
CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

More Pipes and Dup2
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla

Vedansh Goenka Joy Liu

TAs:

Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane

Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones

Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng

Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

Administrivia

❖ Penn-Vec and Penn-Shredder

▪ Due Tomorrow @ midnight! Go to office hours if you need help! 

▪ Late due date, with two late tokens is Tuesday @ Midnight.

❖ Penn-Shell

▪ To be released on Saturday!

▪ Find your partners! You will sign up with your partners as a group on Canvas and on Github when 
the assignment is out. 

▪ If you are without a partner by 09/17 at 5PM, we will automatically pair people together. 

• SO FIND SOMEONE!

▪ Broken up into two milestone, the first is due @ 11:59 pm on 09/24

▪ The entire assignment is due 10/03 @ midnight.

❖ Project 1 Peer Evaluation goes out Saturday.

▪ Due @ 11:59 pm on 09/22
▪ This is where your partner will critique your code…

2



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

Lecture Outline

❖ Quick Review

▪ File Descriptors

▪ File Table

▪ Open File Table

❖ Pipes and Dup

❖ pipe2

3



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

File Descriptor Table

❖ Each process has its own file descriptor table managed by the OS

▪ The table maintains information about the respective files the process has references to.

❖ A file descriptor is an index into a processes FD table.

4

0 1 2

File Descriptor Table for Process 100

Terminal

Not an accurate depiction.



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

File Descriptor Table w/Fork
❖ Fork will make an IDENTICAL copy of the parent’s file descriptor table

❖ If a file is opened before forking, child processes will inherit that file descriptor 
from the parent & point to same file reference! 

5

0 1 2 3

File Descriptor Table for Process 100

Terminal

0 1 2 3

File Descriptor Table for Process 100

shell-soln.c
open("shell-soln.c", O_RDWR);

fork();



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

The Open File Table

6

0 1 2 3 4 5 …

ptr ptr ptr ptr ptr ptr …

File Descriptor Table

mode …. mode Read mode Write mode Write mode ….

cursor …. cursor 0 cursor 0 cursor 0 cursor ….

ref count … ref count 1 ref count 1 ref count 1 ref count …

file name … file name file_a.txt file name file_a.txt file name File_b.txt file name …

Process 100

*The v/inode row is removed since it's not relevant at the moment.



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

The Open File Table

7

0 1 2 3 4 5 …

ptr ptr ptr ptr ptr ptr …

File Descriptor Table

mode …. mode Read mode Write mode Write mode ….

cursor …. cursor 0 cursor 0 cursor 0 cursor ….

ref count … ref count 1 ref count 1 ref count 1 ref count …

file name … file name file_a.txt file name file_a.txt file name File_b.txt file name …

Process 100

*The v/inode row is removed since it's not relevant at the moment.

fork()



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

The Open File Table

8

0 1 2 3 4 5 …

ptr ptr ptr ptr ptr ptr …

File Descriptor Table

mode …. mode Read mode Write mode Write mode ….

cursor …. cursor 0 cursor 0 cursor 0 cursor ….

ref count … ref count 2 ref count 2 ref count 2 ref count …

file name … file name file_a.txt file name file_a.txt file name File_b.txt file name …

Process 100

*The v/inode row is removed since it's not relevant at the moment.

fork()

0 1 2 3 4 5 …

ptr ptr ptr ptr ptr ptr …

File Descriptor Table
Process 101

reference counts are incremented with fork!



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

The Open File Table

9

0 1 2 3 4 5 …

ptr ptr ptr ptr ptr ptr …

File Descriptor Table

mode …. mode Read mode Write mode Write mode ….

cursor …. cursor 0 cursor 0 cursor 0 cursor ….

ref count … ref count 2 ref count 2 ref count 2 ref count …

file name … file name file_a.txt file name file_a.txt file name File_b.txt file name …

Process 100
fork()

0 1 2 3 4 5 …

ptr ptr ptr ptr ptr ptr …

File Descriptor Table
Process 101

This set’s the stage for Inter Process communication via pipes…



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

Lecture Outline

❖ Quick Review

▪ File Descriptors

▪ File Table

▪ Open File Table

❖ Pipes and Dup

❖ pipe2

10



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

11

Interprocess Communication: Pipes

❖ Takes in an array of two integers, and sets each integer to be a file descriptor 
corresponding to an “end” of the pipe

❖ pipefd[0] is the reading end of the pipe

❖ pipefd[1] is the writing end of the pipe

int pipe(int pipefd[2]);

int pipefd[2];
int pipe(&pipefd);



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

12

Visualizing Pipes

Kernal ☺
buffer

File Descriptor Table

mode …. mode Read mode Write mode ….

cursor …. cursor 0 cursor 0 cursor ….

ref count … ref count 1 ref count 1 ref count …

file name … file name pipe file name pipe file name …

Process 100

note: the buffer has limited space. 
If it is full, you can not write to it until you read (consume) what is there.

