delivers a SIGKILL to the process with pid child.

+» Eventually, we’ll see how kill can be used to send signals to multiple processes
at a time.

28

LO3: signals CIS 4480, Fall 2025

University of Pennsylvania

Diagram: signals between processes

User Processes

./example _[mm—m /bin/sleep +» '.Jexample'is attempting to send a
pid = 100 oL signal to process with pid 101...
T = Why is it blocked?
B e % During a system call, we ask the
kill (101, SIGINT) T / OS to complete a task for us, so
o8 e ~ we cgn not make progress until
Process Table | 54 — 100 / that is done.
100 _+"| status = blocked
sig dispositions = ..

101

PCB: /bin/sleep
id = 101

status = running

29

University of Pennsylvania

OS

LO3: signals

CIS 4480, Fall 2025

Diagram: signals between processes

User Processes

101

./example | /bin/sleep
pid = 100 : pid = 101
SSSSS T [zt]
' Stack
e R:a:l‘filtsfi“:m hared Libraries « \
kill (101, SIGINT) T e
PCB: example
Process Table | 14 = 100
100 ,/ status = blocked
sig dispositions = ..

T~

AN

PCB: /bin/sleep
id = 101
status = running

+ Signals are sent from process to
process via the Operating System.

% This ensures security and enforces
that processes only send signals to
those they have permission to
send to.

" Would be weird if Discord was
allowed to send a SIGKILL to Chrome.

+» The OS is here to keep us safe,
even from ourselves.

30

LO3: signals

University of Pennsylvania

An Impatient Parent Process

pid_t child_pid = fork();

if(child_pid == 0){ /% Child Only. */
sleep(atoi(argvi[1]));
return EXIT_SUCCESS;

int res_pid = waitpid(child_pid, &status, WNOHANG);
while(!WIFEXITED(status)){

if(sleeps < 5) {
printf("Child has not yet excited. Sleeping for a second; will check after I wake up...\n");
sleep(1);
sleeps += 1;

} else if(!signal_sent){
printf("It's over for you.
kill(child_pid, SIGKILL);
signal_sent = 1;

You're done.\n");

int res_pid = waitpid(child_pid, &status, WNOHANG);
¥
printf("I have reaped my child.\nGoodbye.\n");
return EXIT_SUCCESS;

CIS 4480, Fall 2025

Initial State:

int sleeps = 0;
int signal sent = 0;
int status = -1;

31

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

@ Poll Everyw here pollev.com/cis5480

pid_t child_pid = fork();

if(child_pid == 0){ /% Child Only. */ What gives? What might be the issue here?
sleep(atoi(argvi[1]));
return EXIT_SUCCESS; e ® .

) Initial State:

int res_pid = waitpid(child_pid, &status, WNOHANG); .
int sleeps = 0;

while (WIFEXITED(status)){ int signal_sent = 0;

if(sleeps < 5) { int status = -1;
printf("Child has not yet excited. Sleeping for a second; will check after I wake up...\n");
sleep(1l);

sleeps += 1;

} else if(!signal_sent){
printf("It's over for you. You're done.\n");
kill(child_pid, SIGKILL);
signal_sent = 1;

int res_pid = waitpid(child_pid, &status, WNOHANG);
¥
printf("I have reaped my child.\nGoodbye.\n");

return EXIT_SUCCESS;
32

University of Pennsylvania LO3: signals

Lecture Outline

+» wait & waitpid & busy waiting

+ Signals Diagram

+ Signal blocking vs signal ignoring
+ Signal Safety

+ sigsuspendand sigwait

% Process diagram updated

CIS 4480, Fall 2025

35

University of Pennsylvania LO3: signals

CIS 4480, Fall 2025

Previously: Execution Blocking

+ When a process callswait () /waitpid () and there is a process to wait on,
the calling process blocks.

+ |f a process blocks or is blocking it is not scheduled for execution.

® |t is not run until some condition “unblocks” it

" Forwait (), it unblocks once the child has transitioned to the “terminated” state.

+ This happens frequently when a system call is made, that calling process will
block untill the system call is completed.

% This is NOT the same as blocking the reception of Signals!
" Even If if a process is blocked, it can still ‘receive’ signals...

