University of Pennsylvania

Process Groups & Terminal Control

LO6: Process Groups & Terminal Control

Computer Operating Systems, Fall 2025

Instructors:

Head TAs:

TAs:

Eric Zou

Zihao Zhou
Connor Cummings
Bo Sun

Sana Manesh

Joel Ramirez

Maya Huizar

Vedansh Goenka

Joseph Dattilo

Eric Lee

Shreya Mukunthan
Steven Chang

Akash Kaukuntla
Joy Liu

Aniket Ghorpade
Shruti Agarwal
Alexander Mehta

Rania Souissi

Shriya Sane
Yemisi Jones
Raymond Feng
Rashi Agrawal

CIS 4480, Fall 2025

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Administrivia

+» Congrats on finishing up Shredder & Penn-Vec; how did you feel about it?
= Expect Style grading to be out by Tuesday the latest.

+» MAKE YOUR SHELL PARTNERS ALREADY!!!' | WILL AUTO ASSIGN YOU

" Yes, sometimes being social sucks. But you gotta do it.

+ Penn-Shell and Peer Review went out this past weekend
= peer Review Due 9/23 (In a week)
= Penn Shell Milestone 1 Due 09/24 (In a week + 1 day)

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Lecture Outline

» Process Groups
" setpgid()

+» Terminal Control
" tcsetpgrp ()

- SIGSTOP

» Project 1: Synch vs Asynch wait
" SIGCHLD

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Process Groups

- Process Groups: A way to associate processes together
" Processes groups are never empty.
. Convenient process & signal management:

= If SIGINT is sent to a process via the keyboard, 1t is also sent to all processes
within its group by the kernal.

» When we create a process via fork(), the child and parent belong to
same process group!
- Shell has the notion of a job: “commands” started interactively.

= All processes within the same job are in the same group; let’s see what this
means.

» Relevant for penn-shell

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Process Group ID

» Process Group ID is set from an initial PID!
"= The PGID is equal to the PID of the first forked process in that job!

= |f the initial process (who's PID == PGID) is terminated, this PID still can’t be reused.
- That process ID will be reserved until the group is done

int setpgid(pid_t pid, pid_t pgid); |

+ The PGID of the process, pid, is set to pgid.
= |f pid is zero, then the process ID of the calling process is used.

» |f pgid is zero, then the PGID of the process specified by pid is made the same
as its process ID.

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Process Group ID

'pid_t getpgid(pid_t pid);

+» Returns the PGID of the process specified by pid.

" returns -1 if error occurred.

+ If pid is zero, the process ID of the calling process is used.

But why change process groups?

Changing process groups allows you to control who gets what signal and by what means.

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Example 1: Same PGID

pgid = 100

User Processes ./example /bin/sleep

pid = 100 pid = 101
g@ﬁ* [los bernet protectea |

> ‘ Both processes
S running in shell.

t

Heap (malloc/free) Heap (malloc/free)
Read/Write Segments
.data, .bss

Read/Write Segment
.data, .bss

[= Read-Only Segments Read-Only Segment
.text, .rodata PC= .text, .rodata

OS

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Example 1: Same PGID

pgid = 100

User Processes ./example /bin/sleep

pid = 100 pid = 101
W_STR [erampaeeen |
> Both processes

S running in shell.

t

Heap (malloc/free) Heap (malloc/free)
Read/Write Segments
.data, .bss

Read/Write Segment
.data, .bss

[= Read-Only Segments Read-Only Segment
.text, .rodata PC= .text, .rodata

OS

CTRL+C

v

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Example 1: Same PGID

pgid = 100

User Processes ./example /bin/sleep
pid = 100 pid = 101
N [roeeea|
:>> N Both processes
1 . .
SIGINT is sent to every — e running in shell.
. Heap (malloc/free) — ree)
Process in the process group T e
f =