0 1 2 3 4

ptr ptr ptr ptr ptr



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

13

Visualizing Pipes with Fork

Kernal ☺
buffer

0 1 2 3 4

ptr ptr ptr ptr ptr

File Descriptor Table

mode …. mode Read mode Write mode ….

cursor …. cursor 0 cursor 0 cursor ….

ref count … ref count 1 ref count 1 ref count …

file name … file name pipe file name pipe file name …

Process 100

note: the buffer has limited space. 
If it is full, you can not write to it until you read (consume) what is there.

fork()



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

14

Visualizing Pipes with Fork

Kernal ☺
buffer

File Descriptor Table

mode …. mode Read mode Write mode ….

cursor …. cursor 0 cursor 0 cursor ….

ref count … ref count 2 ref count 2 ref count …

file name … file name pipe file name pipe file name …

Process 100
fork()

0 1 2 3 4

ptr ptr ptr ptr ptr

File Descriptor Table
Process 101

0 1 2 3 4

ptr ptr ptr ptr ptr

Here, both processes can read and write, 
but typically, one reads while the other writes.

You do not want this unless you know what you’re doing.



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

15

Walk through short program

Kernal ☺
buffer

File Descriptor Table

mode …. mode Read mode Write mode ….

cursor …. cursor 0 cursor 0 cursor ….

ref count … ref count 1 ref count 1 ref count …

file name … file name pipe file name pipe file name …

Process 100

0 1 2 3 4

ptr ptr ptr ptr ptr

int pipefds[2]; 
pipe(&pipefds);

pid_t child_pid = fork();
if(child_pid == 0){
    close(pipefds[1]); //close write end
    //do some reading...
    return EXIT_SUCCESS; 
}

close(pipefds[0]); //parent doesn’t read
//do some writting
//do relevant cleanup
return EXIT_SUCCESS;



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

16

Walk through short program

Kernal ☺
buffer

File Descriptor Table

mode …. mode Read mode Write mode ….

cursor …. cursor 0 cursor 0 cursor ….

ref count … ref count 2 ref count 2 ref count …

file name … file name pipe file name pipe file name …

Process 100
fork()

0 1 2 3 4

ptr ptr ptr ptr ptr

File Descriptor Table
Process 101

0 1 2 3 4

ptr ptr ptr ptr ptr

int pipefds[2]; 
pipe(&pipefds);

pid_t child_pid = fork();
if(child_pid == 0){
    close(pipefds[1]); //close write end
    //do some reading...
    return EXIT_SUCCESS; 
}

close(pipefds[0]); //parent doesn’t read
//do some writting
//do relevant cleanup
return EXIT_SUCCESS;



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

17

Walk through short program

Kernal ☺
buffer

File Descriptor Table

mode …. mode Read mode Write mode ….

cursor …. cursor 0 cursor 0 cursor ….

ref count … ref count 2 ref count 1 ref count …

file name … file name pipe file name pipe file name …

Process 100

0 1 2 3 4

ptr ptr ptr ptr null

File Descriptor Table
Process 101

0 1 2 3 4

ptr ptr ptr ptr ptr

int pipefds[2]; 
pipe(&pipefds);

pid_t child_pid = fork();
if(child_pid == 0){
    close(pipefds[1]); //close write end
    //do some reading...
    return EXIT_SUCCESS; 
}

close(pipefds[0]); //parent doesn’t read
//do some writting
//do relevant cleanup
return EXIT_SUCCESS;



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

18

Walk through short program

Kernal ☺
buffer

File Descriptor Table

mode …. mode Read mode Write mode ….

cursor …. cursor 0 cursor 0 cursor ….

ref count … ref count 1 ref count 1 ref count …

file name … file name pipe file name pipe file name …

Process 100

0 1 2 3 4

ptr ptr ptr ptr null

File Descriptor Table
Process 101

0 1 2 3 4

ptr ptr ptr null ptr

int pipefds[2]; 
pipe(&pipefds);

pid_t child_pid = fork();
if(child_pid == 0){
    close(pipefds[1]); //close write end
    //do some reading...
    return EXIT_SUCCESS; 
}

close(pipefds[0]); //parent doesn’t read
//do some writting
//do relevant cleanup
return EXIT_SUCCESS;



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

19

Final State of Short Program

Kernal ☺
buffer

File Descriptor Table

mode …. mode Read mode Write mode ….

cursor …. cursor 0 cursor 0 cursor ….

ref count … ref count 1 ref count 1 ref count …

file name … file name pipe file name pipe file name …

Process 100

0 1 2 3 4

ptr ptr ptr ptr null

File Descriptor Table
Process 101

0 1 2 3 4

ptr ptr ptr null ptr

Now, there’s no question about who’s doing what! 



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

dup2: redirecting to our heart’s desire 

❖ We can manipulate the File Table so that a FD Table entry is associated with 
another file.

