University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Pipes & File Descriptors
Computer Operating Systems, Autumn 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla
Vedansh Goenka Joy Liu

TAs:
Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane
Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones
Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng |
Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Administrivia

+» Project 0/1 penn-vec & penn-parser:
® Due this Friday at Midnight!
" You can use late tokens; 1 token is 2 days.

University of Pennsylvania

Lecture Outline

+» Quick Review: Signal Blocking
» Intro to file descriptors

» File Descriptors: Big picture

- Redirection & Pipes

» Unix Commands & Controls

LO4: Pipes & File Descriptors

CIS 4480, Fall 2025

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Signal Blocking

+» A process maintains a set of signals called a “signal mask”

= Signals in that set/mask are “blocked”

= Signals that are “blocked” are delayed in being delivered to the process, once unblocked,

the process responds to the signals accordingly according to the corresponding disposition.

= Signals are added to a “pending set” of signals to be delivered once unblocked.

« This is not the same as ignoring a signal.

(struct sigaction sa = {0};
sa.sa_handler = SIG_IGN;
sa.sa_flags = SA RESTART;

 sigaction(SIGNAL, &sa, NULL);

~

J

When you set a signal’s disposition to
SIG_IGN, then when a process receives
the signal it simply throws it away.

<~ Reminder: Process Blocked != Signals are Blocked 4

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

sigset_t types must be initialized by a call to
sigemptyset() when used with a

SlgSEt_t number of different sigsetops.

IF NOT THE BEHAVIOR IS UNDEFINED. ©
» sigset t isatypedef'd bitset to maintain the set of signals blocked

.:.[int sigemptyset(sigset t* set);]

" jnitializes a sigset_t to be empty

é[iﬂt sigaddset(sigset_t* set, int signum);]

= Adds a signal to the specified signal set
% More functions & details in man pages

" (man sigemptyset) (sigset_t mask; A
// error
}
if (sigaddset(&mask, SIGINT) == -1) {
// error

\J Y,

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

sigprocmask()

%[int sigprocmask(int how, const sigset t* set, sigset t* oldset);]

= Sets the process mask to be the specified process mask, set, depending
on the value of int how

« “how would you like me to use set?”
" const sigset t* set
- |s the set you would like you use with how
" sigset t* oldset
- |s set to the previous value of the signal mask.

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

sigprocmask()

é[int sigprocmask(int how, const sigset t* set, sigset t* oldset);]

= Sets the process mask to be the specified process “block” mask
" int how
. SIG_BLOCK
— The new mask is the union of the current mask and the specified set.

. SIG_UNBLOCK

— The new mask is the intersection of the current mask and the complement of
the specified set.

. SIG_SETMASK

— The current mask is replaced by the specified set.

CIS 4480, Fall 2025

University of Pennsylvania

LO4: Pipes & File Descriptors

Recall: Buggy Code with Critical Section

// assume this works
void list_push(list* this, float f) {
Node* node = malloc(sizeof(Node));
if (node == NULL) {
exit(EXIT_FAILURE);
}
nhode->value = f;
node->next = NULL;
this->tail->next = node;
this->tail = node;

list push can be called from two places.
Either from the main or from the signal handler

While the process is wrangling the values for
the linked-list, the process could be interrupted

and forced to run the signal handler.

void handler(int signo){
list push(list, 4.48);
}

int main(int argc, char *argv[]){

//sa setup omitted, handler set, etc.

sigaction(SIGINT, &sa, NULL);

float f;

while (list size(list) < 20){
read float(stdin, &f);
list push(list, f);

}

Note: This refers to the English definition of "interrupt,” not the computer science term.

University of Pennsylvania

LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Recall: Buggy Code with Critical Section

// assume this works
void list_push(list* this, float f) {
Node* node = malloc(sizeof(Node));
if (node == NULL) {
exit(EXIT_FAILURE);
}
nhode->value = f;
node->next = NULL;
this->tail->next = node;
this->tail = node;

Which portion of the code can safely have its execution paused so the
signal handler can run before the original code resumes?

Ask yourself: where is global information being modified ?

