% University of Pennsylvania

More Pipes and Dup2

LO5: More Pipes and Dup2

Computer Operating Systems, Fall 2025

Instructors:

Head TAs:

TAS:

Eric Zou

Zihao Zhou
Connor Cummings
Bo Sun

Sana Manesh

Joel Ramirez

Maya Huizar

Vedansh Goenka

Joseph Dattilo
Eric Lee
Shreya Mukunthan

Steven Chang

Akash Kaukuntla
Joy Liu

Aniket Ghorpade
Shruti Agarwal
Alexander Mehta

Rania Souissi

Shriya Sane
Yemisi Jones
Raymond Feng
Rashi Agrawal

CIS 4480, Fall 2025

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

Administrivia

Penn-Vec and Penn-Shredder
= Due Tomorrow @ midnight! Go to office hours if you need help!

= Late due date, with two late tokens is Tuesday @ Midnight.
Penn-Shell

"= To be released on Saturday!

= Find your partners! You will sign up with your partners as a group on Canvas and on Github when
the assighment is out.

= |f you are without a partner by 09/17 at 5PM, we will automatically pair people together.
« SO FIND SOMEONE!

= Broken up into two milestone, the first is due @ 11:59 pm on 09/24

= The entire assighment is due 10/03 @ midnight.

Project 1 Peer Evaluation goes out Saturday.

" Due @ 11:59pmon 09/22

= This is where your partner will critique your code...

CIS 4480, Fall 2025

LO5: More Pipes and Dup2

University of Pennsylvania

Lecture Outline

+ Quick Review

" File Descriptors

= File Table

" Open File Table
% Pipes and Dup
+» pipe2

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

File Descriptor Table

+ Each process has its own file descriptor table managed by the OS

" The table maintains information about the respective files the process has references to.

+ A file descriptor is an index into a processes FD table.

File Descriptor Table for Process 100
0 1 2

Terminal

>

Not an accurate depiction.

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

File Descriptor Table w/Fork

+» Fork will make an IDENTICAL copy of the parent’s file descriptor table

+ If a file is opened before forking, child processes will inherit that file descriptor
from the parent & point to same file reference!

File Descriptor Table for Process 100 File Descriptor Table for Process 100
0 1 2 3 0 1 2 3
\ / open("shell-soln.c", O RDWR);

Terminal shell-soln.c fork();

> ’ ,,,,,,,,,,,,,

v

University of Pennsylvania

The Open File Table

Process 100

File Descriptor Table

LO5: More Pipes and Dup2

0 1 2 3 4
ptr | ptr | ptr | ptr | ptr | ptr
mode mode Read mode Write mode Write mode
cursor cursor 0 cursor 0 cursor 0 cursor
ref count ref count 1 ref count 1 ref count 1 ref count
file name file name file_a.txt | file name file_a.txt | file name File_b.txt | file name

*The v/inode row is removed since it's not relevant at the moment.

CIS 4480, Fall 2025

University of Pennsylvania

The Open File Table

LO5: More Pipes and Dup2

fork ()
Process 100 -
File Descriptor Table
0 1 2 3 4
ptr | ptr | ptr | ptr | ptr | ptr
mode mode Read mode Write mode Write mode
cursor cursor 0 cursor 0 cursor 0 cursor
ref count ref count 1 ref count 1 ref count 1 ref count
file name file name file_a.txt | file name file_a.txt | file name File_b.txt | file name

*The v/inode row is removed since it's not relevant at the moment.

CIS 4480, Fall 2025

University of Pennsylvania LO5: More Pipes and Dup2

CIS 4480, Fall 2025

The Open File Table

reference counts are incremented with fork!

*The v/inode row is removed since it's not relevant at the moment.

fork ()
Process 100 Process 101
File Descriptor Table File Descriptor Table
0 1 2 3 4 5 0 1 2 3 4 5
ptr | ptr | ptr | ptr | ptr | ptr ptr | ptr | ptr | ptr | ptr | pte
mode mode Read mode Write mode Write mode
cursor cursor 0 cursor 0 cursor 0 cursor
ref count ref count 2 ref count 2 ref count 2 ref count
file name file name file_a.txt | file name file_a.txt | file name File_b.txt | file name

University of Pennsylvania

The Open File Table

LO5: More Pipes and Dup2

CIS 4480, Fall 2025

fork ()
Process 100 Process 101
File Descriptor Table File Descriptor Table
0 1 2 3 4 0 2 3 4 5
ptr | ptr | ptr | ptr | ptr | ptr ptr | ptr | ptr | ptr | ptr | pte
mode mode Read mode Write mode Write mode
cursor cursor 0 cursor 0 cursor 0 cursor
ref count ref count 2 ref count 2 ref count 2 ref count
file name . filename file_a.txt | file name file_a.txt | file name File_b.txt | file name
\ \ _ Thisset’s the stage for Inter Process communication via pipes...