36

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Signal Blocking

+» A process maintains a set of signals called a “signal mask”

= Signals in that set/mask are “blocked”

= Signals that are “blocked” are delayed in being delivered to the process, once unblocked,
the process responds to the signals accordingly according to the corresponding disposition.

= Signals are added to a “pending set” of signals to be delivered once unblocked.

« This is not the same as ignoring a signal.

4 . .)
StPUCthﬂgiCtl?nS;g EGIEI?}, When you set a signal’s disposition to
S4da. Sa_lein er_‘ ;A REgTAR',I' . SIG_IGN, then when a process receives
>d.>d_T2dg> = SA_ g the signal it simply throws it away.

| sigaction(SIGNAL, &sa, NULL);

<~ Reminder: Process Blocked != Signals are Blocked 37

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Aside: a way to implement a set in C

+ If we have a fixed number of items that can possibly be in the set, then we can
use a bitset

+» Have at least N bits, each item corresponding to a single bit.

" Each items assigned bit can either be a0 or a 1, 0 to indicate absence in the set, 1 to
indicate presence in the set

+» Example:
Item ”B" Item ”A”

0 1 0 1 1 1 0 0 14

B is not in the set Ais in the set

38

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

@ Poll Everyw here pollev.com/cis5480

+ |If we have 39 signals, how many bits do we need to have a bitset to represent all signals?
+ How many bytes?

39

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

sigset_t types must be initialized by a call to
sigemptyset() when used with a

SlgSEt_t number of different sigsetops.

IF NOT THE BEHAVIOR IS UNDEFINED. ©
» sigset t isatypedef'd bitset to maintain the set of signals blocked

.:.[int sigemptyset(sigset t* set);]

" jnitializes a sigset_t to be empty

é[iﬂt sigaddset(sigset_t* set, int signum);]

= Adds a signal to the specified signal set
% More functions & details in man pages

" (man sigemptyset) (sigset_t mask; A
// error
}
if (sigaddset(&mask, SIGINT) == -1) {
// error

\J Y,

40

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

sigprocmask()

é[int sigprocmask(int how, const sigset t* set, sigset t* oldset);]

= Sets the process mask to be the specified process “block” mask
" int how
. SIG_BLOCK

— The new mask is the union of the current mask and the specified set.
- SIG_UNBLOCK

— The new mask is the intersection of the current mask and the complement of
the specified set.

. SIG_SETMASK

— The current mask is replaced by the specified set.

41

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

@ Poll Everywhere discuss

+» Use the man page as reference, how do we complete this code?

" man sigprocmask

o N
sigset t mask;

\// how do we blockR SIGINT?

42

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

@ Poll Everywhere discuss

+» Use the man page as reference, how do we complete this code?

" man sigprocmask

- N
sigset t mask;

sigset t old mask;

sigemptyset(&mask)

sigaddset(&mask, SIGINT)
\sigprocmask(SIG_BLOCK, &mask, &old mask)

43

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

sigprocmask()

%[int sigprocmask(int how, const sigset t* set, sigset t* oldset);]

= Sets the process mask to be the specified process mask, set, depending
on the value of int how

« “how would you like me to use set?”
" const sigset t* set
- |s the set you would like you use with how
" sigset t* oldset
- |s set to the previous value of the signal mask.

44

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

@ Poll Everywhere discuss

+» Use the man page as reference if necessary!
+ How can we see the current mask without changing it?

4)

sigset t previous_set;

sigprocmask(VALUE_A, VALUE_ B, VALUE_C); //What should these values be?

_ J

45

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

@ Poll Everywhere discuss

+» Use the man page as reference if necessary!
+ How can we see the current mask without changing it?

4)

sigset_t previous_set;
sigemptyset(&previous set);
sigprocmask(@, NULL, &previous_set);

46

University of Pennsylvania LO3: signals

Demo: delay sigint.c

+ Demo:delay sigint.c
" |nstalls a custom signal handler for both SIGINT & SIGALRM to know that they were
received!
= Blocks SIGINT (CTRL-C) for the first 5 seconds of the program.
= Unblocks SIGINT after 5 seconds...
" CTRL-Cshould now be able to terminate the program.