CIS 4480, Fall 2025

University of Pennsylvania LO4: Pipes & File Descriptors

@ Poll Everywhere pollev.com/cis5480

// assume this works +» How can we make this function signal safe?
void list push(list* this, float f) {

Node* node = malloc(sizeof(Node));

it (node == NULL) {
exit(EXIT_FAILURE);

}

node->value = f;

node->next = NULL;

this->tail->next = node;

this->tail = node;

10

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

(void list_push(list *this, float f){

sigset t mask_sigint, prev_mask; ** we set up the appropriate mask
sigemptyset(&mask sigint);

S}gaddset(&mask_uglnt, SIGINT?;. . % block those signals
sigprocmask(SIG_BLOCK, &mask_sigint, &prev_mask); % (in addition to those already perhaps blocked)
Node *node = malloc(sizeof(Node)); . _ .

if (node == NULL){ ** set the mask using sigprocmask();
exit (EXIT_FAILURE);

} ¢ restore the previous mask before we

edE=SvEilE = s entered the function call, 1ist_push().

node->next = NULL;

this->tail->next = node;

this->tail = node;

sigprocmask(SIG_SETMASK, &prev_mask, NULL);

11

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

sigsuspend ()

[int sigsuspend(const sigset t* mask);]

= Temporarily replaces process mask with specified one and suspends execution until a
signal that is not blocked is received

= |f signal that is not blocked is received, the process ‘returns’ from sigsuspend
- The signal first triggers its’ handler. Then the mask in place before the suspend call is restored.

- If the signal received terminates the program, then the process never ‘returns’ from
sigsuspend.

+ Instead of busy waiting and wasting CPU cycles (that can be used by other
processes), we can suspend process execution instead.

12

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

sigwait ()

[int sigwait(const sigset_t *mask, int *sig);]

= Temporarily suspends execution until a signal in mask becomes pending.
« IT DOES NOT INSTALL A MASK!

" Once asignal in the mask becomes pending, it removes it from the pending set and
returnsitinthe int *sig, parameter.

+ For a signal to be pending, you would need to block it using sigprocmask

13

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Process State Lifetime

SIGCONT
received SIGTSTP

Process creation (ctrl +2)

Selected by the
e.g. fork ()

kernel to run

Running Zombie

\ 4

Process
finished
After running for a bit
it is another processes “turn”
oo @
o

Terminated

University of Pennsylvania

Lecture Outline

% Quick Review: Signal Blocking
» Intro to file descriptors

» File Descriptors: Big picture

- Redirection & Pipes

» Unix Commands & Controls

LO4: Pipes & File Descriptors

CIS 4480, Fall 2025

15

% University of Pennsylvania

LO4: Pipes & File Descriptors

What is a File?

+ Files are "non-volatile storage" that are external to a process:

® changes to afile persist beyond the lifetime of a process
" The same file can be access by multiple processes

= Stored on completely different hardware than normal process memory

«» More details on Files later...

CIS 4480, Fall 2025

16

University of Pennsylvania

LO4: Pipes & File Descriptors CIS 4480, Fall 2025

What is a file descriptor?

+ A file descriptor is of type int

= A process specific unique id that can be used to refer to a file when invoking system calls

+ A file descriptor may not refer to a literal file, but instead refer to something
that is “like a file”

" Terminal input/output
= Network connections

= Pjpes (more later this lecture)
= Special devices

% These can all be used for read () and write ()

17

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

stdin, stdout, stderr

+» By default, there are three “files” open when a program starts
= stdin: for reading terminal input typed by a user
- stdin in Cstdio.h
- System.inin Java
- sys.stdin in Python
= stdout: the normal terminal output. (buffered)
- stdout in C stdio.h
- System.out in Java
- sys.stdout in Python
= stderr: the terminal output for printing errors (unbuffered)
- stderr in Cstdio.h
- System.errin Java
- sys.stdin in Python

note: stdin, stdout, and stderr are pointers to a FILE structinc. 18

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

stdin, stdout, stderr

+ stdin, stdout, and stderr all have initial file descriptors constants defined in
unistd.h

C unistdh X

Library > Developer > CommandLineTools > SDKs > MacOSX.sdk > usr > include > C unistd.h > ...
68 #ifndef _UNISTD_H_

oo

86 #define STDIN_FILENO © /% standard input file descriptor *x/
87 #define STDOUT_FILENO 1 /x standard output file descriptor *x/
88 #define STDERR_FILENO 2 /* standard error file descriptor */

on

+» These will be allocated on default for a process

+ Printing to standard out with printf will use write(STDOUT FILENO, ..)

19

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

open()

[int open(const char* pathname, int flags, /* mode_t perm */)]

= pathname

- The name of the file you’d like you ‘open’
= flags

- Bitwise OR specifying behavior for the opening of the file

- MUST INCLUDE ONE OF THESE: O_RDONLY, O _WRONLY, O_RDWR
= perm

- Used only if flag O _CREAT is used to specify the set of permissions allowed in interacting
with file

— E.g. is the file, executable?, who can see it?, etc.