’ ST

’ ////www/ﬂ

University of Pennsylvania LO5: More Pipes and Dup2

Lecture Outline

% Quick Review
= File Descriptors
= File Table
= QOpen File Table

% Pipes and Dup
+» pipe2

CIS 4480, Fall 2025

10

University of Pennsylvania

LO5: More Pipes and Dup2

Interprocess Communication: Pipes

int pipe(int pipefd[2]);

CIS 4480, Fall 2025

+» Takes in an array of two integers, and sets each integer to be a file descriptor

corresponding to an “end” of the pipe
+~ pipefd[@] isthe reading end of the pipe
+ pipefd[1l] isthe writing end of the pipe

int pipefd[2];
int pipe(&pipefd);

11

Visualizing Pipes

University of Pennsylvania

Process 100

File Descriptor Table

LO5: More Pipes and Dup2

0 1 2 3 4
ptr ptr ptr ptr ptr
mode mode Read mode Write mode
cursor cursor 0 cursor 0 cursor
ref count ref count 1 ref count 1 ref count
file name file name pipe | file name pipe file name

Kernal ©

buffer

note: the buffer has limited space.

CIS 4480, Fall 2025

If it is full, you can not write to it until you read (consume) what is there. 12

University of Pennsylvania

LO5: More Pipes and Dup2

Visualizing Pipes with Fork

fork ()
Process 100
File Descriptor Table
0 1 2 3 4
ptr ptr ptr ptr ptr

mode mode Read mode Write mode

cursor cursor 0 cursor 0 cursor
ref count ref count 1 ref count 1 ref count
file name file name pipe | file name pipe file name

Kernal © note: the buffer has limited space.
buffer

CIS 4480, Fall 2025

If it is full, you can not write to it until you read (consume) what is there. 13

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

Visualizing Pipes with Fork

fork ()
Process 100 Process 101
File Descriptor Table File Descriptor Table
0 1 2 3 4 0 1 2 3 4
ptr ptr ptr ptr ptr ptr ptr ptr ptr ptr
mode mode Read mode Write mode .
Here, both processes can read and write,
cursor cursor 0 cursor 0 cursor . . .
but typically, one reads while the other writes.
ref count .. ref count 2 ref count 2 ref count
filk name .. filename pipe | filename pipe | file name .. You do not want this unless you know what you’re doing.
Kernal ©

buffer

14

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

Walk through short program

Process 100
File Descriptor Table

0 1 2 3 4
ptr ptr ptr ptr ptr

//;ﬁt pipefds[2]; <‘\\

pipe(&pipefds); «

pid t child pid = fork();

mode mode Read mode Write mode i‘F(Child_pi(fl == 0){ .
close(pipefds[1]); //close write end
cursor cursor 0 cursor 0 cursor -
//do some reading...
refcount .. ref count 1 ref count 1 ref count ... return EXIT_SUCCESS;
file name ... filename pipe | file name pipe file name .. }
close(pipefds[@]); //parent doesn’t read
//do some writting

//do relevant cleanup
Kernal © return EXIT_SUCCESS; <///

buffer \

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

Walk through short program

fork ()
Process 100 Process 101
File Descriptor Table File Descriptor Table
0 1 2 3 4 0 1 2 3 4
ptr ptr ptr ptr ptr ptr ptr ptr ptr ptr
//;;t pipefds[2]; <‘\\
pipe(&pipefds);
pid t child pid = fork(); <
mode mode Read mode Write mode i‘F(Child_pid == @){
close(pipefds[1]); //close write end
cursor cursor 0 cursor 0 cursor c
//do some reading...
refcount .. ref count 2 ref count 2 ref count ... return EXIT_SUCCESS;
file name ... filename pipe | file name pipe file name .. }
close(pipefds[@]); //parent doesn’t read
//do some writting
//do relevant cleanup

Kernal © return EXIT_SUCCESS; /

buffer \

CIS 4480, Fall 2025

LO5: More Pipes and Dup2

University of Pennsylvania

Walk through short program

Process 101
File Descriptor Table

Process 100
File Descriptor Table

0 1 2 3 4 0 1 2 3 4
ptr | null

ptr ptr ptr

ptr ptr ptr ptr

//;;t pipefds[2]; <‘\\
pipe(&pipefds);
pid_t child_pid = fork();
mode mode Read mode Write mode 1‘F(Chlld_pl(fl == 0){ .
close(pipefds[1]); //close write end
cursor cursor 0 cursor 0 cursor - <
//do some reading...
ref count ref count 2 ref count 1 ref count return EXIT_SUCCESS;
file name file name pipe | file name pipe file name }
close(pipefds[@]); //parent doesn’t read
//do some writting
‘ //do relevant cleanup
Kernal © return EXIT_SUCCESS;
buffer \ /

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

Walk through short program

Process 100 Process 101
File Descriptor Table File Descriptor Table
0 1 2 3 4 0 1 2 3 4
ptr ptr ptr | null | ptr ptr ptr ptr ptr | null

//;;t pipefds[2]; <‘\\

pipe(&pipefds);

pid t child pid = fork();

mode mode Read mode Write mode i‘F(Child_pi(fl == 0){ .
close(pipefds[1]); //close write end
cursor cursor 0 cursor 0 cursor -
//do some reading...
refcount .. ref count 1 ref count 1 ref count ... return EXIT_SUCCESS;
file name ... filename pipe | file name pipe file name .. }
close(pipefds[@]); //parent doesn’t read
//do some writting -

//do relevant cleanup
Kernal © return EXIT_SUCCESS; /

buffer \

University of Pennsylvania

LO5: More Pipes and Dup2

Final State of Short Program

Process 100

File Descriptor Table

CIS 4480, Fall 2025

Process 101

File Descriptor Table

0 1 2 3 4 0 1 2 3 4
ptr ptr ptr | null | ptr ptr ptr ptr ptr | null
mode mode Read mode Write mode
cursor cursor 0 cursor 0 cursor
Now, there’s no question about who’s doing what!
ref count ref count 1 ref count 1 ref count
file name file name pipe | file name pipe file name
Kernal ©
buffer

19

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

dup?2: redirecting to our heart’s desire

+» We can manipulate the File Table so that a FD Table entry is associated with
another file.