❖ dup2()

▪ The file descriptor newfd is adjusted so that it now refers to the same open file description 
as oldfd. (newfd is closed silently…shh)

▪ In this example, STDOUT_FILENO, no longer refers to the terminal, but rather the FILE 
associated with redirect_here

20

int dup2(int oldfd, int newfd);

int dup2(int redirect_here, STDOUT_FILENO);



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

Unix Shell Control Operators

❖ cmd1 | cmd2, creates a pipe so that the stdout of cmd1 is redirected to the 
stdin of cmd2
▪ E.g. "history | grep valgrind”

❖ cmd < file,  redirects stdin to instead read from the specified file

▪ E.g. "./penn-shredder < test_case"

❖ cmd > file, redirects the stdout of a command to be written to the 
specified file
▪ E.g. "grep –r kill > out.txt"

21



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

Piping in the Shell

cat bee_movie.txt | grep Barry | uniq

❖ cat first outputs the entire contents of bee_movie.txt and pipes it into grep, 
which filters for lines containing "Barry" 

❖ The output from grep is then piped into the uniq command, which removes 
duplicate lines from the output, ensuring each matching line appears only once.

❖ What would the fd table (for each process) and open file need to look like to 
make this feasible?

22
Important: it is the shell process that forks each of these processes and intertwines their pipes together.



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

How many pipes do we need to execute this command?

23

pollev.com/cis5480



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

24

FD Table

mode read mode write mode read mode mode mode mode

cursor 0 cursor 0 cursor 0 cursor cursor cursor cursor 

ref count 2 ref count 2 ref count 1 ref count ref count ref count ref count

file name Terminal file name Terminal file name bee_movie.txt file name file name file name file name

cat bee_movie.txt
Cat needs to send it’s STDOUT to a pipe, so 'grep' can read it!

0 1 2 3 4 5

Note: the ref counts might seem inflated, but there is a shell process that exists too and forks these processes.



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

25

FD Table

0 1 2 3 4 5

mode read mode write mode read mode Read mode Write mode mode

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor cursor 

ref count 2 ref count 2 ref count 1 ref count 2 ref count 2 ref count ref count

file name Terminal file name Terminal file name bee_movie.txt file name pipe file name pipe file name file name

cat bee_movie.txt

buffer

Cat needs to send it’s STDOUT to a pipe, so 'grep' can read it!

1. We need to make a pipe, via pipe()
2. We need to dup2 with STDOUT and the WRITE portion of the pipe…

dup2(cat_pipe[1], STDOUT_FILENO);



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

26

FD Table

mode read mode write mode read mode Read mode Write mode mode

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor cursor 

ref count 2 ref count 1 ref count 1 ref count 2 ref count 3 ref count ref count

file name Terminal file name Terminal file name bee_movie.txt file name pipe file name pipe file name file name

cat bee_movie.txt

buffer

0 1 2 3 4 5

Cat needs to send it’s STDOUT to a pipe, so 'grep' can read it!

1. We need to make a pipe, via pipe()
2. We need to dup2 with STDOUT and the WRITE portion of the 

pipe before we exec!

dup2(cat_pipe[1], STDOUT_FILENO);

note: cat doesn’t need the write or read 
portions of the pipe after dup2, so I’ve 
omitted them here. 

Be sure to close them when not necessary. 
We’ll see a better trick in a bit.



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

Where can we put a pipe, so both cat and grep can write and read, respectively?

27

pollev.com/cis5480

int cat_pipe[2]; 

pipe(&cat_pipe); // A 

pid_t cat_pid = fork();
pipe(&cat_pipe); // B 
if(cat_pid == 0){
   // do cat stuff
   // maybe do some pipe stuff?
} 
pipe(&cat_pipe); // C 
pid_t grep_pid = fork();
pipe(&cat_pipe); // D  
if(grep_pid == 0){
   // do grep stuff
   // maybe do some pipe stuff?
}



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

Where can we put a pipe, so both cat and grep can write and read, respectively?

28

pollev.com/cis5480

int cat_pipe[2]; 

pipe(&cat_pipe); // A 

pid_t cat_pid = fork();
pipe(&cat_pipe); // B 
if(cat_pid == 0){
   // do cat stuff
   // maybe do some pipe stuff?
} 
pipe(&cat_pipe); // C 
pid_t grep_pid = fork();
pipe(&cat_pipe); // D  
if(grep_pid == 0){
   // do grep stuff
   // maybe do some pipe stuff?
}

B: If we pipe here, we make two sperate pipes, one in the parent 
process, and one in the cat process, this does not allow for cat 
and grep to share a pipe: why? The FD are NOT SHARED!

mode Read mode Write mode Read mode Write

cursor 0 cursor 0 cursor 0 cursor 0

ref count 1 ref count 1 ref count 1 ref count 1

file name pipe file name pipe file name pipe file name pipe

parent cat 



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

Where can we put a pipe, so both cat and grep can write and read, respectively?