" Returns:
- avalid file descriptor or -1 on error

20

University of Pennsylvania LO4: Pipes & File Descriptors

CIS 4480, Fall 2025

*quick aside: Permissions

[int open(const char* pathname, int flags, /* mode_t perm */)]
= perm
- Used only if flag O _CREAT is used
- specify the set of permissions allowed in interacting with file

— E.g. is the file, executable?, who can see it?, etc.

= Permissions are kept in three octets
« One for the User, the Group, and Other.
« r-read

« W - Write

* X - execute

21

University of Pennsylvania

LO4: Pipes & File Descriptors

CIS 4480, Fall 2025

*quick aside: Permissions

[int open(const char* pathname, int flags, /* mode_t perm */)]
" perm

- Used only if flag O _CREAT is used

- specify the set of permissions allowed in interacting with file
— E.g. is the file, executable?, who can see it?, etc.

User Group Other

rwx r-x r-x delay_sigint The intricacies of what consists of the
\ J \ J \ J

group and other is irrelevant in this course.
| | |
111 101 101

Ox7 Ox5 0x5

In assignments, you will use the 0744 (rwxrw-rw-) octet
when creating new files.

22

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

close()

[int close(int fd)]

= fd
- The corresponding file descriptor that will be closed.

- No longer will this number refer to the file.
- Allows it for it to be reused

" Imperative once we talk about pipes and file references...

23

University of Pennsylvania

Using Open(); & Close();

LO4: Pipes & File Descriptors

//;ht main(int argc, char *argv[]){

// Open the specified source file for reading
int opened file fd = open(argv[1l], O _RDONLY);

// Do some magic with the file descriptor

close(opened file fd);
return 0;

~

CIS 4480, Fall 2025

24

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

@ Poll Everywhere discuss

+» Check out this example snippet below; what do these two flags indicate?

//Eﬁt main(int argc, char *argv[]){ ‘\\

// Open the specified source file for reading
int opened file fd = open(argv[1], O RDONLY ||O CREAT | O_EXCL,| default perms);

// Do some magic with the file descriptor

close(opened file fd);
return 0;

\J /

% Use the man page for open!

25

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» Check out this example snippet below; what do these two flags indicate?

//Eﬁt main(int argc, char *argv[]){ ‘\\

// Open the specified source file for reading
int opened file fd = open(argv[1], O RDONLY ||O CREAT | O_EXCL,| default perms);

// Do some magic with the file descriptor

close(opened file fd);

return 0;

This enforces that a file isn’t just created,
but created for the first time.

\J /

Please check out the man page for open.

26

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

For Completeness: other FD system calls.

[ssize_t read(int fd, void *buf, size t count);]

= attempts to read up to count bytes from file descriptor fd into the buffer starting at
buf.

" On success, the number of bytes read is returned. On error, -1 is returned, and errno
is set to indicate the error. O is returned when EOF has been encountered (usually)...

[ssize_t write(int fd, void *buf, size_t count);]

= writes up to count bytes from the buffer starting at buf to the file referred to by the
file descriptor fd.

- On success, the number of bytes written is returned. On error, -1 is returned, and errno is set to
indicate the error.

27

https://man7.org/linux/man-pages/man3/errno.3.html
https://man7.org/linux/man-pages/man3/errno.3.html

University of Pennsylvania

Lecture Outline

% Intro to file descriptors

» File Descriptors

+» Open File Table

+ Redirection & Pipes

% Unix Commands & Controls

LO4: Pipes & File Descriptors

CIS 4480, Fall 2025

28

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

File Descriptor Table

+ Each process has its own file descriptor table managed by the OS

" The table maintains information about the respective files the process has references to.

+ A file descriptor is an index into a processes FD table.

File Descriptor Table for Process 100
0 1 2

Terminal

>

Not an accurate depiction. 29

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

File Descriptor Table

+ Each process has its own file descriptor table managed by the OS

" The table maintains information about the respective files the process has references to.

+ A file descriptor is an index into a processes FD table.

File Descriptor Table for Process 100
0 1 2 3

open ("Foo.txt", O RDWR) ;

Terminal Foo.txt

>

Not an accurate depiction. Note: the lowest # fd is given when possible. 30

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

File Descriptor Table

+ Each process has its own file descriptor table managed by the OS

" The table maintains information about the respective files the process has references to.

+ A file descriptor is an index into a processes FD table.

File Descriptor Table for Process 100 File Descriptor Table for Process 101

0 1 2 3 0 1 2 3

open ("Foo.txt", O RDWR) ;

Terminal Foo.txt Foo.txt

>

Not an accurate depiction. Note: the lowest # fd is given when possible. 31

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» What if there was only one global file descriptor table? What negative affects
may this have?