OS

CTRL+C

v

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Example 2: Different PGIDs

pgid = 100 pgid = 101

User Processes ./example /bin/sleep

pid = 100 pid = 101

B v [ostermeprotecea |
!
Stack
Both processes
1 . .
S running in shell.
Heap (malloc/free) Heap (malloc/free)
Read/ \g";'t‘: S:sgsments Read/Write Segment
J , .bss .data, .bss
[= Read-Only Segments Read-Only Segment
.text, .rodata PC= .text, .rodata

OS

10

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Example 2: Different PGIDs

pgid = 100 pgid = 101
User Processes ./example /bin/sleep
pid = 100 pid = 101
w_aick [extemroscen |
> Both processes
1 . .
SIGINT IS sent tO every — Sharedlt.ibraries Shared Libraries runnlng |n She”.
. Heap (malloc/free) — free)
process in a process group e i
child is in a separate group 1
OS
CTRL+C

v

11

LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

University of Pennsylvania
>

Example 2: Different PGIDs

pgid = 100 pgid = 101
User Processes ./example /bin/sleep
pid = 100 pid = 101
w—aiw (e
> Both processes
1 . .
Why is the signal only sent to one of — axel o running in shell.
. . Heap (malloc/free) S
the process groups in the terminal? e ——
~\ =
() t
= OS

CTRL+C

v

12

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

walitpid & kill with PGIDs

» Instead of usinga pid to refer to a singular process, you can
pass in -PGID to kill() and waitpid()

[int kill(pid_t -pgid, int signal);]

+» Doing so for kill () will send the signal to all processes in the group

[pid_t waitpid(pid t pid, int *status, int options);]

+ Doing so forwaitpid () will wait for any process in the group

Wait; why does the PGID need to be negative?

You may find this useful for projl: penn-shell 13

LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

University of Pennsylvania

Example: pid vs —pgid

pgid = 100 pgid = 101
User Processes ./example /bin/sleep
parent process on the left and a child pid:_lo 0 pid = 101
process in its own group on the right T) E—
What if the parent forks a second child /(f_w p—
and adds it to the other child’s group? M- %T*

OS

14

University of Pennsylvania
>

Example: pid vs —pgid

User Processes

parent process on the left and a child
process in its own group on the right

What if the parent forks a second child
and adds it to the other child’s group?

OS

LO6: Process Groups & Terminal Control

!

t

Shared Libraries

t

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

= 100 pgid
./example /bin/sleep /bin/sleep
pid = 100 pid = 101

Stack

Shared Libraries

Heap (malloc/free)

Read-Only Segment

Read/Write Segment
.data, .bss

.text, .rodata

CIS 4480, Fall 2025

University of Pennsylvania

LO6: Process Groups & Terminal Control

CIS 4480, Fall 2025

Example: pid vs —pgid

pgid = 100 pgid = 101

User Processes

.(example /bin/sleep /bin/sleep
pid = 100 pid = 101 pid = 102
kill(101, SIGINT);

Sp=> Stack

!

Stack

If the parent calls kill with pid 101, |

Shared Libraries

t
only the child with that pid receives e

Heap (malloc/free)
Read/Write Segments
.data, .bss

Heap (malloc/free)
Read/Write Segment
.data, .bss
h - I [® ={ Read-Only Segments

Read/Write Segment
.data, .bss

Shared Libraries

Shared Libraries

\ 4

Read-Only Segment
.text, .rodata

.text, .rodata

Read-Only Segment
PC=

PC== .text, .rodata

OS

16

University of Pennsylvania

LO6: Process Groups & Terminal Control

CIS 4480, Fall 2025

Example: pid vs —pgid

pgid = 100 pgid = 101

User Processes

.(example /bin/sleep /bin/sleep
pid = 100 pid = 101 pid = 102
kill(-101, SIGINT);

spof sudk T
¢ Stack Stack
sp sP
t
Shared Libraries Shared Libraries Shared Libraries
t >
Heap (m',aﬂg:jfree) Heap (malloc/free) Heap (malloc/free)
If the parent calls kill with pid -101, Teae T e
[[® =>{ Read-Only Segments W W
- . -text, .rodata. PC= .text, .rodata PC= text, .rodata
all children belonging to that group
o
are killed

OS

17

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Demo: pgrpg_signals.c

+ See code demo: pgrp signals.c
= Handler registered for SIGINT in both child and parent

= Parent puts child in its own group
= CTRL+ C isinput -> parent signal handler is invoked -> parent relays the signal to the child

= What happens if we don’t call kill in parent handler?
= What happens if we then don’t put child in its own group?