D)

» [int dup2(int oldfd, int newfd);]

" The file descriptor newfd is adjusted so that it now refers to the same open file description
as oldfd. (newfd is closed silently...shh)

[int dup2(int redirect_here, STDOUT_FILENO);]

" |n this example, STDOUT_FILENO, no longer refers to the terminal, but rather the FILE
associated with redirect here

20

CIS 4480, Fall 2025

University of Pennsylvania LO5: More Pipes and Dup2

Unix Shell Control Operators

» cmdl | cmd2, creates a pipe so that the stdout of cmd1 is redirected to the

stdin of cmd?2
" Eg."history | grep valgrind”

» cmd < file, redirects stdin to instead read from the specified file

" E.g."./penn-shredder < test case"
» cmd > file, redirects the stdout of a command to be written to the

specified file
" E.g."grep —-r kill > out.txt"

21

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

Piping in the Shell

cat bee movie.txt | grep Barry | unig

« cat first outputs the entire contents of bee_movie.txt and pipes it into grep,
which filters for lines containing "Barry"

+» The output from grep is then piped into the uniq command, which removes
duplicate lines from the output, ensuring each matching line appears only once.

- What would the fd table (for each process) and open file need to look like to
make this feasible?

Important: it is the shell process that forks each of these processes and intertwines their pipes together.
22

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

cat bee movie.txt | grep Barry | unig
How many pipes do we need to execute this command?

23

University of Pennsylvania

cat bee movie.txt | grep Barry | uniq

LO5: More Pipes and Dup2

cat bee_movie.txt
ED Table Cat needs to send it’'s STDOUT to a pipe, so 'grep' can read it!
O|1(2|3|4]|5
L
mode read mode write mode read mode mode mode mode
cursor 0 cursor 0 cursor 0 cursor cursor cursor cursor
ref count 2 ref count 2 ref count 1 ref count ref count ref count ref count
file name Terminal | file name Terminal | file name bee_movie.txt | file name file name file name file name

@

Note: the ref counts might seem inflated, but there is a shell process that exists too and forks these processes.

CIS 4480, Fall 2025

24

University of Pennsylvania

cat bee _movie.txt |

LO5: More Pipes and Dup2

grep Barry | unigq

CIS 4480, Fall 2025

. Cat needs to send it’s STDOUT to a pipe, so 'grep' can read it!
cat bee_movie.txt PIPE, 50 grep
FD Table . ..
ol11513 1. We need to make a pipe, via pipe()
2. We need to dup2 with STDOUT and the WRITE portion of the pipe...
dup2(cat_pipe[1], STDOUT FILENO);
A4
mode read mode write mode read mode Read mode Write mode mode
cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor cursor
ref count 2 ref count 2 ref count 1 ref count 2 ref count 2 ref count ref count
file name Terminal | file name Terminal | file name bee_movie.txt | file name pipe | file name pipe file name file name
\ >_ / ST
buffer

25

University of Pennsylvania

cat bee _movie.txt |

cat bee_movie.txt
FD Table

0

1

P

LO5: More Pipes and Dup2

grep Barry | unigq

Cat needs to send it’s STDOUT to a pipe, so 'grep' can read it!

1. We need to make a pipe, via pipe()

2. We need to dup2 with STDOUT and the WRITE portion of the
pipe before we exec!

dup2(cat_pipe[1], STDOUT _FILENO);

CIS 4480, Fall 2025

L

mode read mode write mode read mode Read mode Write mode mode

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor cursor
ref count 2 ref count 1 ref count 1 ref count 2 ref count 3 ref count ref count
file name Terminal | file name Terminal | file name bee_movie.txt | file name pipe | file name pipe file name file name

note: cat doesn’t need the write or read
= portions of the pipe after dup2, so I've
= omitted them here.
buffer

Be sure to close them when not necessary.
We'll see a better trick in a bit. 26

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

cat bee movie.txt | grep Barry | unig
Where can we put a pipe, so both cat and grep can write and read, respectively?

//;;t cat_pipe[2]; ‘\\\

pipe(&cat_pipe); // A €

pid t cat _pid = fork();
pipe(&cat_pipe); // B &
if(cat_pid == 0){

// do cat stuff

// maybe do some pipe stuff?
}
pipe(&cat_pipe); // C €
pid t grep pid = fork();
pipe(&cat_pipe); // D €
if(grep_pid == 0){

// do grep stuff

// maybe do some pipe stuff?

N /

27

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

@ Poll Everywhere

pollev.com/cis5480

cat bee movie.txt | grep Barry | unig

Where can we put a pipe, so both cat and grep can write and read, respectively?
B: If we pipe here, we make two sperate pipes, one in the parent
//;;t cat_pipe[2]; ‘\\\

process, and one in the cat process, this does not allow for cat
pipe(&cat_pipe); // A €

pid t cat _pid = fork();
pipe(&cat_pipe); // B &
if(cat_pid == 0){

// do cat stuff

// do grep stuff
// maybe do some pipe stuff?

