
CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Pipes & File Descriptors
Computer Operating Systems, Autumn 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla

Vedansh Goenka Joy Liu

TAs:

Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane

Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones

Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng

Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Administrivia

❖ Project 0/1 penn-vec & penn-parser:

▪ Due this Friday at Midnight!

▪ You can use late tokens; 1 token is 2 days.

2

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Lecture Outline

❖ Quick Review: Signal Blocking

❖ Intro to file descriptors

❖ File Descriptors: Big picture

❖ Redirection & Pipes

❖ Unix Commands & Controls

3

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Signal Blocking

❖ A process maintains a set of signals called a “signal mask”

▪ Signals in that set/mask are “blocked”

▪ Signals that are “blocked” are delayed in being delivered to the process, once unblocked,
the process responds to the signals accordingly according to the corresponding disposition.

▪ Signals are added to a “pending set” of signals to be delivered once unblocked.

❖ This is not the same as ignoring a signal.

❖ Reminder: Process Blocked != Signals are Blocked 4

struct sigaction sa = {0};
sa.sa_handler = SIG_IGN;
sa.sa_flags = SA_RESTART;
sigaction(SIGNAL, &sa, NULL);

When you set a signal’s disposition to
SIG_IGN, then when a process receives

the signal it simply throws it away.

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

❖ sigset_t is a typedef’d bitset to maintain the set of signals blocked

❖ Sigemptyset

▪ initializes a sigset_t to be empty

❖ sigaddset
▪ Adds a signal to the specified signal set

❖ More functions & details in man pages
▪ (man sigemptyset)

❖ Example snippet:

sigset_t

5

int sigemptyset(sigset_t* set);

int sigaddset(sigset_t* set, int signum);

sigset_t mask;
if (sigemptyset(&mask) == -1) {
 // error
}
if (sigaddset(&mask, SIGINT) == -1) {
 // error
}

sigset_t types must be initialized by a call to
sigemptyset() when used with a
number of different sigsetops.
IF NOT THE BEHAVIOR IS UNDEFINED. ☺

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

sigprocmask()

❖ D

▪ Sets the process mask to be the specified process mask, set, depending
on the value of int how

• “how would you like me to use set?”

▪ const sigset_t* set

• Is the set you would like you use with how

▪ sigset_t* oldset

• Is set to the previous value of the signal mask.

6

int sigprocmask(int how, const sigset_t* set, sigset_t* oldset);

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

sigprocmask()

❖ D

▪ Sets the process mask to be the specified process “block” mask

▪ int how

• SIG_BLOCK

– The new mask is the union of the current mask and the specified set.

• SIG_UNBLOCK

– The new mask is the intersection of the current mask and the complement of
the specified set.

• SIG_SETMASK

– The current mask is replaced by the specified set.

7

int sigprocmask(int how, const sigset_t* set, sigset_t* oldset);

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Recall: Buggy Code with Critical Section

8

void handler(int signo){
 list_push(list, 4.48);
}
int main(int argc, char *argv[]){
 //sa setup omitted, handler set, etc.
 sigaction(SIGINT, &sa, NULL);

 float f;
 while (list_size(list) < 20){
 read_float(stdin, &f);
 list_push(list, f);
 }
}

// assume this works
void list_push(list* this, float f) {
 Node* node = malloc(sizeof(Node));
 if (node == NULL) {
 exit(EXIT_FAILURE);
 }
 node->value = f;
 node->next = NULL;
 this->tail->next = node;
 this->tail = node;
}

list_push can be called from two places.

Either from the main or from the signal handler

While the process is wrangling the values for
the linked-list, the process could be interrupted

and forced to run the signal handler.

Note: This refers to the English definition of "interrupt," not the computer science term.

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Recall: Buggy Code with Critical Section

9

// assume this works
void list_push(list* this, float f) {
 Node* node = malloc(sizeof(Node));
 if (node == NULL) {
 exit(EXIT_FAILURE);
 }
 node->value = f;
 node->next = NULL;
 this->tail->next = node;
 this->tail = node;
}

Which portion of the code can safely have its execution paused so the
signal handler can run before the original code resumes?

Ask yourself: where is global information being modified?

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

❖ How can we make this function signal safe?