File Descriptor Table for Process 100
File Descriptor Table for Process 101
File Descriptor Table for Process 102
File Descriptor Table for Process 103
File Descriptor Table for Process 104
File Descriptor Table for Process 105

1 2 3 4

32

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

File Descriptor Table w Fork

+» Each process will have its own file descriptor table managed by the OS

+» Fork will make a copy of the parent’s file descriptor table for the child

File Descriptor Table for Process 100
0 1 2

File Descriptor Table for Process 101
0 1 2

a

fork ()

>

>

33

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Example: Open after fork

+» Each process will have its own file descriptor table managed by the OS

+» Fork will make a copy of the parent’s file descriptor table for the child

File Descriptor Table for Process 100 File Descriptor Table for Process 101

0 1 2 3
o [T
pid t pid = fork();
if(pid != 0){
e open(“shell-soln.c”, O_RDWR); Child is unaffected by parent
otk shell—soln.c } Terminal calling open!

> T390 00 WV
} :

34

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Example: Open before fork

+» Fork will make an IDENTICAL copy of the parent’s file descriptor table
+ This seems like overkill — we have the same file opened twice...

File Descriptor Table for Process 100 File Descriptor Table for Process 101
0 1 2 3 0 1 2 3
/ T
open("shell-soln.c", O RDWR);
fork()
Terminal Terminal

shell-soln.c shell-soln.c

> } IR > } 39999090

35

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

The Inhereted Descriptor Table

+» Fork will make an IDENTICAL copy of the parent’s file descriptor table
+ A somewhat more accurate diagram.... ©

File Descriptor Table for Process 100 File Descriptor Table for Process 101

0 1 2 3 0 1 2 3
| /

Terminal shell-soln.c open("shell-soln.c", O_RDWR);
S ’ JJJJJJJJJJ fork()

36

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

File Descriptor Table

+» Each process has its own file descriptor table managed by the OS

+ A file descriptor is an index into a processes FD table.

» Children made via fork inherent an identical FD table from their parent.

" Those files are not closed nor are they modified in any way. They are the exact same files
referred to by the parent.

- Files opened exclusively in a process after a fork do not modify the FD table of
another process, child or parent.

37

University of Pennsylvania

Lecture Outline

% Intro to file descriptors

» File Descriptors

+» Open File Table

+ Redirection & Pipes

% Unix Commands & Controls

LO4: Pipes & File Descriptors

CIS 4480, Fall 2025

38

University of Pennsylvania

LO4: Pipes & File Descriptors CIS 4480, Fall 2025

The Open File Table

+ Each process has its own file descriptor table

" We index into the file descriptor table using the file descriptor

Process 100
File Descriptor Table

0 1 2 3 4 5

Each entry in the FD Table is a pointer
to a system wide file table mainted by the kernel!

tr | ptr | ptr | ptr | ptr | ptr : .
P P P P PL" 1P As we open up more files, using open(), not only do we
received a FD but an entry is made in the open file table!

mode Read mode Write mode Write mode
cursor 0 cursor 0 cursor 0 cursor

(offset position) (offset position) (offset position) (offset position)

reference count 1 reference count 1 reference count 1 reference count

File Name (path) file_a.txt File Name (path) file_a.txt File Name (path) File_b.txt File Name (path)

vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info)

39

University of Pennsylvania

LO4: Pipes & File Descriptors CIS 4480, Fall 2025

The Open File Table

+ Each process has its own file descriptor table

" We index into the file descriptor table using the file descriptor

Process 100
File Descriptor Table

0 1 2 3 4 5

cursor: keeps track of where in the file
we are either “reading” or writing” to.

This is what f/lseek()
manipulates.

ref_count: the number of references to

ptr | ptr | ptr | ptr | ptr | ptr that entry in the File Table

file_name: the “name” of the corresponding file

vnode/inode: don’t worry yet....

mode Read mode Write mode Write mode
cursor 0 cursor 0 cursor 0 cursor
(offset position) (offset position) (offset position) (offset position)

reference count 1

reference count

1

reference count 1

reference count

File Name (path) file_a.txt

File Name (path)

file_a.txt

File Name (path) File_b.txt

File Name (path)

vnode (FileSys Info)

vnode (FileSys Info)

vnode (FileSys Info)

vnode (FileSys Info)

40

University of Pennsylvania

LO4: Pipes & File Descriptors

File Descriptor Table and Fork

+» When a process forks, the child inherits an identical FD Table!

fork ()
Process 100
File Descriptor Table o
0 1 2 3 4 5
ptr | ptr | ptr | ptr p’g{ ptr
mode Read mode Write mode Write mode
cursor 0 cursor 0 cursor 0 cursor
(offset position) (offset position) (offset position) (offset position)
reference count 1 reference count 1 reference count 1 reference count
File Name (path) file_a.txt File Name (path) file_a.txt File Name (path) File_b.txt File Name (path)
vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info)