N

/

and grep to share a pipe: why? The FD are NOT SHARED!

parent

/

N\

/N

cat

/

\

7\

_/

// maybe do some pipe stuff?
} mode Read mode Write mode Read mode Write
pipe(&cat pipe) 0 // C & cursor 0 cursor 0 cursor 0 cursor 0
pld—t&gpep—pld = fork ()6) ref count 1 ref count 1 ref count 1 ref count 1
ipe(&cat pipe); D
EFF()gE‘ep pIE E_)é)é/ file name pipe | file name pipe | filename pipe | file name pipe

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

cat bee movie.txt | grep Barry | unig
Where can we put a pipe, so both cat and grep can write and read, respectively?

//;;t cat_pipe[2]; ‘\\\

pipe(&cat_pipe); // A €

C: If we pipe here, we make only one pipe, in the parent! The cat

S5 G eEre 0idl = ek process has already gone off on it’s own. However, the grep

pipe(&cat pipe); // B € process will inherit this pipe, just not the cat process.
if(cat_pid == 0){
// do cat stuff Recall: “In Cat, We need to dup2 with STDOUT and the WRITE
} // maybe do some pipe stuff? portion of the pipe!”
pipe(&cat_pipe); // C €
pid_t grep_pid = fork(); How can we dup2 a pipe that never existed in the child process?

pipe(&cat_pipe); // D €
if(grep pid == 0){

// do grep stuff

// maybe do some pipe stuff?

N /

29

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

cat bee movie.txt | grep Barry | unig
Where can we put a pipe, so both cat and grep can write and read, respectively?

//;;t cat_pipe[2]; ‘\\\

pipe(&cat_pipe); // A €

D: This is similar to B, where we create a sepearte pipe in the
S5 G eEre 0idl = ek parent and the grep process. No way to wrangle the pipes this

pipe(&cat_pipe); // B & way.
if(cat_pid == 0){

// do cat stuff

// maybe do some pipe stuff?
}
pipe(&cat_pipe); // C €
pid t grep pid = fork();
pipe(&cat_pipe); // D €
if(grep_pid == 0){

// do grep stuff

// maybe do some pipe stuff?

N /

30

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

cat bee _movie.txt | grep Barry | uniq

cat bee movie.txt grep Barry grep must read from the pipe, and as the pipe
-) is inherited via a fork, it could have access to
FD Table FD Table

both read and write portions.
4 0|1|2|3]|4

- L N

We’ll have to redirect where STDIN refers to
within the grep process.

dup2(cat _pipe[©], STDIN FILENO);

Y
mode read mode write mode read mode Read mode Write mode mode
cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor cursor
ref count 3 ref count 2 ref count 1 ref count 2 ref count 3 ref count ref count
file name Terminal | file name Terminal | file name bee_movie.txt | file name pipe | file name pipe file name file name

@

buffer

31

University of Pennsylvania

LO5: More Pipes and Dup2 CIS 4480, Fall 2025

cat bee _movie.txt | grep Barry | uniq
cat bee movie.txt grep Barry grjep must rgad from ’.che pipe, and as the pipe
is inherited via a fork, it could have access to
FD Table FD Table : .
both read and write portions.
0 012 4
We'll have to redirect where STDIN refers to

within the grep process.

dup2(cat _pipe[©], STDIN FILENO);

L
mode read mode write mode read mode Read mode Write mode mode
cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor cursor
ref count 2 ref count 2 ref count 1 ref count 3 ref count 3 ref count ref count
file name Terminal | file name Terminal | file name bee_movie.txt | file name pipe | file name pipe file name file name
\ >_ /
buffer

32

University of Pennsylvania

LO5: More Pipes and Dup2

CIS 4480, Fall 2025

cat bee _movie.txt | grep Barry | uniq

cat bee_movie.txt grep Barry dup2(cat_pipe[@], STDIN_FILENO);
FD Table FD Table
0 ol 112 4 After this, we can go ahead and close
¢ A both sides of the pipe in grep.
L
mode read mode write mode read mode Read mode Write mode mode
cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor cursor
ref count 2 ref count 2 ref count 1 ref count 3 ref count 3 ref count ref count
file name Terminal | file name Terminal | file name bee_movie.txt | file name pipe | file name pipe file name file name
\ - /
buffer

33

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

cat bee _movie.txt | grep Barry | uniq

cat bee_movie.txt grep Barry dup2(cat_pipe[@], STDIN_FILENO);
FD Table FD Table
ol1l>2 4 ol11213]4 After t.his, we can go ahead and close
¢ both sides of the pipe in grep.

Check out our first loop of pipes in red!

L
mode read mode write mode read mode Read mode Write mode mode
cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor cursor
ref count 1 ref count 1 ref count 1 ref count 1 ref count 1 ref count ref count
file name Terminal | file name Terminal | file name bee_movie.txt | file name pipe | file name pipe file name file name

@

buffer

34

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

cat bee _movie.txt | grep Barry | unig

cat bee_movie.txt grep Barry WAIT! grep must also redirect STDOUT to the
FD Table ED Table write end of a pipe it must share with uniqg
0|12 4 0(1|12(3|4

How else will uniq receive input from grep?