10

pollev.com/cis5480

// assume this works
void list_push(list* this, float f) {
 Node* node = malloc(sizeof(Node));
 if (node == NULL) {
 exit(EXIT_FAILURE);
 }
 node->value = f;
 node->next = NULL;
 this->tail->next = node;
 this->tail = node;
}

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

11

pollev.com/cis5480

void list_push(list *this, float f){

sigset_t mask_sigint, prev_mask;
sigemptyset(&mask_sigint);
sigaddset(&mask_sigint, SIGINT);
sigprocmask(SIG_BLOCK, &mask_sigint, &prev_mask);

Node *node = malloc(sizeof(Node));
if (node == NULL){
exit(EXIT_FAILURE);
}

node->value = f;
node->next = NULL;
this->tail->next = node;
this->tail = node;
sigprocmask(SIG_SETMASK, &prev_mask, NULL);

}

❖ we set up the appropriate mask

❖ block those signals
❖ (in addition to those already perhaps blocked)

❖ set the mask using sigprocmask();

❖ restore the previous mask before we
entered the function call, list_push().

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

sigsuspend()

▪ Temporarily replaces process mask with specified one and suspends execution until a
signal that is not blocked is received

▪ If signal that is not blocked is received, the process ‘returns’ from sigsuspend

• The signal first triggers its’ handler. Then the mask in place before the suspend call is restored.

• If the signal received terminates the program, then the process never ‘returns’ from
sigsuspend.

❖ Instead of busy waiting and wasting CPU cycles (that can be used by other
processes), we can suspend process execution instead.

12

int sigsuspend(const sigset_t* mask);

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

sigwait()

▪ Temporarily suspends execution until a signal in mask becomes pending.

• IT DOES NOT INSTALL A MASK!

▪ Once a signal in the mask becomes pending, it removes it from the pending set and
returns it in the int *sig, parameter.

❖ For a signal to be pending, you would need to block it using sigprocmask

13

int sigwait(const sigset_t *mask, int *sig);

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Process State Lifetime

Process creation
e.g. fork()

Ready

Selected by the
kernel to run

After running for a bit
it is another processes “turn”

Process
finished

Running Zombie

blocked
Terminated

stopped

SIGTSTP
(ctrl + Z)

SIGCONT
received

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Lecture Outline

❖ Quick Review: Signal Blocking

❖ Intro to file descriptors

❖ File Descriptors: Big picture

❖ Redirection & Pipes

❖ Unix Commands & Controls

15

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

What is a File?

❖ Files are "non-volatile storage" that are external to a process:

▪ changes to a file persist beyond the lifetime of a process

▪ The same file can be access by multiple processes

▪ Stored on completely different hardware than normal process memory

❖ More details on Files later…

16

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

What is a file descriptor?

❖ A file descriptor is of type int

▪ A process specific unique id that can be used to refer to a file when invoking system calls

❖ A file descriptor may not refer to a literal file, but instead refer to something
that is “like a file”

▪ Terminal input/output

▪ Network connections

▪ Pipes (more later this lecture)

▪ Special devices

❖ These can all be used for read() and write()

17

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

stdin, stdout, stderr

❖ By default, there are three “files” open when a program starts
▪ stdin: for reading terminal input typed by a user

• stdin in C stdio.h

• System.in in Java

• sys.stdin in Python

▪ stdout: the normal terminal output. (buffered)

• stdout in C stdio.h

• System.out in Java

• sys.stdout in Python

▪ stderr: the terminal output for printing errors (unbuffered)

• stderr in C stdio.h

• System.err in Java

• sys.stdin in Python

18note: stdin, stdout, and stderr are pointers to a FILE struct in c.

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

stdin, stdout, stderr

❖ stdin, stdout, and stderr all have initial file descriptors constants defined in
unistd.h

❖ These will be allocated on default for a process

❖ Printing to standard out with printf will use write(STDOUT_FILENO, …)

19

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

open()

▪ pathname

• The name of the file you’d like you ‘open’

▪ flags

• Bitwise OR specifying behavior for the opening of the file

• MUST INCLUDE ONE OF THESE: O_RDONLY, O_WRONLY, O_RDWR

▪ perm

• Used only if flag O_CREAT is used to specify the set of permissions allowed in interacting
with file

– E.g. is the file, executable?, who can see it?, etc.