18

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Lecture Outline

Process Groups
" setpgid()

*

« Terminal Control
" tcsetpgrp ()

» SIGSTOP

» Project 1: Synch vs Asynch wait
" SIGCHLD

19

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

What if the child tried to use the terminal?

+» Demo!
" |et’s try to write a program so that the child does “cat”

 (read from stdin, echo it to stdout until EOF)
- First let’s see what cat is supposed to do.

20

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

What if the child tried to use the terminal?

+» Demo!
" |et’s try to write a program so that the child does “cat”

 (read from stdin, echo it to stdout until EOF)
- First let’s see what cat is supposed to do.

It doesn’t work.

Let’s try to peel back the layers to see why it doesn’t.

21

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Sessions

+» A Session is a collection of process groups
= A session can be attached to a controlling terminal

- However, only one process group within the session can have control of the terminal

= Or not attached to any terminal (daemon’s)

+~ You can think of a session as mostly associated with a “login” or instance of a
terminal application. Each login/terminal is a singular session

%+ Within a session (that has a controlling terminal) there are
= Background processes
- These do not have have access to the terminal, and can not read from it.

= Foreground processes
- These can read and write to their hearts content. 22

CIS 4480, Fall 2025

University of Pennsylvania LO6: Process Groups & Terminal Control

Foreground Process Groups

» Foreground process groups (i.e., Foreground Jobs) can read from STDIN and
the processes in that group receive the signals from the keyboard

- A foreground group (the shell truly) can make another group the foreground
with the function:

int tcsetpgrp(int fd, pid_t pgrp);]
= fdis afile descriptor associated with the controlling terminal (STDIN_ FILENO)

= Sets the process group specified by pgrp to be the foreground process group
- Essentially, this process group (or job from the perspective of the shell), is the star of the show.

= -7 returned on error, O when successful

23

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Background in the shell

+» To start a background job in the shell (and in penn-shell) run the command
with a & at the end.

" sleep 10 &

- While a command is running in the background, we can run other commands
in the shell

= So, while another command is using the terminal for Input, the background jobs/processes
can not.

» Can use the jobs command to see the status of the jobs we have started

24

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Process Groups and Controlling the Terminal

lint setpgid(pid_t pid, pid_t pgid); |

+» When you make a process have it’s own process group, it no longer has the
ability to read from the terminal.

= |t no longer is the process group who controls the terminal...
- S0, yes, jobs need to have their own groups, but they also need to navigate
control of the terminal.

= (This kinda makes sense. You don’t want 100 processes trying to read the terminal at the
same time. What if what is in the terminal isn’t for them? (aka, what if it is your super
secret password (whyamiinthiscourse) that you’re typing in?)

25

University of Pennsylvania

LO6: Process Groups & Terminal Control

CIS 4480, Fall 2025

Background Process

» If a background process tries to read from stdin, the OS sends the signal
SIGTTIN to the background process

= The Disposition of SIGTTIN is to suspend/stop the program.
= Check it out for yourself: cat &

« |f a process in the background background calls tcsetpgrp(), the OS will
send the entire process group a SIGTTOU signal.

= |f the calling process is blocking or ignoring SIGTTOU signals, the process shall be allowed
to perform the operation, and no signal is sent...might be important...

+~ Writing to stdout from the background is ok, but can be configured so that
background processes get SIGTTOU

" The Dispositon of SIGTTOU is to Stop the program.
" Check it out for yourself: cat file.txt & (thisis totally fine.)

26

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Let’s try to fix our code from before!

+ See code demo: cat.c

= |et’s try to fix our process group code so that it can run cat ©
- Remember, printing to the terminal is fine. It’s reading that causes the issues.
- So, we’ll go ahead and see if this holds true!