L
mode read mode write mode read mode Read mode Write mode Read mode Write
cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0
ref count 2 ref count 2 ref count 1 ref count 1 ref count 1 ref count 1 ref count 1
file name Terminal | file name Terminal | file name bee_movie.txt | file name pipe | file name pipe file name pipe | file name pipe

@

buffer

35

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

cat bee _movie.txt | grep Barry | unig

cat bee_movie.txt grep Barry WAIT! grep must also redirect STDOUT to the
FD Table ED Table write end of a pipe it must share with uniqg
0(1]2 4 0(1(2|3|4
dup2(grep pipe[1], STDOUT FILENO);

L
mode read mode write mode read mode Read mode Write mode Read mode Write
cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0
ref count 2 ref count 1 ref count 1 ref count 1 ref count 1 ref count 1 ref count 1
file name Terminal | file name Terminal | file name bee_movie.txt | file name pipe | file name pipe file name pipe | file name pipe

@

buffer buffer

36

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480
pipe(&grep_fds); // A € cat bee_movie.txt | grep Barry | unig
pid t cat _pid = fork(); .]
pipe(&grep_fds); // B € Where is the best place to put a pipe, so both grep
Hlcatpid = o and unig can write and read, respectively?

// maybe do some pipe stuff?
}

pipe(&grep_fds); // C €
pid t grep pid = fork();
pipe(&grep_fds); // D &
if(grep_pid == 0){

// do grep stuff

// maybe do some pipe stuff?

}

pipe(&grep_fds); // E €
pid _t unig pid = fork();
pipe(&grep_fds); // F &
if(unig _pid == 0){

// do unig stuff *yes, this is a completely different pipe from the one shared by

\} / cat and grep

37

University of Pennsylvania

@ Poll Everywhere

pipe(&grep_fds); // A &
pid t cat _pid = fork();
pipe(&grep_fds); // B &
if(cat_pid == 0){

// do cat stuff

// maybe do some pipe stuff?
}
pipe(&grep_fds); // C €
pid t grep pid = fork();
pipe(&grep_fds); // D &
if(grep pid == 0){

// do grep stuff

// maybe do some pipe stuff?
}
pipe(&grep_fds); // E €
pid _t uniqg _pid = fork();
pipe(&grep_fds); // F &
if(uniqg_pid == 0){

// do uniqg stuff
&

LO5: More Pipes and Dup2 CIS 4480, Fall 2025

pollev.com/cis5480

cat bee movie.txt | grep Barry | unig

F: This creates two sperate pipes, in the uniqg & parent
process only. This pipe does not exist in the FD Table of
grep! No way to communicate.

38

University of Pennsylvania

@ Poll Everywhere

pipe(&grep_fds); // A &
pid t cat _pid = fork();
pipe(&grep_fds); // B &
if(cat_pid == 0){

// do cat stuff

// maybe do some pipe stuff?
}
pipe(&grep_fds); // C €
pid t grep pid = fork();
pipe(&grep_fds); // D &
if(grep pid == 0){

// do grep stuff

// maybe do some pipe stuff?
}
pipe(&grep_fds); // E €
pid _t uniqg _pid = fork();
pipe(&grep_fds); // F &
if(uniqg_pid == 0){

// do uniqg stuff
&

LO5: More Pipes and Dup2 CIS 4480, Fall 2025

pollev.com/cis5480

cat bee movie.txt | grep Barry | unig

E: This creates one pipe, that is shared by both the
parent process and uniq! However, still inaccessible
by both unig and grep.

39

University of Pennsylvania

@ Poll Everywhere

pipe(&grep_fds); // A &
pid t cat _pid = fork();
pipe(&grep_fds); // B &
if(cat_pid == 0){

// do cat stuff

// maybe do some pipe stuff?
}
pipe(&grep_fds); // C €
pid t grep pid = fork();
pipe(&grep_fds); // D &
if(grep pid == 0){

// do grep stuff

// maybe do some pipe stuff?
}
pipe(&grep_fds); // E €
pid _t uniqg _pid = fork();
pipe(&grep_fds); // F &
if(uniqg_pid == 0){

// do uniqg stuff

\

LO5: More Pipes and Dup2

CIS 4480, Fall 2025

pollev.com/cis5480

cat bee movie.txt | grep Barry | unig

D: This creates two separate pipes, one in the parent and one in
the grep process. However, still inaccessible by both uniqg and

grep. Why...
Which of these will uniq inherit?
parent grep
/ \
VAR // \\
mode Read mode Write mode Read mode Write
cursor 0 cursor 0 cursor 0 cursor 0
ref count 1 ref count 1 ref count 1 ref count 1
file name pipe | file name pipe | filename pipe | file name pipe

_/

40

University of Pennsylvania

@ Poll Everywhere

pipe(&grep_fds); // A &
pid t cat _pid = fork();
pipe(&grep_fds); // B &
if(cat_pid == 0){

// do cat stuff

// maybe do some pipe stuff?
}
pipe(&grep_fds); // C €
pid t grep pid = fork();
pipe(&grep_fds); // D &
if(grep pid == 0){

// do grep stuff

// maybe do some pipe stuff?
}
pipe(&grep_fds); // E €
pid _t uniqg _pid = fork();
pipe(&grep_fds); // F &
if(uniqg_pid == 0){

// do uniqg stuff

\

LO5: More Pipes and Dup2

CIS 4480, Fall 2025

pollev.com/cis5480

cat bee movie.txt | grep Barry | unig

D: This creates two separate pipes, one in the parent and one in
the grep process. However, still inaccessible by both uniqg and

grep. Why...Which of these will uniq inherit?

grep

/

\

7\

The parent process
forks! Not grep!

mode Read mode Write mode Read mode Write

cursor 0 cursor 0 cursor 0 cursor 0
ref count 1 ref count 1 ref count 1 ref count 1
file name pipe | file name pipe | filename pipe | file name pipe