CIS 4480, Fall 2025

47

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» What do we need to do so that a CTRL-C terminates the program?
+» What is the code necessary to fix this?

struct sigaction sa = (struct sigaction){
.sa_handler = my_awesome_handler,
.sa_flags = SA_RESTART
¥i

sigaction (SIGALRM, &sa, NULL);
sigaction(SIGINT, &sa, NULL);

irm(5) ;
(!'done) { }

// after alarm, unblock sigint
(sigprocmask(SIG_SETMASK, &old_mask, NULL) == -1) {
perror("sigprocmask failed, idk how but it did");
ex1t (EXIT_FAILURE);
}
//continuosly loop, SIGINT should be able to terminate us.
(true) { }

EXIT_SUCCESS; 48

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» What do we need to do so that a CTRL-C terminates the program?

struct sigaction sa = (struct sigaction){
.sa_handler = my_awesome_handler,
.sa_flags = SA_RESTART
¥;
Yup, we forgot to change the disposition of SIGINT to be the default!
sigaction(SIGALRM, &sa, NULL);
sigaction(SIGINT, &sa, NULL);

Where the default disposition is to terminate the corresponding process.
n(5);

(!'done) { }
// after alarm, upklock sigint
(sigprocmasgASIG_SETMASK, &old_mask, NULL) == -1) {
perror igprocmask failed, idk how but it did");
XIT_FAILURE);

//continuosly loop, SIGINT should be able to terminate us.
(true) { }

EXIT_SUCCESS; 49

LO3: signals CIS 4480, Fall 2025

University of Pennsylvania

Signals are Consumed

+» Why didn’t the SIGINT kill the program once we restored its disposition?
+» When signals trigger their handlers, they are consumed.

unblocked

Not
' iti consumed
Incoming __'8nored DTI:iposelrtleczjn :
signal delivered g8
Pending unblocked
blocked
lgnored
(SIG_IGN)

th
— *this is a rather simple diagram: there’s a ton of minutiae regrading signals. 50

University of Pennsylvania LO3: signals

Lecture Outline

+» wait & waitpid & busy waiting

+ Signals refresher

+ Sigset

+ Signal blocking vs signal ignoring
+ Signal Safety

+~ sigsuspend and sigwait

% Process diagram updated

CIS 4480, Fall 2025

51

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Concurrent Processes

» Each process is a logical control flow.
+» Two processes run concurrently if their execution is interleaved
+ Processes are sequential if one is not run until the other is finished.

+» Examples running on single core:
" Concurrent: A&B,A&C
= Sequential: B& C

Note how at any specific moment in time
ovly one process is running

Process A Process B Process C

Black line
mdicates that the
Process Is runiing
during that +ime

Time

University of Pennsylvania LO3: signals

User View of Concurrent Processes

» Control flows for concurrent processes are physically
disjoint in time

» However, we can think of concurrent processes as
running in parallel with each other

Process A Process B Process C

Time

+» Above is what a User may think is going on. At any
moment in time only one process has its instructions
being executed at a time (ignoring multiple cores).

CIS 4480, Fall 2025

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Assuming
more thav one

Parallel Processes

+ Each process is a logical control flow. CPU/CORE

+» Two processes run parallel if their flows overlap at a
specific point in time. (Multiple instructions are
performed on the CPU at the same time

» Examples (running on dual core):
= Parallel: A&B,A&C
= Sequential: B & C

Process A Process B Process C

Time

54

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

L0

Critical Sections

There can be issues when one or more resources are accessed concurrently that
causes the program to be put in an unexpected, invalid, or error state.

These sections of code where these accesses happen, called critical sections, need
to be protected from concurrent accesses happening during it

With concurrent processes accessing OS resources, the OS will handle critical
sections for us

Even if we have one process, we can have signal handlers execute at any time,
leading to possible concurrent access of memory, which is not default protected
for us

55

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

It gets worse: Signals Can Interrupt Other Signals

%+ See codedemo: interrupt.c

= Handler registered for SIGALRM and SIGINT
" Once SIGALRM goes off, it continuously loops and prints

® SIGINT can be input and run its handler even if SIGALRM was running its handler