= How can we make the parent take back the terminal control?
- If a process is done running in the foreground, then penn-shell should resume control.

27

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

pid_t pid = fork();

R) = teatr, UL Is there a race condition here?

execvp(args[0], args);
exit (EXIT_FAILURE);

// put the child in its own process group
if (setpgid(pid, pid) == -1) {
perror("setpgid\n");
exit (EXIT_FAILURE);
by

// give terminal to the child

if (tcsetpgrp(STDIN_FILENO, pid) == -1) {
perror("tcsetpgrp\n");
exit (EXIT_FAILURE);

}

printf("starting to wait\n");

int wstatus;
waitpid(pid, &wstatus, 0);

28

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Race Condition: setpgid();

+ You can not change the PGID of a process after it has been exec’d.
" Trying to do so will result in a failed setgpid with error: EACCES

% This is because we are at the mercy of the schedular
= We don’t know if a child will be exec’d before the parent can change it’s PGID.

+ To be safe, we must call PGID from both the parent and the child.

if (pid == 0) {

// put the child in its own process group " child

if (SEtpgld(pld, pld) == —1) { // reads from the terminal and
" . ny . // prints what it reads until EOF
perror("setpgid\n"); setpgid(0, 0); //sets it's pgid to be it's own pid.
exit (EXIT_FAILURE); charx args[] = {"cat", NULL};
} execvp(args[0], args);

exit (EXIT_FAILURE);

Caveat: remember, the initial process is the one who is the PGID of the entire group. You must keep track of this. 30

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

«» What is the intention of this code? Does it do what it intends to do? How can
we fix it?

13 int main() {

14 while (true) {

15 fprintf(stderr, "give command: "); :) ; . -
16 e e if (setpgid(pid, pid) == -1) {
17 ssize t bytes = read(STDIN_FILENO, &c, 1); perror(“setpgid\n®);

e if (bytes — -1) { exit(EXIT_FAILURE);

1
19 perror("read\n"); J

20 exit(EXIT_FAILURE);

21 L else if (bytes == @) { (] E _

22 break; if(tcsetpgrp(STDIN_FILENO, pid) == -1)
23 . perror("tcsetpgrp\n");

24 exit(EXIT_FAILURE);

|
25 . _ }

26 - - ; printf("starting to wait\n");
27

28 if (pid == 0) { 1n? w%tatgs;
29 : waitpid(pid, &wstatus, 0);

30 ‘ - else if (c == 's") {
31 _ : : printf(“"sleeping...\n");

32 char* args[] = {"cat", NULL}; sleep(5);

33 execvp(args[@], args); printf("awake\n");

£V exit(EXIT_FAILURE); else if (c == "p’) {
35 } printf("HOWDY\n");

36

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Demo: tc_loop.c

+ See codedemo: tc loop.c
" The code from the poll
= Let's try to fix it...

" How can we make the parent take back the terminal control?

32

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Lecture Outline

*

Process Groups
" setpgid()

+» Terminal Control
" tcsetpgrp ()

» SIGSTOP

» Project 1: Synch vs Asynch wait
" SIGCHLD

33

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Stopped Jobs

\/
0’0

0

Processes can be in a state slightly different than being blocked. // This is
relevant for penn-shell

" When a process gets the signal STGSTOP, the process will not run on the CPU until it is
resumed by the STGCONT signal

= QOther signals can still stop a program by default, like STGTSTP or STIGTTOU

Demo:

" |nterminal: ping google.com
= HitCTRL + Z tostop

= Command: "jobs" to see that it is still there, just stopped
" Cantype either "$<job num>"or"£fg" to resume it

34

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

“sometimes called suspended”

Process State Lifetime

SIGCONT
received SIGTSTP

Process creation (ctrl + 2)

Selected by the
e.g. fork ()

kernel to run

Running >
Process
finished
After running for a bit
it is another processes “turn”
KO ((?’
9

Terminated

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Lecture Outline

*

Process Groups
" setpgid()

+» Terminal Control
" tcsetpgrp ()

» SIGSTOP

» Project 1: Synch vs Asynch wait
" SIGCHLD

36

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Penn-shell

» Part of what you do in HW1 (after the milestone) is to make a shell that
manages process groups in the foreground and background

% This means your code will have to handle multiple process groups at once,
keeping track of the state of all of them.