_/

41

University of Pennsylvania

LO5: More Pipes and Dup2 CIS 4480, Fall 2025

Finally, uniq reads from pipe

cat bee_movie.txt | grep Barry | unig
- shared with 'grep’ via dup2

cat bee_movie.txt grep Barry unigq
FD Table FD Table FD Table
0111213 O|1(2(3 |4 2 6 ol 11 2 4 6
L
mode read mode write mode read mode Read mode Write mode Read mode Write
cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0
ref count 3 ref count 2 ref count 1 ref count 1 ref count 1 ref count 3 ref count 4
file name Terminal | file name Terminal | file name bee_movie.txt | file name pipe | file name pipe file name pipe | file name pipe
\] / / \
buffer buffer

42

University of Pennsylvania

LO5: More Pipes and Dup2 CIS 4480, Fall 2025

Let’s close all unnecessary FDs so
we can see the beauty...

cat bee _movie.txt | grep Barry | unig

cat bee_movie.txt grep Barry unigq
FD Table FD Table FD Table
0111213 O|l1(2|3]|4 2 6 ol 11 2 4 6
L
mode read mode write mode read mode Read mode Write mode Read mode Write
cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0
ref count 2 ref count 2 ref count 1 ref count 1 ref count 1 ref count 4 ref count 4
file name Terminal | file name Terminal | file name bee_movie.txt | file name pipe | file name pipe file name pipe | file name pipe
\] / / \
buffer buffer

43

cat bee _movie.txt | grep Barry | unig

University of Pennsylvania

LO5: More Pipes and Dup2

CIS 4480, Fall 2025

Let’s close all unnecessary FDs so
we can see the beauty...

cat bee_movie.txt grep Barry unigq
FD Table FD Table FD Table
O(1]|21{3 O(1(2|(3[4]|5]|6 0 | 11 2 4 6
yay.

mode read mode write mode read mode Read mode Write mode Read mode Write
cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0

ref count 2 ref count 2 ref count 1 ref count 1 ref count 1 ref count 1 ref count 1

file name Terminal | file name Terminal | file name bee_movie.txt | file name pipe | file name pipe file name pipe | file name pipe

\] / / \

buffer buffer

44

University of Pennsylvania

@ Poll Everywhere

LO5: More Pipes and Dup2

Why doesn’t uniq need to redirect it’s STDOUT?

Discuss Quicklyyy

cat bee_movie.txt grep Barry uniq
FD Table FD Table
01 3 0l1]2|3|4]|5]|6 cil 2 4 6
mode read mode write mode read mode Read mode Write mode Read mode Write
cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0
ref count 2 ref count 2 ref count 1 ref count 1 ref count 1 ref count 1 ref count 1
file name Terminal | file name Terminal | file name bee_movie.txt | file name pipe [file name pipe | file name pipe | file name pipe
\ e / \ / \
buffer buffer

CIS 4480, Fall 2025

University of Pennsylvania

@ Poll Everywhere

LO5: More Pipes and Dup2

Why doesn’t uniq need to redirect it’s STDOUT?

CIS 4480, Fall 2025

Discuss Quicklyyy

cat bee_movie.txt grep Barry uniq
FD Table FD Table
01 3 0l1]2|3|4|5]|6 il 2 4 6
uniq still needs
to print to the
terminall!
' |
mode read mode write mode read mode Read mode Write mode Read mode Write
cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0
ref count 2 ref count 2 ref count 1 ref count 1 ref count 1 ref count 1 ref count 1
file name Terminal | file name Terminal | file name bee_movie.txt | file name pipe file name pipe file name pipe file name pipe
buffer buffer

46

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

Let’s see it in code! Cool.

cat bee_movie.txt grep Barry uniq
FD Table FDTabIe
0[1|2]3]|4 0l1]2|3|4]|5]|6 ¢123456

uniq still needs
to print to the

terminall
Y |

mode read mode write mode read mode Read mode Write mode Read mode Write
cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0
ref count 2 ref count 2 ref count 1 ref count 1 ref count 1 ref count 1 ref count 1

file name Terminal | file name Terminal | file name bee_movie.txt | file name pipe [file name pipe | file name pipe | file name pipe

buffer buffer 47

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

close(cat_pipe[READ _END]);
//close(grep pipe[WRITE_END]);

\ What happens if you forget to close a write
portion of the pipe, before waiting in the
parent?

pid t uniqg pid = fork();

if(uniq_pid == 0){
dup2(grep_pipe[READ END],STDIN FILENO);
close(grep pipe[READ END]);
execvp(uniq_argv[0@], unig_argv);
_exit(EXIT_FAILURE);

wait (NULL);
wait (NULL);
wait (NULL);

N /

48

University of Pennsylvania

Forgetting to Close Pipes

LO5: More Pipes and Dup2

close(cat_pipe[READ _END]);
//close(grep_pipe[WRITE_END]);

pid_t unig_pid = fork();

if(uniq_pid == 0){
dup2(grep_pipe[READ_END],STDIN_FILENO);
close(grep_pipe[READ _END]);
execvp(unig_argv([0], unig_argv);
_exit(EXIT_FAILURE);

wait(NULL);
wait(NULL);
wait(NULL);

o

~

CIS 4480, Fall 2025

Grep must read from STDIN but it does not stop
reading from STDIN until it receives an EOF!

The bigger issue is in the parent as that tends to be the
one which has access to all write ends of the pipe. Make
sure to close them as soon as you don’t need them.