29

pollev.com/cis5480

int cat_pipe[2]; 

pipe(&cat_pipe); // A 

pid_t cat_pid = fork();
pipe(&cat_pipe); // B 
if(cat_pid == 0){
   // do cat stuff
   // maybe do some pipe stuff?
} 
pipe(&cat_pipe); // C 
pid_t grep_pid = fork();
pipe(&cat_pipe); // D  
if(grep_pid == 0){
   // do grep stuff
   // maybe do some pipe stuff?
}

C: If we pipe here, we make only one pipe, in the parent! The cat 
process has already gone off on it’s own. However, the grep 
process will inherit this pipe, just not the cat process.

Recall: “In Cat, We need to dup2 with STDOUT and the WRITE 
portion of the pipe!”

How can we dup2 a pipe that never existed in the child process?



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

Where can we put a pipe, so both cat and grep can write and read, respectively?

30

pollev.com/cis5480

int cat_pipe[2]; 

pipe(&cat_pipe); // A 

pid_t cat_pid = fork();
pipe(&cat_pipe); // B 
if(cat_pid == 0){
   // do cat stuff
   // maybe do some pipe stuff?
} 
pipe(&cat_pipe); // C 
pid_t grep_pid = fork();
pipe(&cat_pipe); // D  
if(grep_pid == 0){
   // do grep stuff
   // maybe do some pipe stuff?
}

D: This is similar to B, where we create a sepearte pipe in the 
parent and the grep process. No way to wrangle the pipes this 
way.



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

31

FD Table

grep Barry

0 1 2 3 4

mode read mode write mode read mode Read mode Write mode mode

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor cursor 

ref count 3 ref count 2 ref count 1 ref count 2 ref count 3 ref count ref count

file name Terminal file name Terminal file name bee_movie.txt file name pipe file name pipe file name file name

FD Table

0 1 2 3 4

cat bee_movie.txt

buffer

grep must read from the pipe, and as the pipe 
is inherited via a fork, it could have access to 
both read and write portions. 

We’ll have to redirect where STDIN refers to 
within the grep process.

dup2(cat_pipe[0], STDIN_FILENO);



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

32

FD Table

grep Barry

0 1 2 3 4

mode read mode write mode read mode Read mode Write mode mode

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor cursor 

ref count 2 ref count 2 ref count 1 ref count 3 ref count 3 ref count ref count

file name Terminal file name Terminal file name bee_movie.txt file name pipe file name pipe file name file name

FD Table

0 1 2 3 4

cat bee_movie.txt

buffer

grep must read from the pipe, and as the pipe 
is inherited via a fork, it could have access to 
both read and write portions. 

We’ll have to redirect where STDIN refers to 
within the grep process.

dup2(cat_pipe[0], STDIN_FILENO);



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

33

FD Table

grep Barry

0 1 2 3 4

mode read mode write mode read mode Read mode Write mode mode

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor cursor 

ref count 2 ref count 2 ref count 1 ref count 3 ref count 3 ref count ref count

file name Terminal file name Terminal file name bee_movie.txt file name pipe file name pipe file name file name

FD Table

0 1 2 3 4

cat bee_movie.txt

buffer

dup2(cat_pipe[0], STDIN_FILENO);

After this, we can go ahead and close 
both sides of the pipe in grep.



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

34

FD Table

grep Barry

0 1 2 3 4

mode read mode write mode read mode Read mode Write mode mode

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor cursor 

ref count 1 ref count 1 ref count 1 ref count 1 ref count 1 ref count ref count

file name Terminal file name Terminal file name bee_movie.txt file name pipe file name pipe file name file name

FD Table

0 1 2 3 4

cat bee_movie.txt

buffer

dup2(cat_pipe[0], STDIN_FILENO);

After this, we can go ahead and close 
both sides of the pipe in grep.

Check out our first loop of pipes in red!



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

35

FD Table

grep Barry

0 1 2 3 4

mode read mode write mode read mode Read mode Write mode Read mode Write

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0

ref count 2 ref count 2 ref count 1 ref count 1 ref count 1 ref count 1 ref count 1

file name Terminal file name Terminal file name bee_movie.txt file name pipe file name pipe file name pipe file name pipe

FD Table

0 1 2 3 4

cat bee_movie.txt

buffer

WAIT! grep must also redirect STDOUT to the 
write end of a pipe it must share with uniq

How else will uniq receive input from grep?



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

36

FD Table

grep Barry

0 1 2 3 4

mode read mode write mode read mode Read mode Write mode Read mode Write

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0

ref count 2 ref count 1 ref count 1 ref count 1 ref count 1 ref count 1 ref count 1

file name Terminal file name Terminal file name bee_movie.txt file name pipe file name pipe file name pipe file name pipe

FD Table

0 1 2 3 4

cat bee_movie.txt

buffer buffer

WAIT! grep must also redirect STDOUT to the 
write end of a pipe it must share with uniq

dup2(grep_pipe[1], STDOUT_FILENO);



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

Where is the best place to put a pipe, so both grep 
and uniq can write and read, respectively?