▪ Returns:

• a valid file descriptor or -1 on error

20

int open(const char* pathname, int flags, /* mode_t perm */)

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

*quick aside: Permissions

▪ perm

• Used only if flag O_CREAT is used

• specify the set of permissions allowed in interacting with file

– E.g. is the file, executable?, who can see it?, etc.

▪ Permissions are kept in three octets

• One for the User, the Group, and Other.

• r - read

• w - write

• x - execute

21

int open(const char* pathname, int flags, /* mode_t perm */)

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

*quick aside: Permissions

▪ perm

• Used only if flag O_CREAT is used

• specify the set of permissions allowed in interacting with file

– E.g. is the file, executable?, who can see it?, etc.

22

int open(const char* pathname, int flags, /* mode_t perm */)

rwx r-x r-x delay_sigint

1 1 1 1 0 1 1 0 1

The intricacies of what consists of the
group and other is irrelevant in this course.

0x7 0x5 0x5

User Group Other

In assignments, you will use the 0744 (rwxrw-rw-) octet
when creating new files.

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

close()

▪ fd

• The corresponding file descriptor that will be closed.

• No longer will this number refer to the file.

• Allows it for it to be reused

▪ Imperative once we talk about pipes and file references…

23

int close(int fd)

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Using Open(); & Close();

24

int main(int argc, char *argv[]){
// Open the specified source file for reading
int opened_file_fd = open(argv[1], O_RDONLY);

// Do some magic with the file descriptor

close(opened_file_fd);
return 0;

}

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

❖ Check out this example snippet below; what do these two flags indicate?

❖ Use the man page for open!

25

int main(int argc, char *argv[]){
// Open the specified source file for reading
int opened_file_fd = open(argv[1], O_RDONLY | O_CREAT | O_EXCL, default_perms);

// Do some magic with the file descriptor

close(opened_file_fd);
return 0;

}

discuss

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

❖ Check out this example snippet below; what do these two flags indicate?

26

int main(int argc, char *argv[]){
// Open the specified source file for reading
int opened_file_fd = open(argv[1], O_RDONLY | O_CREAT | O_EXCL, default_perms);

// Do some magic with the file descriptor

close(opened_file_fd);
return 0;

}

pollev.com/cis5480

This enforces that a file isn’t just created,
but created for the first time.

Please check out the man page for open.

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

For Completeness: other FD system calls.

▪ attempts to read up to count bytes from file descriptor fd into the buffer starting at
buf.

▪ On success, the number of bytes read is returned. On error, -1 is returned, and errno
is set to indicate the error. 0 is returned when EOF has been encountered (usually)…

▪ writes up to count bytes from the buffer starting at buf to the file referred to by the
file descriptor fd.

• On success, the number of bytes written is returned. On error, -1 is returned, and errno is set to
indicate the error.

27

ssize_t read(int fd, void *buf, size_t count);

ssize_t write(int fd, void *buf, size_t count);

https://man7.org/linux/man-pages/man3/errno.3.html
https://man7.org/linux/man-pages/man3/errno.3.html

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Lecture Outline

❖ Intro to file descriptors

❖ File Descriptors

❖ Open File Table

❖ Redirection & Pipes

❖ Unix Commands & Controls

28

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

File Descriptor Table

❖ Each process has its own file descriptor table managed by the OS

▪ The table maintains information about the respective files the process has references to.

❖ A file descriptor is an index into a processes FD table.

29

0 1 2

File Descriptor Table for Process 100

Terminal

Not an accurate depiction.

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

File Descriptor Table

❖ Each process has its own file descriptor table managed by the OS

▪ The table maintains information about the respective files the process has references to.

❖ A file descriptor is an index into a processes FD table.

30

open("Foo.txt", O_RDWR);

0 1 2 3

File Descriptor Table for Process 100

Terminal

Not an accurate depiction.

Foo.txt

Note: the lowest # fd is given when possible.

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

File Descriptor Table

❖ Each process has its own file descriptor table managed by the OS

▪ The table maintains information about the respective files the process has references to.

❖ A file descriptor is an index into a processes FD table.

31

0 1 2 3

File Descriptor Table for Process 100

Terminal

Not an accurate depiction.

Foo.txt

Note: the lowest # fd is given when possible.

0 1 2 3

File Descriptor Table for Process 101

Foo.txt

open("Foo.txt", O_RDWR);

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

❖ What if there was only one global file descriptor table? What negative affects
may this have?