FDs are closed when a program is terminated. The trick
is to make sure it terminates and doesn’t hang!

49

University of Pennsylvania

@ Poll Everywhere

LO5: More Pipes and Dup2

ﬁ)se(cat_pipe[READ_END]);
pid_t uniqg_pid = fork();

if(uniq_pid == 0){
dup2(grep_pipe[READ _END],STDIN_FILENO);
close(grep_pipe[READ _END]);
execvp(uniqg_argv[0], uniq_argv);
_exit(EXIT_FAILURE);

}

close(grep_pipe[WRITE_END]);

wait(NULL);
wait(NULL);

wait(NULL);

CIS 4480, Fall 2025

pollev.com/cis5480

Exam Style Question:

In office hours a student, Shayla,
attempts to fix the previous code by
adding the close here. Does this work?
Why or why not?

50

University of Pennsylvania

LO5: More Pipes and Dup2 CIS 4480, Fall 2025

We start off with grep and uniq
having both references to the pipe!

Exam-Style Question Walkthrough

PARENT PROCESS grep Barry uniq
FD Table FD Table
0 1 2 3 4 5; 6 0 1 2 0 1 2 4 6
\ Vi
v
mode read mode write mode read mode Read mode Write
cursor 0 cursor 0 cursor 0 cursor 0 cursor 0
ref count X ref count X ref count X ref count X ref count X
file name Terminal | file name Terminal | file name bee_movie.txt file name pipe | file name pipe
\ i /
buffer 51

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

Exam-Style Question Walkthrough

Then Grep will terminate...

PARENT PROCESS grep Barry uniq
FD Table FD Table
0j1)/2]3]4]5]F6 0|1|2|3|4|5]|6 o|1|2|3|4]|5]|6
7
mode read mode write mode read mode Read mode Write
cursor 0 cursor 0 cursor 0 cursor 0 cursor 0
ref count X ref count X ref count X ref count X ref count 2
file name Terminal | file name Terminal | file name bee_movie.txt file name pipe | file name pipe

buffer 5

University of Pennsylvania

LO5: More Pipes and Dup2

Exam-Style Question Walkthrough

CIS 4480, Fall 2025

PARENT PROCESS uniq
FD Table
0 1 2 3 4 5 6 0 1 2 4 6
7
v
mode read mode write mode read mode Read mode Write
cursor 0 cursor 0 cursor 0 cursor 0 cursor 0
ref count X ref count X ref count X ref count X ref count 1
file name Terminal | file name Terminal | file name bee_movie.txt file name pipe | file name pipe
\] /
buffer

Ref never gets to 0.

Process hangs on itself.

53

CIS 4480, Fall 2025

University of Pennsylvania LO5: More Pipes and Dup2

pipe2
int pipe2(int pipefd[2], int flags);

+ Still creates a pipe, similar to pipe, but we can now specify behavior!

+ flags
" O_CLOEXEC, your new friend.
" This closes all file descriptors that refer to this pipe when we exec in a process.
" These file descriptors are only closed in the process that execs.

= File descriptors that are dup2’d with these are not closed.

+ Requires "#define _ GNU_SOURCE"

" Check the man page!
= pipe2() is Linux-specific

54

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

pipe2
int pipe2(int pipefd[2], int flags);

+» Here’s an equivalent macro, for those not on linux machines.
)

(#define pipe2(FD, FLAG) \

pipe((FD)); \

fentl((FD)[0], F_SETFD, FD_CLOEXEC); \
fentl((FD)[1], F_SETFD, FD_CLOEXEC)

- J

55

University of Pennsylvania

O_CLOEXEC Behavior

-

}

int pipe fds[2];
pipe2(&pipe fds, O CLOEXEC);
pid t cat _pid = fork();

if(cat _pid == 0){

execvp(..);

\j/ parent does some stuff.

LO5: More Pipes and Dup2

+ Prior to the execvp, both processes refer

to the same pipe!

CIS 4480, Fall 2025

Process 100

Process 101

. .LC. ...

0 1 2 3 4 0 1 2 3 4
mode mode Read mode Write mode
cursor cursor 0 cursor 0 cursor

ref count ref count 2 ref count 2 ref count
file name .. filename pipe | file name pipe file name
Kernal ©

56

University of Pennsylvania

O_CLOEXEC Behavior

/

int pipe fds[2];
pipe2(&pipe_fds, O_CLOEXEC);
pid t cat _pid = fork();

if(cat _pid == 0){
execvp(..); <

}
\j/ parent does some stuff.

LO5: More Pipes and Dup2

+ Prior to the execvp, both processes refer

to the same pipe!

CIS 4480, Fall 2025

% Once the child execs, the pipe_fds are

closed!
Process 100 Process 101

0 1 2 3 4 0 1 2 3 4

mode mode Read mode Write mode

cursor cursor 0 cursor 0 cursor
ref count ref count 2 ref count 2 ref count
file name .. filename pipe | file name pipe file name

Kernal ©

. .LC. ...

57

University of Pennsylvania

O_CLOEXEC Behavior

/

int pipe fds[2];
pipe2(&pipe_fds, O_CLOEXEC);
pid t cat _pid = fork();

if(cat _pid == 0){
execvp(..); <

}
\j/ parent does some stuff.

LO5: More Pipes and Dup2

+ Prior to the execvp, both processes refer

to the same pipe!