CIS 4480, Fall 2025

41

University of Pennsylvania

LO4: Pipes & File Descriptors

File Descriptor Table and Fork

+» When a process forks, the child inherits an identical FD Table!

fork ()
Process 100 Process 101
File Descriptor Table o File Descriptor Table
0 1 2 3 4 5 0 1 2 3 4 5
ptr | ptr | ptr | ptr | ptr | ptr ptr | ptr | ptr | ptr | ptr | ptr
mode Read mode Write mode Write mode
cursor 0 cursor 0 cursor 0 cursor
(offset position) (offset position) (offset position) (offset position)
reference count 2 reference count 2 reference count 2 reference count
File Name (path) file_a.txt File Name (path) file_a.txt File Name (path) File_b.txt File Name (path)
vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info)

CIS 4480, Fall 2025

42

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Demo: Terminal Printing

Let’s go ahead and try to print to the

Process 100 terminal, without using STDOUT_FILNO!

File Descriptor Table

0 1 2
ptr | ptr | ptr

The terminal itself is treated as a file! Let’s see what that file is called.

mode Read mode Write mode Write mode
cursor 0 cursor 0 cursor 0 cursor
(offset position) (offset position) (offset position) (offset position)
reference count 1 reference count 1 reference count 1 reference count
File Name File Name File Name File Name
(path) (path) (path) (path)
vnode (FileSys vnode (FileSys vnode (FileSys vnode (FileSys
Info) Info) Info) Info)

e — -

Notice, that these file table entries are different, but they point to the same “file”. a3

University of Pennsylvania

LO4: Pipes & File Descriptors

CIS 4480, Fall 2025

Terminal Printing Demo

Process 100

File Descriptor Table

0 1 2 3
ptr | ptr | ptr | ptr
|
| —
mode Read mode Write mode Write mode W
cursor 0 cursor 0 cursor 0 cursor 0
(offset position) (offset position) (offset position) (offset position)
reference count 1 reference count 1 reference count 1 reference count 1
File Name File Name File Name File Name
(path) /dev/ttys006 (path) /dev/ttys006 (path) /dev/ttys006 (path) /dev/ttys006
vnode (FileSys vnode (FileSys vnode (FileSys vnode (FileSys
Info) Info) Info) Info)

L

<

<

Notice, that these file table entries are different, but they point to the same “file”.

44

University of Pennsylvania

LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Open File Table With Fork!

fork () Process 101
Process 100
File Descriptor Table - File Descriptor Table
0 1 2 3 0 1 2 3 4 5
ptr | ptr | ptr | ptr ptr | ptr | ptr | ptr | ptr | ptr
mode Read . mode Write mode Write mode W
cursor 0 cursor 0 cursor 0 cursor 0
(offset position) (offset position) (offset position) (offset position)
reference count 2 reference count 2 reference count 2 reference count 2
File Name File Name File Name File Name
(path) /dev/ttys006 (path) /dev/ttys006 (path) /dev/ttys006 (path) /dev/ttys006
vnode (FileSys vnode (FileSys vnode (FileSys vnode (FileSys
Info) Info) Info) Info)

>_ e
- Notice, that these file table entries are different, but they point to the same “file”.

45

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Lecture Outline

% Intro to file descriptors

» File Descriptors

+» Open File Table

+» Redirection & Pipes

% Unix Commands & Controls

46

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

REdirECting File Descri ptors printf isimplemented using write(STDOUT_FILENO...)

That’s why it is redirected after changing stdout

+» We can manipulate the File Table so that STDOUT_FILENO FD Table entry is
associated with another file.

= Now, any writes to STDOUT _FILENO are redirected!
+ To do this without anything fancy, let’s just close STDOUT_FILENO...

Process 100

open () Process 100
File Descriptor Table

File Descriptor Table

O 2 Xy 0 1 2

ptr ptr

ptr | ptr_not_stdout ptr

Demo: close stdout.c M

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Redirecting stdin/out/err/everything

+» We can manipulate the File Table so that a FD Table entry is associated with
another file.
< [int dup2(int oldfd, int newfd);]

" The file descriptor newfd is adjusted so that it now refers to the same open file description
as oldfd. (newfd is closed silently...shh)

[int dup2(int redirect_here, STDOUT_FILENO);]

" |n this example, STDOUT_FILENO, no longer refers to the terminal, but rather the FILE
associated with redirect here