32

pollev.com/cis5480

1 2 3 4

File Descriptor Table for Process 100

File Descriptor Table for Process 101

File Descriptor Table for Process 102

File Descriptor Table for Process 103

File Descriptor Table for Process 104

File Descriptor Table for Process 105

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

File Descriptor Table w Fork

❖ Each process will have its own file descriptor table managed by the OS

❖ Fork will make a copy of the parent’s file descriptor table for the child

33

0 1 2

File Descriptor Table for Process 100

Terminal

fork()

0 1 2

File Descriptor Table for Process 101

Terminal

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Example: Open after fork

❖ Each process will have its own file descriptor table managed by the OS

❖ Fork will make a copy of the parent’s file descriptor table for the child

34

0 1 2

File Descriptor Table for Process 100

Terminal

0 1 2

File Descriptor Table for Process 101

Terminal
Child is unaffected by parent

calling open!shell-soln.c

if(pid != 0){
 open("shell-soln.c", O_RDWR);
}

pid_t pid = fork();

0 1 2 3

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Example: Open before fork

❖ Fork will make an IDENTICAL copy of the parent’s file descriptor table

❖ This seems like overkill – we have the same file opened twice…

35

0 1 2 3

File Descriptor Table for Process 100

Terminal shell-soln.c

open("shell-soln.c", O_RDWR);

fork()

0 1 2 3

File Descriptor Table for Process 101

Terminal shell-soln.c

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

The Inhereted Descriptor Table

❖ Fork will make an IDENTICAL copy of the parent’s file descriptor table

❖ A somewhat more accurate diagram…. ☺

36

0 1 2 3

File Descriptor Table for Process 100

Terminal

0 1 2 3

File Descriptor Table for Process 101

shell-soln.c open("shell-soln.c", O_RDWR);

fork()

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

File Descriptor Table

❖ Each process has its own file descriptor table managed by the OS

❖ A file descriptor is an index into a processes FD table.

❖ Children made via fork inherent an identical FD table from their parent.

▪ Those files are not closed nor are they modified in any way. They are the exact same files
referred to by the parent.

❖ Files opened exclusively in a process after a fork do not modify the FD table of
another process, child or parent.

37

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Lecture Outline

❖ Intro to file descriptors

❖ File Descriptors

❖ Open File Table

❖ Redirection & Pipes

❖ Unix Commands & Controls

38

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

The Open File Table

❖ Each process has its own file descriptor table

▪ We index into the file descriptor table using the file descriptor

0 1 2 3 4 5 …

ptr ptr ptr ptr ptr ptr …

File Descriptor Table Each entry in the FD Table is a pointer
to a system wide file table mainted by the kernel!

mode Read mode Write mode Write mode ….

cursor
(offset position)

0 cursor
(offset position)

0 cursor
(offset position)

0 cursor
(offset position)

….

reference count 1 reference count 1 reference count 1 reference count …

File Name (path) file_a.txt File Name (path) file_a.txt File Name (path) File_b.txt File Name (path) …

vnode (FileSys Info) …. vnode (FileSys Info) …. vnode (FileSys Info) …. vnode (FileSys Info) …

Process 100

As we open up more files, using open(), not only do we
received a FD but an entry is made in the open file table!

39

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

The Open File Table

❖ Each process has its own file descriptor table

▪ We index into the file descriptor table using the file descriptor

40

0 1 2 3 4 5 …

ptr ptr ptr ptr ptr ptr …

File Descriptor Table

mode Read mode Write mode Write mode ….

cursor
(offset position)

0 cursor
(offset position)

0 cursor
(offset position)

0 cursor
(offset position)

….

reference count 1 reference count 1 reference count 1 reference count …

File Name (path) file_a.txt File Name (path) file_a.txt File Name (path) File_b.txt File Name (path) …

vnode (FileSys Info) …. vnode (FileSys Info) …. vnode (FileSys Info) …. vnode (FileSys Info) …

Process 100 cursor: keeps track of where in the file
we are either “reading” or writing” to.

This is what f/lseek()

manipulates.

ref_count: the number of references to
that entry in the File Table

file_name: the “name” of the corresponding file

vnode/inode: don’t worry yet….

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

File Descriptor Table and Fork

❖ When a process forks, the child inherits an identical FD Table!