CIS 4480, Fall 2025

% Once the child execs, the pipe_fds are

closed!
Process 100 Process 101

0 1 2 3 4 0 1 2 3 4

mode mode Read mode Write mode

cursor cursor 0 cursor 0 cursor
ref count ref count 1 ref count 1 ref count
file name .. filename pipe | file name pipe file name

Kernal ©

. .LC. ...

58

CT¢C|

University of Pennsylvania

LO5: More Pipes and Dup2

Let’s see how pipe2 changes our code...

cat bee_movie.txt grep Barry uniq
FD Table FD Table
01 3 0l1]2|3|4]|5]|6 il 2 4 6
mode read mode write mode read mode Read mode Write mode Read mode Write
cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0
ref count 1 ref count 1 ref count 1 ref count 1 ref count 1 ref count 1 ref count 1
file name Terminal | file name Terminal | file name bee_movie.txt | file name pipe [file name pipe | file name pipe | file name pipe
buffer buffer

CIS 4480, Fall 2025

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

If time, how would we implement these?

» cmdl | cmd2, creates a pipe so that the stdout of cmd1 is redirected to the

stdin of cmd?2
" Eg."history | grep valgrind”

» cmd < file, redirects stdin to instead read from the specified file

" E.g."./penn-shredder < test case"

» cmd > file, redirects the stdout of a command to be written to the
specified file
" E.g."grep —-r kill > out.txt"

60

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

If time, how would we implement these?

%+ Touse < and >, you would have to open these files on behalf of the
executable, and then dup2 STDIN or STDOUT.

cat bee movie.txt > copy bee movie.txt

Here, the output from cat that would normally go to STDOUT, now needs to be
written to this new file, we must make or clobber.

If it already exists, we just overwrite what is there.

61

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

cat bee movie.txt > copy bee movie.txt

To make this a possibility, what should the arguments to open be? Check the man Page...

(char *bee file output = "copy bee movie.txt";)

int bee _cpy fd = open(bee file output, 22222272, 0644);

\. J

“Here, the output from cat that would normally go to STDOUT,
now needs to be written to this new file, we must make or clobber (rewrite from scratch)."

62

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

cat bee movie.txt > copy bee movie.txt

To make this a possibility, what should the arguments to open be? Check the man Page...

(char *bee file output = "copy bee movie.txt";)

int bee_cpy fd = open(bee file output, 22222272, 644);

\. J

“Here, the output from cat that would normally go to STDOUT,
now needs to be written to this new file, we must make or clobber (rewrite from scratch)."

O CREAT | O TRUNC | O WRONLY

Truncate the file,

, P We are only writin
Create the file (or open it if it exists) set its length to 0, 4 &

to it, so Write only.

before writing 3

University of Pennsylvania LO5: More Pipes and Dup2 CIS 4480, Fall 2025

Time for Penn Shell Demo!

+» Ask Rania all questions. Don’t be shy pls.

64

	Default Section
	Slide 1: More Pipes and Dup2 Computer Operating Systems, Fall 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: File Descriptor Table
	Slide 5: File Descriptor Table w/Fork
	Slide 6: The Open File Table
	Slide 7: The Open File Table
	Slide 8: The Open File Table
	Slide 9: The Open File Table
	Slide 10: Lecture Outline
	Slide 11: Interprocess Communication: Pipes
	Slide 12: Visualizing Pipes
	Slide 13: Visualizing Pipes with Fork
	Slide 14: Visualizing Pipes with Fork
	Slide 15: Walk through short program
	Slide 16: Walk through short program
	Slide 17: Walk through short program
	Slide 18: Walk through short program
	Slide 19: Final State of Short Program
	Slide 20: dup2: redirecting to our heart’s desire
	Slide 21: Unix Shell Control Operators
	Slide 22: Piping in the Shell
	Slide 23
	Slide 24: cat bee_movie.txt | grep Barry | uniq
	Slide 25: cat bee_movie.txt | grep Barry | uniq
	Slide 26: cat bee_movie.txt | grep Barry | uniq
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: cat bee_movie.txt | grep Barry | uniq
	Slide 32: cat bee_movie.txt | grep Barry | uniq
	Slide 33: cat bee_movie.txt | grep Barry | uniq
	Slide 34: cat bee_movie.txt | grep Barry | uniq
	Slide 35: cat bee_movie.txt | grep Barry | uniq
	Slide 36: cat bee_movie.txt | grep Barry | uniq
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: cat bee_movie.txt | grep Barry | uniq
	Slide 43: cat bee_movie.txt | grep Barry | uniq
	Slide 44: cat bee_movie.txt | grep Barry | uniq
	Slide 45: Why doesn’t uniq need to redirect it’s STDOUT?
	Slide 46: Why doesn’t uniq need to redirect it’s STDOUT?
	Slide 47: Let’s see it in code! Cool.
	Slide 48
	Slide 49: Forgetting to Close Pipes
	Slide 50
	Slide 51: Exam-Style Question Walkthrough
	Slide 52: Exam-Style Question Walkthrough
	Slide 53: Exam-Style Question Walkthrough
	Slide 54: pipe2
	Slide 55: pipe2
	Slide 56: O_CLOEXEC Behavior
	Slide 57: O_CLOEXEC Behavior
	Slide 58: O_CLOEXEC Behavior
	Slide 59: Let’s see how pipe2 changes our code…
	Slide 60: If time, how would we implement these?
	Slide 61: If time, how would we implement these?
	Slide 62
	Slide 63
	Slide 64: Time for Penn Shell Demo!