56

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

// assume this works

void list_push(list *this, float to_push){ This code is broken. It compiles, but it
Node *node = malloc(sizeof(Node)); ,
if (node == NULL) doesn’t always do what we want. Why?
exit(EXIT_FAILURE); _ _ _
node->value = to_push; = Assume we have implemented a linked list,
node->next = NULL; and it works
this->tail->next = node;
this->tail = node; = Assume list is aninitialized global linked
} li
IST

void handler(int signo){
list push(list, 4.48);

}

int main(int argc, char *argv[]){
//sa setup omitted, handler set, etc.
sigaction(SIGINT, &sa, NULL);

float f;

while (list_size(list) < 20){
read float(stdin, &f);
list push(list, f);

}

57

University of Pennsylvania

Critical Section

LO3: signals

« There is a critical section in this code!

[void handler(int signo){

list push(list, 4.48); <
}
int main(int argc, char *argv[]){
//sa setup omitted, handler set,
etc.
sigaction(SIGINT, &sa, NULL);

float f;
while (list size(list) < 20){
read float(stdin, &f);

If list_push is interrupted during the pointer rearrangement,

CIS 4480, Fall 2025

we could be left with a malformed linked-list!

list push(list, f); <
}

Time

Process A

Process A
signal handler

list_ push

list_ push

58

CIS 4480, Fall 2025

University of Pennsylvania LO3: signals

Critical Section Walkthrough

// assume this works list 1tail [,
void list_push(list* this, float f) { %
Node* node = malloc(sizeof(Node)); .
if (node == NULL) { f

exit(EXIT FAILURE);
} value 3. 14
node->value = f;
node->next = NULL; next NULL
this->tail->next = node;
this->tail = node;
}
Process A

Time

You may assume we also have a “head”
pointer that just isn’t shown here.

59

University of Pennsylvania

LO3: signals

Critical Section Walkthrough

//assume this worRs
void list_push(list* this, float f) {

Node* node = malloc(sizeof(Node)); Y/Q}
if (node == NULL) { $()\
exit(EXIT_FAILURE); \3\(*

} PN

node->value = f; 0$

node->next = NULL; OQ_
—> this->tail->next = node; tho completion

this->tail = node; \(&W
} &

<>
@&C
59
Time

list | tail /
[~
value 3. 14 value 3.80
next —>|next NUIT, I,
Process A
list_ push

CIS 4480, Fall 2025

60

University of Pennsylvania LO3: signals

Critical Section Walkthrough

//assume this works

void list ICALLED FROM THE SIGNAL HANDLER!
Node* n{ yvoid 1list_push(list* this, float f) {

if (nod{ Node* node = malloc(sizeof(Node));
exit(] if (node == NULL) {

} exit (EXIT_FAILURE);

node->v }

node- node->value = f;

—> this->t node->next = NULL;
this->t this->tail->next = node;
} this->tail = node;

Signal handler interrupts and
runs list_push to completion...

Time

list | tail /
[ol
value 3. 14 value 3.80
next —>|next NUIT, I,
value 4.48
next NULL
Process A Process A
signal handler
list_push list_push

J

CIS 4480, Fall 2025

Handler
Made
Node

61

University of Pennsylvania

LO3: signals

CIS 4480, Fall 2025

Critical Section Walkthrough

void list
Node* n
if (nod
exit(
}
node->v
node->n
— this->t
this->t
}

//assume this works

Signal handler interrupts and
runs list_push to completion...

ICALLED FROM THE SIGNAL HANDLER!
void list_push(list* this, float f) {
Node* node = malloc(sizeof(Node));

if (node == NULL) {
exit(EXIT_FAILURE

}

node->value = f;

node->next = NULL;

this->tail->next =

this->tail = node;

) 2

node;

Time

list | tail \
value 3. 14 value 3.80
next \ next NULL
\
\\\ value 4.48
next NULL
Process A Process A
signal handler
list_push list_push

62

University of Pennsylvania LO3: signals

Critical Section Walkthrough

// assume this worRks
void list_push(list* this, float f) {
Node* node = malloc(sizeof(Node));
if (node == NULL) {
exit(EXIT_FAILURE);
}
node->value = f;
node->next = NULL;
—> this->tail->next = node;
this->tail = node; //our next line to execute.

}

Signal handler finishes...
We return to where we left off...