41

fork()

0 1 2 3 4 5 …

ptr ptr ptr ptr ptr ptr …

File Descriptor Table
Process 100

mode Read mode Write mode Write mode ….

cursor
(offset position)

0 cursor
(offset position)

0 cursor
(offset position)

0 cursor
(offset position)

….

reference count 1 reference count 1 reference count 1 reference count …

File Name (path) file_a.txt File Name (path) file_a.txt File Name (path) File_b.txt File Name (path) …

vnode (FileSys Info) …. vnode (FileSys Info) …. vnode (FileSys Info) …. vnode (FileSys Info) …

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

File Descriptor Table and Fork

❖ When a process forks, the child inherits an identical FD Table!

42

0 1 2 3 4 5 …

ptr ptr ptr ptr ptr ptr …

mode Read mode Write mode Write mode ….

cursor
(offset position)

0 cursor
(offset position)

0 cursor
(offset position)

0 cursor
(offset position)

….

reference count 2 reference count 2 reference count 2 reference count …

File Name (path) file_a.txt File Name (path) file_a.txt File Name (path) File_b.txt File Name (path) …

vnode (FileSys Info) …. vnode (FileSys Info) …. vnode (FileSys Info) …. vnode (FileSys Info) …

File Descriptor Table
Process 100

fork()

File Descriptor Table
Process 101

0 1 2 3 4 5 …

ptr ptr ptr ptr ptr ptr …

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Demo: Terminal Printing

43

0 1 2 …

ptr ptr ptr …

mode Read mode Write mode Write mode ….

cursor
(offset position)

0
cursor

(offset position)
0

cursor
(offset position)

0
cursor

(offset position)
….

reference count 1 reference count 1 reference count 1 reference count …

File Name
(path)

…. File Name
(path)

…. File Name
(path)

…. File Name
(path)

…

vnode (FileSys
Info)

…. vnode (FileSys
Info)

…. vnode (FileSys
Info)

…. vnode (FileSys
Info)

…

File Descriptor Table
Process 100

Notice, that these file table entries are different, but they point to the same “file”.

Let’s go ahead and try to print to the
terminal, without using STDOUT_FILNO!

The terminal itself is treated as a file! Let’s see what that file is called.

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Terminal Printing Demo

44

0 1 2 3 …

ptr ptr ptr ptr …

mode Read mode Write mode Write mode W

cursor
(offset position)

0
cursor

(offset position)
0

cursor
(offset position)

0
cursor

(offset position)
0

reference count 1 reference count 1 reference count 1 reference count 1

File Name
(path)

/dev/ttys006
File Name

(path)
/dev/ttys006

File Name
(path)

/dev/ttys006
File Name

(path)
/dev/ttys006

vnode (FileSys
Info)

….
vnode (FileSys

Info)
….

vnode (FileSys
Info)

….
vnode (FileSys

Info)
…

File Descriptor Table
Process 100

Notice, that these file table entries are different, but they point to the same “file”.

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Open File Table With Fork!

45

0 1 2 3 …

ptr ptr ptr ptr …

mode Read mode Write mode Write mode W

cursor
(offset position)

0
cursor

(offset position)
0

cursor
(offset position)

0
cursor

(offset position)
0

reference count 2 reference count 2 reference count 2 reference count 2

File Name
(path)

/dev/ttys006
File Name

(path)
/dev/ttys006

File Name
(path)

/dev/ttys006
File Name

(path)
/dev/ttys006

vnode (FileSys
Info)

….
vnode (FileSys

Info)
….

vnode (FileSys
Info)

….
vnode (FileSys

Info)
…

File Descriptor Table
Process 100

Notice, that these file table entries are different, but they point to the same “file”.

fork()

File Descriptor Table

Process 101

0 1 2 3 4 5 …

ptr ptr ptr ptr ptr ptr …

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Lecture Outline

❖ Intro to file descriptors

❖ File Descriptors

❖ Open File Table

❖ Redirection & Pipes

❖ Unix Commands & Controls

46

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Redirecting File Descriptors

❖ We can manipulate the File Table so that STDOUT_FILENO FD Table entry is
associated with another file.

▪ Now, any writes to STDOUT_FILENO are redirected!

❖ To do this without anything fancy, let’s just close STDOUT_FILENO…

47

printf is implemented using write(STDOUT_FILENO….)
That’s why it is redirected after changing stdout

Demo: close_stdout.c

File Descriptor Table
Process 100

0 2 …

ptr ptr …

open()

File Descriptor Table
Process 100

0 1 2 …

ptr ptr_not_stdout ptr …

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Redirecting stdin/out/err/everything

❖ We can manipulate the File Table so that a FD Table entry is associated with
another file.