37

pollev.com/cis5480

pipe(&grep_fds); // A 
pid_t cat_pid = fork();

pipe(&grep_fds); // B 
if(cat_pid == 0){
   // do cat stuff
   // maybe do some pipe stuff?
} 

pipe(&grep_fds); // C 
pid_t grep_pid = fork();

pipe(&grep_fds); // D  
if(grep_pid == 0){
   // do grep stuff
   // maybe do some pipe stuff?
}

pipe(&grep_fds); // E 
pid_t uniq_pid = fork();

pipe(&grep_fds); // F 
if(uniq_pid == 0){
   // do uniq stuff
 }

*yes, this is a completely different pipe from the one shared by 
cat and grep



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

F: This creates two sperate pipes, in the uniq & parent 
process only. This pipe does not exist in the FD Table of 
grep! No way to communicate.

38

pollev.com/cis5480

pipe(&grep_fds); // A 
pid_t cat_pid = fork();

pipe(&grep_fds); // B 
if(cat_pid == 0){
   // do cat stuff
   // maybe do some pipe stuff?
} 

pipe(&grep_fds); // C 
pid_t grep_pid = fork();

pipe(&grep_fds); // D  
if(grep_pid == 0){
   // do grep stuff
   // maybe do some pipe stuff?
}

pipe(&grep_fds); // E 
pid_t uniq_pid = fork();

pipe(&grep_fds); // F 
if(uniq_pid == 0){
   // do uniq stuff
 }



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

E: This creates one pipe, that is shared by both the 
parent process and uniq! However, still inaccessible 
by both uniq and grep.

39

pollev.com/cis5480

pipe(&grep_fds); // A 
pid_t cat_pid = fork();

pipe(&grep_fds); // B 
if(cat_pid == 0){
   // do cat stuff
   // maybe do some pipe stuff?
} 

pipe(&grep_fds); // C 
pid_t grep_pid = fork();

pipe(&grep_fds); // D  
if(grep_pid == 0){
   // do grep stuff
   // maybe do some pipe stuff?
}

pipe(&grep_fds); // E 
pid_t uniq_pid = fork();

pipe(&grep_fds); // F 
if(uniq_pid == 0){
   // do uniq stuff
 }



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

D: This creates two separate pipes, one in the parent and one in 
the grep process. However, still inaccessible by both uniq and 
grep. Why…

40

pollev.com/cis5480

pipe(&grep_fds); // A 
pid_t cat_pid = fork();

pipe(&grep_fds); // B 
if(cat_pid == 0){
   // do cat stuff
   // maybe do some pipe stuff?
} 

pipe(&grep_fds); // C 
pid_t grep_pid = fork();

pipe(&grep_fds); // D  
if(grep_pid == 0){
   // do grep stuff
   // maybe do some pipe stuff?
}

pipe(&grep_fds); // E 
pid_t uniq_pid = fork();

pipe(&grep_fds); // F 
if(uniq_pid == 0){
   // do uniq stuff
 }

mode Read mode Write mode Read mode Write

cursor 0 cursor 0 cursor 0 cursor 0

ref count 1 ref count 1 ref count 1 ref count 1

file name pipe file name pipe file name pipe file name pipe

parent grep 

Which of these will uniq inherit?



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

D: This creates two separate pipes, one in the parent and one in 
the grep process. However, still inaccessible by both uniq and 
grep. Why…

41

pollev.com/cis5480

pipe(&grep_fds); // A 
pid_t cat_pid = fork();

pipe(&grep_fds); // B 
if(cat_pid == 0){
   // do cat stuff
   // maybe do some pipe stuff?
} 

pipe(&grep_fds); // C 
pid_t grep_pid = fork();

pipe(&grep_fds); // D  
if(grep_pid == 0){
   // do grep stuff
   // maybe do some pipe stuff?
}

pipe(&grep_fds); // E 
pid_t uniq_pid = fork();

pipe(&grep_fds); // F 
if(uniq_pid == 0){
   // do uniq stuff
 }

mode Read mode Write mode Read mode Write

cursor 0 cursor 0 cursor 0 cursor 0

ref count 1 ref count 1 ref count 1 ref count 1

file name pipe file name pipe file name pipe file name pipe

parent grep 

Which of these will uniq inherit?

The parent process 
forks! Not grep!