Demo: dup stdout.c

48

University of Pennsylvania

LO4: Pipes & File Descriptors

We all need dup2()

Process 100

File Descriptor Table

[dupZ(new_file_fd, STDOUT_FILENO);

0 1 2 3
ptr | ptr | ptr | ptr

|

l » hew file fd = 3
mode Read mode Write mode Write mode W
cursor 0 cursor 0 cursor 0 cursor 0

(offset position) (offset position) (offset position) (offset position)

reference count 1 reference count 1 reference count 1 reference count 1

File Name File Name File Name File Name)

(path) /dev/ttys006 (path) /dev/ttys006 (path) /dev/ttys006 (path) my_file.txt

vnode (FileSys vnode (FileSys vnode (FileSys vnode (FileSys

Info) Info) Info) Info)

J—

p—

,,,,
,,,,,,,,,,,

CIS 4480, Fall 2025

49

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

We all need dup2()

[dupZ(new_file_fd, STDOUT_FILENO);]

Process 100
File Descriptor Table This first closes STDOUT_FILENO, and because ref_count is 0,
0 1 2 3 we remove it from the Open File Table
ptr ptr | ptC Then, it dupli h h new_file_fd
I e en, it up icates the entry to matc nNew_Tlie_
} -
mode Read mode Write mode w
cursor 0 cursor 0 cursor 0
(offset position) (offset position) (offset position)
reference count 1 reference count 1 reference count 1
Free space...
File Name File Name File Name .
(path) /dev/ttys006 (path) /dev/ttys006 (path) my_file.txt
vnode (FileSys vnode (FileSys vnode (FileSys
Info) Info) Info)

—
o)
/////////// Z /

> f «
50

University of Pennsylvania

LO4: Pipes & File Descriptors

We all need dup2()

CIS 4480, Fall 2025

Process 100

File Descriptor Table

[dupZ(new_file_fd, STDOUT_FILENO);]

0 1 2 3
ptr | ptr | ptr pt;

This first closes STDOUT_FILENO, and because ref_count is 0,

we remove it from the Open File Table

Then, it duplicates the entry to match new_file_ fd

——

mode Read

cursor 0
(offset position)
reference count 1

File Name

(path) /dev/ttys006
vnode (FileSys

Info)

Free space...

mode Write mode w

cursor 0 cursor 0
(offset position) (offset position)
reference count 1 reference count 2

File Name File Name .

(path) /dev/ttys006 (path) my_file.txt
vnode (FileSys vnode (FileSys

Info) Info)

p—

“—

aaaa
///////////

Note: Because they share this, they

both can change the cursor.
51

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Interprocess Communication: Pipes

int pipe(int pipefd[Z2]);

«» Creates a unidirectional data channel for IPC
= Communication through file descriptors! // POSIX ©

+» Takes in an array of two integers, and sets each integer to be a file descriptor
corresponding to an “end” of the pipe

+ pipefd[0]is the reading end of the pipe memorize: you read before you write
+ pipefd[1] isthe writing end of the pipe ris before w

read from here write to here

\

52

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Pipe Visualization

+» A pipe"file" that has distinct file descriptors for reading and writing. This "file"
only exists as long as there are references to it and is maintained by the OS.

= Data written to the pipe is stored in a buffer until it is read from the pipe.

Process 100

File Descriptor Table int plpE‘Fd[Z],
0 |t]2 int pipe(pipefd);

in | out | err

mode mode mode mode
cursor cursor cursor cursor
reference count reference count reference count reference count
File Name File Name File Name File Name

53

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Pipe Visualization

+» Creating a pipe initializes two file descriptors in the process FD Table.
+» Makes two entries in the system wide file table!

Process 100

File Descriptor Table int plp@‘Fd[Z],
o1 t]2] 3 4 int pipe(pipefd);

in | out | err | rpipe | wpipe

I
v

mode mode Read mode Write mode
cursor cursor 0 cursor 0 cursor
reference count .. reference count 1 reference count 1 reference count
File Name File Name pipe File Name pipe File Name

54

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Pipe Visualization

+» Creating a pipe initializes two file descriptors in the process FD Table.
+» Makes two entries in the system wide file table!

Process 100

File Descriptor Table int plp@‘Fd[Z],
o1 t]2] 3 4 int pipe(pipefd);

in | out | err | rpipe | wpipe

|
v
mode mode Read mode Write mode
cursor cursor 0 cursor 0 cursor
reference count .. reference count 1 reference count 1 reference count
File Name File Name pipe File Name pipe File Name

note: the buffer has limited space.
Kernal © If it is full, you can not write to it until you

read (consume) what is there.
buffer 55

University of Pennsylvania

@ Poll Everywhere

LO4: Pipes & File Descriptors CIS 4480, Fall 2025

pollev.com/cis5480

+» What does the parent print? What does the child print?