❖ dup2()

▪ The file descriptor newfd is adjusted so that it now refers to the same open file description
as oldfd. (newfd is closed silently…shh)

▪ In this example, STDOUT_FILENO, no longer refers to the terminal, but rather the FILE
associated with redirect_here

48

int dup2(int oldfd, int newfd);

int dup2(int redirect_here, STDOUT_FILENO);

Demo: dup_stdout.c

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

We all need dup2()

49

0 1 2 3 …

ptr ptr ptr ptr …

mode Read mode Write mode Write mode W

cursor
(offset position)

0
cursor

(offset position)
0

cursor
(offset position)

0
cursor

(offset position)
0

reference count 1 reference count 1 reference count 1 reference count 1

File Name
(path)

/dev/ttys006
File Name

(path)
/dev/ttys006

File Name
(path)

/dev/ttys006
File Name

(path)
my_file.txt

vnode (FileSys
Info)

….
vnode (FileSys

Info)
….

vnode (FileSys
Info)

….
vnode (FileSys

Info)
…

File Descriptor Table
Process 100 dup2(new_file_fd, STDOUT_FILENO);

new_file_fd = 3

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

We all need dup2()

50

0 1 2 3 …

ptr ptr ptr …

mode Read

Free space…

mode Write mode W

cursor
(offset position)

0
cursor

(offset position)
0

cursor
(offset position)

0

reference count 1 reference count 1 reference count 1

File Name
(path)

/dev/ttys006
File Name

(path)
/dev/ttys006

File Name
(path)

my_file.txt

vnode (FileSys
Info)

….
vnode (FileSys

Info)
….

vnode (FileSys
Info)

…

File Descriptor Table
Process 100

dup2(new_file_fd, STDOUT_FILENO);

Then, it duplicates the entry to match new_file_fd

This first closes STDOUT_FILENO, and because ref_count is 0,
we remove it from the Open File Table

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

We all need dup2()

51

0 1 2 3 …

ptr ptr ptr ptr …

mode Read

Free space…

mode Write mode W

cursor
(offset position)

0
cursor

(offset position)
0

cursor
(offset position)

0

reference count 1 reference count 1 reference count 2

File Name
(path)

/dev/ttys006
File Name

(path)
/dev/ttys006

File Name
(path)

my_file.txt

vnode (FileSys
Info)

….
vnode (FileSys

Info)
….

vnode (FileSys
Info)

…

File Descriptor Table
Process 100

dup2(new_file_fd, STDOUT_FILENO);

This first closes STDOUT_FILENO, and because ref_count is 0,
we remove it from the Open File Table

Then, it duplicates the entry to match new_file_fd

Note: Because they share this, they
both can change the cursor.

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Interprocess Communication: Pipes

❖ Creates a unidirectional data channel for IPC

▪ Communication through file descriptors! // POSIX ☺

❖ Takes in an array of two integers, and sets each integer to be a file descriptor
corresponding to an “end” of the pipe

❖ pipefd[0] is the reading end of the pipe

❖ pipefd[1] is the writing end of the pipe

52

int pipe(int pipefd[2]);

memorize: you read before you write
r is before w

read from here write to here

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Pipe Visualization

❖ A pipe"file" that has distinct file descriptors for reading and writing. This "file"
only exists as long as there are references to it and is maintained by the OS.

▪ Data written to the pipe is stored in a buffer until it is read from the pipe.

53

0 1 2

in out err

mode …. mode …. mode …. mode ….

cursor …. cursor …. cursor …. cursor ….

reference count … reference count … reference count … reference count …

File Name … File Name … File Name … File Name …

File Descriptor Table
Process 100

int pipefd[2];
int pipe(pipefd);

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Pipe Visualization

❖ Creating a pipe initializes two file descriptors in the process FD Table.

❖ Makes two entries in the system wide file table!

54

mode …. mode Read mode Write mode ….

cursor …. cursor 0 cursor 0 cursor ….

reference count … reference count 1 reference count 1 reference count …

File Name … File Name pipe File Name pipe File Name …

int pipefd[2];
int pipe(pipefd);

File Descriptor Table
Process 100

0 1 2 3 4

in out err rpipe wpipe

?