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

42

FD Table

grep Barry

0 1 2 3 4

mode read mode write mode read mode Read mode Write mode Read mode Write

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0

ref count 3 ref count 2 ref count 1 ref count 1 ref count 1 ref count 3 ref count 4

file name Terminal file name Terminal file name bee_movie.txt file name pipe file name pipe file name pipe file name pipe

FD Table

0 1 2 3 4 5 6

cat bee_movie.txt uniq

FD Table

buffer buffer

Finally, uniq reads from pipe 
shared with 'grep’ via dup2

0 1 2 3 4 5 6



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

43

FD Table

grep Barry

0 1 2 3 4

mode read mode write mode read mode Read mode Write mode Read mode Write

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0

ref count 2 ref count 2 ref count 1 ref count 1 ref count 1 ref count 4 ref count 4

file name Terminal file name Terminal file name bee_movie.txt file name pipe file name pipe file name pipe file name pipe

FD Table

0 1 2 3 4 5 6

cat bee_movie.txt uniq

FD Table

buffer buffer

0 1 2 3 4 5 6

Let’s close all unnecessary FDs so 
we can see the beauty…



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

cat bee_movie.txt | grep Barry | uniq

44

FD Table

grep Barry

0 1 2 3 4

mode read mode write mode read mode Read mode Write mode Read mode Write

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0

ref count 2 ref count 2 ref count 1 ref count 1 ref count 1 ref count 1 ref count 1

file name Terminal file name Terminal file name bee_movie.txt file name pipe file name pipe file name pipe file name pipe

FD Table

0 1 2 3 4 5 6

cat bee_movie.txt uniq

FD Table

buffer buffer

0 1 2 3 4 5 6

Let’s close all unnecessary FDs so 
we can see the beauty…

yay.



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

Why doesn’t uniq need to redirect it’s STDOUT?

45

Discuss Quicklyyy

grep Barry

0 1 2 3 4

mode read mode write mode read mode Read mode Write mode Read mode Write

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0

ref count 2 ref count 2 ref count 1 ref count 1 ref count 1 ref count 1 ref count 1

file name Terminal file name Terminal file name bee_movie.txt file name pipe file name pipe file name pipe file name pipe

FD Table

0 1 2 3 4 5 6

cat bee_movie.txt uniq

FD Table

buffer buffer

0 1 2 3 4 5 6



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

Why doesn’t uniq need to redirect it’s STDOUT?

46

Discuss Quicklyyy

grep Barry

0 1 2 3 4

mode read mode write mode read mode Read mode Write mode Read mode Write

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0

ref count 2 ref count 2 ref count 1 ref count 1 ref count 1 ref count 1 ref count 1

file name Terminal file name Terminal file name bee_movie.txt file name pipe file name pipe file name pipe file name pipe

FD Table

0 1 2 3 4 5 6

cat bee_movie.txt uniq

FD Table

buffer buffer

0 1 2 3 4 5 6

uniq still needs 
to print to the 
terminal!



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

47

grep Barry

0 1 2 3 4

mode read mode write mode read mode Read mode Write mode Read mode Write

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0

ref count 2 ref count 2 ref count 1 ref count 1 ref count 1 ref count 1 ref count 1

file name Terminal file name Terminal file name bee_movie.txt file name pipe file name pipe file name pipe file name pipe

FD Table

0 1 2 3 4 5 6

cat bee_movie.txt uniq

FD Table

buffer buffer

0 1 2 3 4 5 6

uniq still needs 
to print to the 
terminal!

Let’s see it in code! Cool.



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

What happens if you forget to close a write 
portion of the pipe, before waiting in the 

parent?

48

pollev.com/cis5480

close(cat_pipe[READ_END]);
//close(grep_pipe[WRITE_END]);

pid_t uniq_pid = fork();
if(uniq_pid == 0){

dup2(grep_pipe[READ_END],STDIN_FILENO);
close(grep_pipe[READ_END]);
execvp(uniq_argv[0], uniq_argv);
_exit(EXIT_FAILURE);

}

wait(NULL);
wait(NULL);
wait(NULL);

}



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

Forgetting to Close Pipes

49

close(cat_pipe[READ_END]);
//close(grep_pipe[WRITE_END]);

pid_t uniq_pid = fork();
if(uniq_pid == 0){

dup2(grep_pipe[READ_END],STDIN_FILENO);
close(grep_pipe[READ_END]);
execvp(uniq_argv[0], uniq_argv);
_exit(EXIT_FAILURE);

}

wait(NULL);
wait(NULL);
wait(NULL);

Grep must read from STDIN but it does not stop 
reading from STDIN until it receives an EOF!

The bigger issue is in the parent as that tends to be the 
one which has access to all write ends of the pipe. Make 

sure to close them as soon as you don’t need them. 

FDs are closed when a program is terminated. The trick 
is to make sure it terminates and doesn’t hang!



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

Exam Style Question: 

In office hours a student, Shayla, 
attempts to fix the previous code by 

adding the close here. Does this work? 
Why or why not?