» Need to maintain a linked list of the current jobs to handle job control

37

University of Pennsylvania

LO6: Process Groups & Terminal Control

"Normal" approach Pseudo Code

Discuss: what does this do?

Is there a flaw in this?
Not in correctness but
maybe

" Responsiveness

= Resource utilization

= efc.

Ui

(int main(int argc, char* argv[]) {
while(...) {

printf(PROMPT);
getline(&user_input);

pid = fork exec(user_input);
waitpid(pid, &wstatus, 9);

for (pid_t p : background) {
// check status of background
waitpid(p, &wstatus, WNOHANG);
// 1f there 1s an update,
// need to update the Lists..

}

// re-prompt user

CIS 4480, Fall 2025

CIS 4480, Fall 2025

University of Pennsylvania LO6: Process Groups & Terminal Control

Analysis: "Normal"

+» The “normal”: check background processes before re-prompting the user
" may not be responsive to background processes finishing

= Consider we have many background processes then the user runs
sleep 1000000 inthe foreground...

= those background processes will not be reaped until foreground finishes

39

CIS 4480, Fall 2025

University of Pennsylvania LO6: Process Groups & Terminal Control

"Polling" approach Pseudo Code

+ Discuss: what does this do?
+» How does this compare to the previous attempt?

(int main(int argc, char* argv[]) {
while(...) {

printf(PROMPT);

getline(&user _input);

pid = fork exec(user_input);

while (waitpid(pid, &wstatus, WNOHANG) == 0) {
for (pid _t p : background) {
// check status of background
waitpid(p, &wstatus, WNOHANG);
// 1f there 1s an update,
// need to update the Lists..

}
}

// re-prompt user

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Analysis: Polling

» Polling is a term used to describe when we check to see if something is ready,
but do not block if it is not ready

+~ This approach is more responsive than the previous one...
% but it busy waits... consuming CPU cycles...

41

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Aside: SIGCHLD

+ This approach registers SIGCHLD as a handler, STIGCHLD is a signal that is
sent when a child process stops or is terminated
" |signored by default

42

LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

University of Pennsylvania

"async" approach Pseudo Code

(void handler(int signo) { . . 5
for (pid t p : background) { + Discuss: what does this do-
// check status of background - .
waitpid(p, &wstatus, WNOHANG); » How dogs this compare to
// if there is an update, the previous attempt?

// need to update the Lists..

¥
}

int main(int argc, char* argv[]) {
//setting stuff up..
sigaction(SIGCHLD, &sigact handler, NULL);
while(...) {
printf (PROMPT);
getline(&user _input);
pid = fork exec(user_input);
waitpid(pid, &wstatus, 0);
// re-prompt user

43

University of Pennsylvania
>

LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Analysis: Async

+ This approach registers SIGCHLD as a handler, STIGCHLD is a signal that is
sent when a child process stops or is terminated
" |signored by default

+» This allows us to respond quickly to the background children terminating

+ No busy waiting! Main process instead is mostly blocked waiting on the
foreground job

+ Must use signal handlers and handle critical sections ©

+» Handling this ASYNC is your extra credit
pass the normal autograder first PLEASE

Eventually ASYNC will be the standard assignment as it’s the most useful to implement. "

University of Pennsylvania LO6: Process Groups & Terminal Control CIS 4480, Fall 2025

Reminder: sigsuspend()

» Another way to approach handling async is to use sigsuspend()
= May be a little harder to reason about; | find it to be a bit more intuitive...

= Forces you not to call waitpid unless you need to.
- Optimal shell will have one function with waitpid inside of it, called only when necessary.

= Don’t have to do much in the signal handler if this is the case!

You finally have everything you need for shell. Yay.

45