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Pipe Visualization

❖ Creating a pipe initializes two file descriptors in the process FD Table.

❖ Makes two entries in the system wide file table!

55

mode …. mode Read mode Write mode ….

cursor …. cursor 0 cursor 0 cursor ….

reference count … reference count 1 reference count 1 reference count …

File Name … File Name pipe File Name pipe File Name …

int pipefd[2];
int pipe(pipefd);

File Descriptor Table
Process 100

0 1 2 3 4

in out err rpipe wpipe

Kernal ☺

buffer

note: the buffer has limited space.
If it is full, you can not write to it until you
read (consume) what is there.

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

❖ What does the parent print? What does the child print?

56

pollev.com/cis5480

pipe_poll.c

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

❖ What is the behavior of this program? Does read fail?

57

pollev.com/cis5480

pipe_wait.c

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Pipes & EOF

❖ When reading, you read until you’ve read enough bytes or EOF.

❖ When using a pipe, if there is nothing in the buffer to read, then you will wait
until there is.

▪ EOF will not be returned nor will 0, when there is nothing in the pipes buffer.

▪ You must write to the write end of the pipe for the corresponding read to return!

❖ EOF is only read from a pipe when:
▪ All write ends of the pipe are closed, it’s impossible to read anything from there.

▪ Ask yourself, how can a child indicate to it’s parent that it is done writing? :-)

❖ This will cause many bugs in your programs. Make sure to always close the
FD you no longer need. Even one reference to the Write end of the pipe will
cause all READS to block. 58

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Lecture Outline

❖ Intro to file descriptors

❖ File Descriptors: Big Picture

❖ Redirection & Pipes

❖ Unix Commands & Controls

59

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Unix Shell

❖ A user level process that reads in commands

▪ This is the terminal you use to compile, and run your code

❖ Commands can either specify one of our programs to run or specify one of the
already installed programs

▪ Other programs can be installed easily.

❖ There are many commonly used bash programs, we will go over a few and
other important bash things.

60

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

. / ..

❖ "/" is used to connect directory and file names together to create a file path.
▪ E.g. "workspace/595/hello/"

❖ "." is used to specify the current directory.
▪ E.g. "./test_suite" tells to look in the current directory for a file called

"test_suite"

❖ ".." is like "." but refers to the parent directory.
▪ E.g. "./solution_binaries/../test_suite" would be effectively the same as

the previous example.

61

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Common Commands (Pt. 1)

❖ "ls" lists out the entries in the specified directory (or current directory if
another directory is not specified

❖ "cd" changes directory to the specified directory

▪ E.g. "cd ./solution_binaries"

❖ "exit" closes the terminal

❖ "mkdir" creates a directory of specified name

❖ "touch" creates a specified file. If the file already exists, it just updates the
file’s time stamp

62

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Common Commands (Pt. 2)

❖ "echo" takes in command line args and simply prints those args to stdout

▪ "echo hello!" simply prints "hello!"

❖ "wc" reads a file or from stdin some contents. Prints out the line count, word
count, and byte count

❖ "cat" prints out the contents of a specified file to stdout. If no file is specified,
prints out what is read from stdin

❖ "head" print the first 10 line of specified file or stdin to stdout

63

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Common Commands (Pt. 3)

❖ "grep" given a pattern (regular expression) searches for all occurrences of
such a pattern. Can search a file, search a directory recursively or stdin. Results
printed to stdout

❖ "history" prints out the history of commands used by you on the terminal

❖ "cron" a program that regularly checks for and runs any commands that are
scheduled via "crontab"

❖ "wget" specify a URL, and it will download that file for you

64

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Unix Shell Commands

❖ Commands can also specify flags
▪ E.g. "ls -l" lists the files in the specified directory in a more verbose format

❖ Revisiting the design philosophy:
▪ Programs should "Do One Thing And Do It Well."

▪ Programs should be written to work together

▪ Write programs that handle text streams, since text streams is a universal interface.