50

pollev.com/cis5480

close(cat_pipe[READ_END]);

pid_t uniq_pid = fork();

if(uniq_pid == 0){
dup2(grep_pipe[READ_END],STDIN_FILENO);
close(grep_pipe[READ_END]);
execvp(uniq_argv[0], uniq_argv);
_exit(EXIT_FAILURE);

}

close(grep_pipe[WRITE_END]);

wait(NULL);
wait(NULL);
wait(NULL);



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

51

grep Barry

mode read mode write mode read mode Read mode Write

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0

ref count X ref count X ref count X ref count X ref count X

file name Terminal file name Terminal file name bee_movie.txt file name pipe file name pipe

FD Table

0 1 2 3 4 5 6

PARENT PROCESS uniq

FD Table

buffer

0 1 2 3 4 5 6

Exam-Style Question Walkthrough

0 1 2 3 4 5 6

We start off with grep and uniq 
having both references to the pipe!



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

52

grep Barry

mode read mode write mode read mode Read mode Write

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0

ref count X ref count X ref count X ref count X ref count 2

file name Terminal file name Terminal file name bee_movie.txt file name pipe file name pipe

FD Table

0 1 2 3 4 5 6

PARENT PROCESS uniq

FD Table

buffer

0 1 2 3 4 5 6

Exam-Style Question Walkthrough

0 1 2 3 4 5 6

Then Grep will terminate…



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

53

mode read mode write mode read mode Read mode Write

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0

ref count X ref count X ref count X ref count X ref count 1

file name Terminal file name Terminal file name bee_movie.txt file name pipe file name pipe

PARENT PROCESS uniq

FD Table

buffer

0 1 2 3 4 5 6

Exam-Style Question Walkthrough

0 1 2 3 4 5 6

Ref never gets to 0.
Process hangs on itself. 



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

pipe2

❖ Still creates a pipe, similar to pipe, but we can now specify behavior!

❖ flags

▪ O_CLOEXEC, your new friend. 

▪ This closes all file descriptors that refer to this pipe when we exec in a process.

▪ These file descriptors are only closed in the process that execs.

▪ File descriptors that are dup2’d with these are not closed. 

❖ Requires "#define _GNU_SOURCE"

▪ Check the man page!

▪ pipe2() is Linux-specific

54

int pipe2(int pipefd[2], int flags);



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

pipe2

❖ Here’s an equivalent macro, for those not on linux machines. 

55

int pipe2(int pipefd[2], int flags);

#define pipe2(FD, FLAG) \
pipe((FD)); \
fcntl((FD)[0], F_SETFD, FD_CLOEXEC); \
fcntl((FD)[1], F_SETFD, FD_CLOEXEC)



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

O_CLOEXEC Behavior ❖ Prior to the execvp, both processes refer 
to the same pipe! 

56

int pipe_fds[2];
pipe2(&pipe_fds, O_CLOEXEC);
pid_t cat_pid = fork();

if(cat_pid == 0){
    execvp(…);
}
// parent does some stuff. 

Kernal ☺
buffer

mode …. mode Read mode Write mode ….

cursor …. cursor 0 cursor 0 cursor ….

ref count … ref count 2 ref count 2 ref count …

file name … file name pipe file name pipe file name …

Process 100

0 1 2 3 4

Process 101

0 1 2 3 4



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

O_CLOEXEC Behavior ❖ Prior to the execvp, both processes refer 
to the same pipe!

❖ Once the child execs, the pipe_fds are 
closed! 

57

int pipe_fds[2];
pipe2(&pipe_fds, O_CLOEXEC);
pid_t cat_pid = fork();

if(cat_pid == 0){
    execvp(…);
}
// parent does some stuff. 

Kernal ☺
buffer

mode …. mode Read mode Write mode ….

cursor …. cursor 0 cursor 0 cursor ….

ref count … ref count 2 ref count 2 ref count …

file name … file name pipe file name pipe file name …

Process 100

0 1 2 3 4

Process 101

0 1 2 3 4



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

O_CLOEXEC Behavior ❖ Prior to the execvp, both processes refer 
to the same pipe!

❖ Once the child execs, the pipe_fds are 
closed! 

58

int pipe_fds[2];
pipe2(&pipe_fds, O_CLOEXEC);
pid_t cat_pid = fork();

if(cat_pid == 0){
    execvp(…);
}
// parent does some stuff. 

Kernal ☺
buffer

mode …. mode Read mode Write mode ….

cursor …. cursor 0 cursor 0 cursor ….

ref count … ref count 1 ref count 1 ref count …

file name … file name pipe file name pipe file name …

Process 100

0 1 2 3 4

Process 101

0 1 2 3 4



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

59

grep Barry

0 1 2 3 4

mode read mode write mode read mode Read mode Write mode Read mode Write

cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 0

ref count 1 ref count 1 ref count 1 ref count 1 ref count 1 ref count 1 ref count 1

file name Terminal file name Terminal file name bee_movie.txt file name pipe file name pipe file name pipe file name pipe

FD Table

0 1 2 3 4 5 6

cat bee_movie.txt uniq

FD Table

buffer buffer

0 1 2 3 4 5 6

Let’s see how pipe2 changes our code…



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

If time, how would we implement these?