Time

list | tail \
value 3. 14 value 3.80
next \ next NULL
\
\\\ value 4.48
next NULL
Process A Process A
signal handler
list_ push list push

CIS 4480, Fall 2025

63

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Critical Section Walkthrough

// assume this works

void list push(list* this, float f) { list " +ail .
Node* node = malloc(sizeof(Node));
if (node == NULL) { ce. \\\

exit (EXIT_FAILURE);

iode—>value SRR value 3. 14 value 3.80
node->next = NULL; next ‘
this->tail->next = node; X next NULL
this->tail = node;

N \ value 4.48

next NULL

Signal handler finishes...
We return to where we left off... Process A Process A

signal handler

And we ruined the linked-list. 1. st push

list_ push

64

University of Pennsylvania

@ Poll Everywhere

(// assume this workRs

void list push(list* this, float to push) {
Node* node = malloc(sizeof(Node));
if (node == NULL) exit(EXIT_FAILURE);
node->value = to_push;
node->next = NULL;
this->tail->next = node;
this->tail = node;

}

void handler(int signo) {
list_push(list, 4.48);

}

int main(int argc, char* argv[]) {
//signal handler installation
float f;
while(list_size(list) < 20) {
read_float(stdin, &f);
list _push(list, f);

}
// omitted: do stuff with List

LO3: signals CIS 4480, Fall 2025

pollev.com/cis5480

« What can we do to make sure the critical
section is safe?

" Or, how can we make sure it finished to
completion when entered?

65

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Signal Handlers Block Signals Too

+» When a signal handler is triggered, it blocks the signal that triggered it.
% Once the handler is done, it unblocks the signal!

(struct sigaction {)
void (*sa_handler)(int);
int sa_flags;
sigset t sa _mask;
}s
_ J
» Sa_mask

" |s the mask of signals that are blocked upon the entry of the handler!

" Even if you set it to empty, it will block the signal that triggered the handler.

66

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Signal Safety

«+ Fromman 7 signal-safety

= To avoid problems with unsafe functions, there are two possible choices:

- (a) Ensure that (1) the signal handler calls only async-signal- safe functions, and
(2) the signal handler itself is reentrant with respect to global variables in the
main program.

— Prefer this when possible
- (b) Block signal delivery in the main program when calling functions that are
unsafe or operating on global data that is also accessed by the signal handler.

— Notably: printf, malloc, free, and many functions are not signal safe
— We can do this with sigprocmask, but (a) is preferred when possible

= Read more by typing man 7 signal-safety into the terminal or google

67

University of Pennsylvania LO3: signals

Lecture Outline

+» wait & waitpid & busy waiting

+ Signals refresher

+ Sigset

+ Signal blocking vs signal ignoring
+ Signal Safety

+» sigsuspend and sigwait

% Process diagram updated

CIS 4480, Fall 2025

68

University of Pennsylvania

sigsuspend ()

[int sigsuspend(const sigset t* mask);]

= Temporarily replaces process mask with specified one and suspends execution until a
signal that is not blocked is received

= |f signal that is not blocked is received, the process ‘returns’ from sigsuspend

- The signal first triggers its’ handler. Then the mask in place before the suspend call is restored.

- If the signal received terminates the program, then the process never ‘returns’ from
sigsuspend.

+ Instead of busy waiting and wasting CPU cycles (that can be used by other
processes), we can suspend process execution instead.

+ Demo: suspend sigint.c
= Compare to previous code: delay sigint.c
= |Less CPU resources used ©

LO3: signals CIS 4480, Fall 2025

69

CIS 4480, Fall 2025

University of Pennsylvania LO3: signals

sigwait ()

[int sigwait(const sigset t *mask, int *sig);]
= Temporarily suspends execution until a signal in mask becomes pending.
« IT DOES NOT INSTALL A MASK!

" Once asignal in the mask becomes pending, it removes it from the pending set and
returnsitinthe int *sig, parameter.

+ For a signal to be pending, you would need to block it using sigprocmask

+ Demo:sligwalt sigint.c

B be amazed

70

CIS 4480, Fall 2025

University of Pennsylvania LO3: signals

volatile sig atomic_t

+ If you need to communicate with a signal handler, we have been using global

variables...
" Modifying global variables is generally unsafe in signals.