❖ These programs can be easily combined with UNIX Shell operators to solve
more interesting problems

65

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Unix Shell Control Operators

❖ cmd1 && cmd2, used to run two commands. The second is only run if cmd1
doesn’t fail
▪ E.g. "make && ./test_suite"

❖ cmd1 | cmd2, creates a pipe so that the stdout of cmd1 is redirected to the
stdin of cmd2
▪ E.g. "history | grep valgrind"

❖ cmd &, runs the process in the background, allowing you to immediately input
a new command

66

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Unix Shell Control Operators

❖ cmd < file, redirects stdin to instead read from the specified file

▪ E.g. "./penn-shredder < test_case"

❖ cmd > file, redirects the stdout of a command to be written to the
specified file
▪ E.g. "grep –r kill > out.txt"

❖ Complex example:
 cat ./input.txt | ./numbers > out.txt
 && diff out.txt expected.txt

67

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Polls

❖ Which of the following commands will print the number of files in the current
directory?

A. ls > wc

B. cd . && ls wc

C. ls | wc

D. ls && wc

E. The correct answer is not listed
F. We’re lost…

68

cd: change directory

ls: list directory contents

wc: reads from stdin, prints the number

of words, lines, and characters read.

pollev.com/cis5480

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Polls

❖ Is this valid?

❖ ls | sort -r | cat | cat | cat | cat

▪ sort sorts the input in alphabetical order, -r is in reverse order.

69

pollev.com/cis5480

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Polls

❖ If there’s time, how would we even implement this?

▪ ls | sort –r

❖ How many processes are necessary, do we need pipes, what about dup2?

70

Discuss

CIS 4480, Fall 2025L04: Pipes & File DescriptorsUniversity of Pennsylvania

Penn-Shell

❖ Making sense of all of this;

▪ Forking, Signal Handlers, Masking, Exec*

▪ File Descriptors, open/close/read/write, dup2,pipe…

71

	Default Section
	Slide 1: Pipes & File Descriptors Computer Operating Systems, Autumn 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: Signal Blocking
	Slide 5: sigset_t
	Slide 6: sigprocmask()
	Slide 7: sigprocmask()
	Slide 8: Recall: Buggy Code with Critical Section
	Slide 9: Recall: Buggy Code with Critical Section
	Slide 10
	Slide 11
	Slide 12: sigsuspend()
	Slide 13: sigwait()
	Slide 14: Process State Lifetime
	Slide 15: Lecture Outline
	Slide 16: What is a File?
	Slide 17: What is a file descriptor?
	Slide 18: stdin, stdout, stderr
	Slide 19: stdin, stdout, stderr
	Slide 20: open()
	Slide 21: *quick aside: Permissions
	Slide 22: *quick aside: Permissions
	Slide 23: close()
	Slide 24: Using Open(); & Close();
	Slide 25
	Slide 26
	Slide 27: For Completeness: other FD system calls.
	Slide 28: Lecture Outline
	Slide 29: File Descriptor Table
	Slide 30: File Descriptor Table
	Slide 31: File Descriptor Table
	Slide 32
	Slide 33: File Descriptor Table w Fork
	Slide 34: Example: Open after fork
	Slide 35: Example: Open before fork
	Slide 36: The Inhereted Descriptor Table
	Slide 37: File Descriptor Table
	Slide 38: Lecture Outline
	Slide 39: The Open File Table
	Slide 40: The Open File Table
	Slide 41: File Descriptor Table and Fork
	Slide 42: File Descriptor Table and Fork
	Slide 43: Demo: Terminal Printing
	Slide 44: Terminal Printing Demo
	Slide 45: Open File Table With Fork!
	Slide 46: Lecture Outline
	Slide 47: Redirecting File Descriptors
	Slide 48: Redirecting stdin/out/err/everything
	Slide 49: We all need dup2()
	Slide 50: We all need dup2()
	Slide 51: We all need dup2()
	Slide 52: Interprocess Communication: Pipes
	Slide 53: Pipe Visualization
	Slide 54: Pipe Visualization
	Slide 55: Pipe Visualization
	Slide 56
	Slide 57
	Slide 58: Pipes & EOF
	Slide 59: Lecture Outline
	Slide 60: Unix Shell
	Slide 61: . / ..
	Slide 62: Common Commands (Pt. 1)
	Slide 63: Common Commands (Pt. 2)
	Slide 64: Common Commands (Pt. 3)
	Slide 65: Unix Shell Commands
	Slide 66: Unix Shell Control Operators
	Slide 67: Unix Shell Control Operators
	Slide 68: Polls
	Slide 69: Polls
	Slide 70: Polls
	Slide 71: Penn-Shell