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

static char xmessage = "Hello!\n";
static char xp_message = "Byel\n";

int main(){

int pipe_fdg[2];
pipe(pipe_ffis); —

id = fork();
(pid == 0){

=N lose(pipe_fds[@]); //which side of the pipe is this?
write(pipe_fds[1], message, strlen(message) + 1);

char str[strlen(message) + 1];
ssize_t chars_read = read(pipe_fds[1], message, sizeof(str));
if(chars_read != —1){__""—'_
printf("%s", str);
¥
return EXIT_SUCCESS;
H

close(pipe_fds[1]); //which side of the pipe is this?
char str(strlen(message) + 1]; *
ssize_t chars_read = read(pipe_fds[@], str, sizeof(str));
if(chars_read != -1){ ==

printf("%ss", str);
H

write(pipe_fds[@], p_message, strlen(p_message) + 1); X
—

return EXIT_SUCCESS;

2.
p4

T X

/

pipe_poll.c s

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» What is the behavior of this program? Does read fail?

int main(){

int pipe_fds[2];
pipe(pipe_fds);

char str[10];
ssize_t chars_read = read(pipe_fds[0], str, sizeof(str));

return EXIT_SUCCESS;

pipe_wait.c -

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Pipes & EOF

» When reading, you read until you’ve read enough bytes or EOF.

*

+ When using a pipe, if there is nothing in the buffer to read, then you will wait
until there is.

= EOF will not be returned nor will 0, when there is nothing in the pipes buffer.

" You must write to the write end of the pipe for the corresponding read to return!

» EOF is only read from a pipe when:
= All write ends of the pipe are closed, it’s impossible to read anything from there.

" Ask yourself, how can a child indicate to it’s parent that it is done writing? :-)

« This will cause many bugs in your programs. Make sure to always close the
FD vou no longer need. Even one reference to the Write end of the pipe will
cause all READS to block. 58

University of Pennsylvania

Lecture Outline

% Intro to file descriptors

» File Descriptors: Big Picture
+ Redirection & Pipes

% Unix Commands & Controls

LO4: Pipes & File Descriptors

CIS 4480, Fall 2025

59

LO4: Pipes & File Descriptors CIS 4480, Fall 2025

University of Pennsylvania

Unix Shell

+» A user level process that reads in commands

" This is the terminal you use to compile, and run your code

+» Commands can either specify one of our programs to run or specify one of the

already installed programs
" Other programs can be installed easily.

% There are many commonly used bash programs, we will go over a few and
other important bash things.

60

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

.

+» "/"is used to connect directory and file names together to create a file path.
"= E.g."workspace/595/hello/"

+» "."is used to specify the current directory.

" Eg."./test suite" tells to look in the current directory for a file called
"test suite’

« "."is like "." but refers to the parent directory.

" Eg."./solution binaries/../test suite" would be effectively the same as
the previous example.

61

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Common Commands (Pt. 1)

+» "1s" lists out the entries in the specified directory (or current directory if
another directory is not specified

- "cd" changes directory to the specified directory

" Eg."ed ./solution binaries"

» 'exit" closes the terminal
- "mkdir" creates a directory of specified name

» "touch" creates a specified file. If the file already exists, it just updates the
file’s time stamp

62

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Common Commands (Pt. 2)

» 'echo" takes in command line args and simply prints those args to stdout
= "echo hello!" simply prints "hello!"

» 'we' reads a file or from stdin some contents. Prints out the line count, word
count, and byte count

» 'cat" prints out the contents of a specified file to stdout. If no file is specified,
prints out what is read from stdin

- "head" print the first 10 line of specified file or stdin to stdout

63

University of Pennsylvania LO4: Pipes & File Descriptors

CIS 4480, Fall 2025

Common Commands (Pt. 3)

+ "'grep" given a pattern (regular expression) searches for all occurrences of

such a pattern. Can search a file, search a directory recursively or stdin. Results
printed to stdout

» "history" prints out the history of commands used by you on the terminal

+ "eron" a program that regularly checks for and runs any commands that are
scheduled via "crontab"

+ "wget" specify a URL, and it will download that file for you

64

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Unix Shell Commands

+» Commands can also specify flags

"= Eg."1s —-1"lists the files in the specified directory in a more verbose format

+ Revisiting the design philosophy:
" Programs should "Do One Thing And Do It Well."
" Programs should be written to work together

= Write programs that handle text streams, since text streams is a universal interface.