+ In “real world” code if you want to modify shared data within a signal handler,
you should use global variable type: volatile sig atomic t
= yolatile sig atomic_t isaninteger type with interesting properties.

+» We will not enforce this in these projects, but we felt like it was worth letting
you know.

71

University of Pennsylvania LO3: signals

Lecture Outline

+» wait & waitpid & busy waiting

+ Signals refresher

+ Sigset

+ Signal blocking vs signal ignoring
+ Signal Safety

+~ sigsuspend and sigwait

+» Process diagram updated

CIS 4480, Fall 2025

72

University of Pennsylvania LO3: signals

Stopped Jobs

+» Processes can be in a state slightly different than being blocked. // This is

relevant for penn-shell
®" When a process gets the signal STGSTOP, the process will not run on the CPU until it is

resumed by the STGCONT signal

Demo:

In terminal: ping google.com
Hit CTRL + Z tostop

Command: "jobs" to see that it is still there, just stopped

Can type either "$<job num>"or "£g" to resume it

CIS 4480, Fall 2025

73

University of Pennsylvania LO3: signals CIS 4480, Fall 2025

Process State Lifetime

SIGCONT
received SIGSTOP

Process creation (ctrl +2)

Selected by the
e.g. fork ()

kernel to run

Running Zombie

\ 4

Process
finished
After running for a bit
it is another processes “turn”
oo @
o

Terminated

e.g. wait()

	Default Section
	Slide 1: (waitpid) and More On Signals Computer Operating Systems, Fall 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: Quick Review: Signals
	Slide 5: Review: Changing what a Signal Does
	Slide 6: Review: struct sigaction
	Slide 7: alarm()
	Slide 8: Demo no_sleep.c
	Slide 9: Lecture Outline
	Slide 10: Review: wait()
	Slide 11: Process State Lifetime
	Slide 12: Review: waitpid()
	Slide 13: New: waitpid()
	Slide 14: Non blocking wait w/ waitpid()
	Slide 15: Quick NOHANG Demo
	Slide 16: wait/waitpid() status
	Slide 17: Why use wait()/waitpid? CPU Utilization
	Slide 18: Poll: how are you?
	Slide 19: Poll: how are you?
	Slide 20: Blocking
	Slide 21: Busy Waiting
	Slide 22: Lecture Outline
	Slide 23: Diagram: signals
	Slide 24: Diagram: signals
	Slide 25: Diagram: signals
	Slide 26: signal dispositions
	Slide 27: SIGCHLD handler
	Slide 28: Review: kill()
	Slide 29: Diagram: signals between processes
	Slide 30: Diagram: signals between processes
	Slide 31: An Impatient Parent Process
	Slide 32: An Impatient Parent Process
	Slide 35: Lecture Outline
	Slide 36: Previously: Execution Blocking
	Slide 37: Signal Blocking
	Slide 38: Aside: a way to implement a set in C
	Slide 39: Poll: how are you?
	Slide 40: sigset_t
	Slide 41: sigprocmask()
	Slide 42
	Slide 43
	Slide 44: sigprocmask()
	Slide 45
	Slide 46
	Slide 47: Demo: delay_sigint.c
	Slide 48
	Slide 49
	Slide 50: Signals are Consumed
	Slide 51: Lecture Outline
	Slide 52: Concurrent Processes
	Slide 53: User View of Concurrent Processes
	Slide 54: Parallel Processes
	Slide 55: Critical Sections
	Slide 56: It gets worse: Signals Can Interrupt Other Signals
	Slide 57
	Slide 58: Critical Section
	Slide 59: Critical Section Walkthrough
	Slide 60: Critical Section Walkthrough
	Slide 61: Critical Section Walkthrough
	Slide 62: Critical Section Walkthrough
	Slide 63: Critical Section Walkthrough
	Slide 64: Critical Section Walkthrough
	Slide 65
	Slide 66: Signal Handlers Block Signals Too
	Slide 67: Signal Safety
	Slide 68: Lecture Outline
	Slide 69: sigsuspend()
	Slide 70: sigwait()
	Slide 71: volatile sig_atomic_t
	Slide 72: Lecture Outline
	Slide 73: Stopped Jobs
	Slide 74: Process State Lifetime