❖ cmd1 | cmd2, creates a pipe so that the stdout of cmd1 is redirected to the 
stdin of cmd2
▪ E.g. "history | grep valgrind”

❖ cmd < file,  redirects stdin to instead read from the specified file

▪ E.g. "./penn-shredder < test_case"

❖ cmd > file, redirects the stdout of a command to be written to the 
specified file
▪ E.g. "grep –r kill > out.txt"

60



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

If time, how would we implement these?

❖ To use < and >, you would have to open these files on behalf of the 
executable, and then dup2 STDIN or STDOUT.

cat bee_movie.txt > copy_bee_movie.txt

Here, the output from cat that would normally go to STDOUT, now needs to be 
written to this new file, we must make or clobber. 

If it already exists, we just overwrite what is there.

61



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

62

pollev.com/cis5480

cat bee_movie.txt > copy_bee_movie.txt

To make this a possibility, what should the arguments to open be? Check the man Page…

char *bee_file_output = "copy_bee_movie.txt";

int bee_cpy_fd = open(bee_file_output, ???????, 0644); 

“Here, the output from cat that would normally go to STDOUT, 
now needs to be written to this new file, we must make or clobber (rewrite from scratch)."



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

63

pollev.com/cis5480

cat bee_movie.txt > copy_bee_movie.txt

To make this a possibility, what should the arguments to open be? Check the man Page…

char *bee_file_output = "copy_bee_movie.txt";

int bee_cpy_fd = open(bee_file_output, ???????, 644); 

“Here, the output from cat that would normally go to STDOUT, 
now needs to be written to this new file, we must make or clobber (rewrite from scratch)."

O_CREAT | O_TRUNC | O_WRONLY

Create the file (or open it if it exists)
Truncate the file, 
set its length to 0, 

before writing

We are only writing 
to it, so Write only.



CIS 4480, Fall 2025L05: More Pipes and Dup2University of Pennsylvania

Time for Penn Shell Demo!

❖ Ask Rania all questions. Don’t be shy pls.

64


	Default Section
	Slide 1: More Pipes and Dup2 Computer Operating Systems, Fall 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: File Descriptor Table
	Slide 5: File Descriptor Table w/Fork
	Slide 6: The Open File Table
	Slide 7: The Open File Table
	Slide 8: The Open File Table
	Slide 9: The Open File Table
	Slide 10: Lecture Outline
	Slide 11: Interprocess Communication: Pipes
	Slide 12: Visualizing Pipes
	Slide 13: Visualizing Pipes with Fork
	Slide 14: Visualizing Pipes with Fork
	Slide 15: Walk through short program
	Slide 16: Walk through short program
	Slide 17: Walk through short program
	Slide 18: Walk through short program
	Slide 19: Final State of Short Program
	Slide 20: dup2: redirecting to our heart’s desire 
	Slide 21: Unix Shell Control Operators
	Slide 22: Piping in the Shell
	Slide 23
	Slide 24: cat bee_movie.txt | grep Barry | uniq
	Slide 25: cat bee_movie.txt | grep Barry | uniq
	Slide 26: cat bee_movie.txt | grep Barry | uniq
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: cat bee_movie.txt | grep Barry | uniq
	Slide 32: cat bee_movie.txt | grep Barry | uniq
	Slide 33: cat bee_movie.txt | grep Barry | uniq
	Slide 34: cat bee_movie.txt | grep Barry | uniq
	Slide 35: cat bee_movie.txt | grep Barry | uniq
	Slide 36: cat bee_movie.txt | grep Barry | uniq
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: cat bee_movie.txt | grep Barry | uniq
	Slide 43: cat bee_movie.txt | grep Barry | uniq
	Slide 44: cat bee_movie.txt | grep Barry | uniq
	Slide 45: Why doesn’t uniq need to redirect it’s STDOUT?
	Slide 46: Why doesn’t uniq need to redirect it’s STDOUT?
	Slide 47: Let’s see it in code! Cool.
	Slide 48
	Slide 49: Forgetting to Close Pipes
	Slide 50
	Slide 51: Exam-Style Question Walkthrough
	Slide 52: Exam-Style Question Walkthrough
	Slide 53: Exam-Style Question Walkthrough
	Slide 54: pipe2
	Slide 55: pipe2
	Slide 56: O_CLOEXEC Behavior
	Slide 57: O_CLOEXEC Behavior
	Slide 58: O_CLOEXEC Behavior
	Slide 59: Let’s see how pipe2 changes our code…
	Slide 60: If time, how would we implement these?
	Slide 61: If time, how would we implement these?
	Slide 62
	Slide 63
	Slide 64: Time for Penn Shell Demo!