« These programs can be easily combined with UNIX Shell operators to solve
more interesting problems

65

CIS 4480, Fall 2025

University of Pennsylvania LO4: Pipes & File Descriptors

Unix Shell Control Operators

» cmdl && cmd?2, used to run two commands. The second is only run if cmd1

doesn’t fail
" E.g. "make(&&/./test suite”

» cmdl | cmd2, creates a pipe so that the stdout of cmd1 is redirected to the

stdin of cmd?2 m

= E.g."history grep valgrind"

» cmd &, runs the process in the background, allowing you to immediately input
a hew command

66

LO4: Pipes & File Descriptors CIS 4480, Fall 2025

University of Pennsylvania

Unix Shell Control Operators

» cmd < file, redirects stdin to instead read from the specified file

" E.g."./penn-shredder < test case"

» cmd > file, redirects the stdout of a command to be written to the

specified file
" E.g."grep —-r kill > out.txt"

+» Complex example:
cat ./input.txt | ./numbers > out.txt

&& diff out.txt expected.txt

67

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ Which of the following commands will print the number of files in the current
directory?

cd: chavae directory

A.

B. cd. &&Iswc 1s: list directory contents

C. Is I we we: reads from stdin, prints the vamber
D. Is && wc of words, lines, and characters read.

E. The correct answer is not listed

F. We're lost...

68

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ |s this valid?
+ 1s | sort -r | cat | cat | cat | cat

= sort sorts the input in alphabetical order, -r is in reverse order.

69

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

@ Poll Everywhere Discuss

+ If there’s time, how would we even implement this?
= 1s | sort -r

+ How many processes are necessary, do we need pipes, what about dup2?

70

University of Pennsylvania LO4: Pipes & File Descriptors CIS 4480, Fall 2025

Penn-Shell

+» Making sense of all of this;
" Forking, Signal Handlers, Masking, Exec*
" File Descriptors, open/close/read/write, dup2, pipe..

71

	Default Section
	Slide 1: Pipes & File Descriptors Computer Operating Systems, Autumn 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: Signal Blocking
	Slide 5: sigset_t
	Slide 6: sigprocmask()
	Slide 7: sigprocmask()
	Slide 8: Recall: Buggy Code with Critical Section
	Slide 9: Recall: Buggy Code with Critical Section
	Slide 10
	Slide 11
	Slide 12: sigsuspend()
	Slide 13: sigwait()
	Slide 14: Process State Lifetime
	Slide 15: Lecture Outline
	Slide 16: What is a File?
	Slide 17: What is a file descriptor?
	Slide 18: stdin, stdout, stderr
	Slide 19: stdin, stdout, stderr
	Slide 20: open()
	Slide 21: *quick aside: Permissions
	Slide 22: *quick aside: Permissions
	Slide 23: close()
	Slide 24: Using Open(); & Close();
	Slide 25
	Slide 26
	Slide 27: For Completeness: other FD system calls.
	Slide 28: Lecture Outline
	Slide 29: File Descriptor Table
	Slide 30: File Descriptor Table
	Slide 31: File Descriptor Table
	Slide 32
	Slide 33: File Descriptor Table w Fork
	Slide 34: Example: Open after fork
	Slide 35: Example: Open before fork
	Slide 36: The Inhereted Descriptor Table
	Slide 37: File Descriptor Table
	Slide 38: Lecture Outline
	Slide 39: The Open File Table
	Slide 40: The Open File Table
	Slide 41: File Descriptor Table and Fork
	Slide 42: File Descriptor Table and Fork
	Slide 43: Demo: Terminal Printing
	Slide 44: Terminal Printing Demo
	Slide 45: Open File Table With Fork!
	Slide 46: Lecture Outline
	Slide 47: Redirecting File Descriptors
	Slide 48: Redirecting stdin/out/err/everything
	Slide 49: We all need dup2()
	Slide 50: We all need dup2()
	Slide 51: We all need dup2()
	Slide 52: Interprocess Communication: Pipes
	Slide 53: Pipe Visualization
	Slide 54: Pipe Visualization
	Slide 55: Pipe Visualization
	Slide 56
	Slide 57
	Slide 58: Pipes & EOF
	Slide 59: Lecture Outline
	Slide 60: Unix Shell
	Slide 61: . / ..
	Slide 62: Common Commands (Pt. 1)
	Slide 63: Common Commands (Pt. 2)
	Slide 64: Common Commands (Pt. 3)
	Slide 65: Unix Shell Commands
	Slide 66: Unix Shell Control Operators
	Slide 67: Unix Shell Control Operators
	Slide 68: Polls
	Slide 69: Polls
	Slide 70: Polls
	Slide 71: Penn-Shell

