University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

File System Intro
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez
Head TAs: Maya Huizar Akash Kaukuntla
Vedansh Goenka Joy Liu

TAs:
Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane
Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones
Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng
Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ Anything you’d like me to explain from last lecture?

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

Logistics

» Penn-Shell Partners have been set!
= All randomly assigned people have received an email from me.

» Grades for Penn-Vector and Penn-Shredder should be out by this Friday @
midnight!

» Check-In will be out sometime tonight...if not, look out for it Friday morning.

= |’ll announce it on Ed anyways...

- Office Hours today are remote!

University of Pennsylvania

Lecture Outline

% Intro to File System
® User Perspective
= Blocks
+ File Allocation
= Contiguous
" Linked List
% File Allocation Table (FAT)

= FAT Walkthrough
" PennFAT

LO7: File System Intro

CIS 4480, Fall 2025

University of Pennsylvania

LO7: File System Intro CIS 4480, Fall 2025

Files

« You have interacted with files before.
+» Files have names to identify them e.g. "Hello.txt"

+ Files can be opened, read, written to, saved, deleted, etc..
» A file can store image data, programs, text, etc.

» Files can also be called non-volatile storage

This data persists when the computer is powered off, as long as the data is actually written
to the file

= Data thatis in memory is volatile.
- itis lost if the power goes out.
- If you shoot your computer
- Your sibling trips over the power chord

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

Directories

+ A directory is a special type of file that contains a list of other files (and
directories) that are “inside” of it

+ A directory is also named

» For most cases, we can use the word Directory and Folder interchangeably

University of Pennsylvania

Hierarchical File System

LO7: File System Intro

Files on a computer are structured as a Hierarchical File System

Directories can contain other Directories
= Subdirectory is used to describe a directory contained in another
= Parent and Child are often

used to describe the
relationship between a
subdirectory and the
directory itis in.

With one directory being
the “overall root” or
“overall parent”

-

:

. R,
- .

Twout xq

Format Stats

Old

CIS 4480, Fall 2025

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

File System: User Level STD API

%+ Cstdio API: core functionalities (with File Structs)

FILE* fopen(char *pathname, char *mode);

size t fread(void *ptr, size t size,size t nmemb, FILE* stream);]

size t fwrite(void *ptr, size t size,size t nmemb, FILE* stream);]

int fclose(FILE *stream);

+» These core functionality of these functions should be self-explanatory. If you
need to use these, use man pages to lookup the exact details

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

File System: User Level STD API

%+ Cstdio API: core functionalities (with File Structs)

FILE* fopen(char *pathname, char *mode);

size t fread(void *ptr, size t size,size t nmemb, FILE* stream);]

size t fwrite(void *ptr, size t size,size t nmemb, FILE* stream);]

int fclose(FILE *stream);

In addition to the above, we also have another common feature: moving to an
arbitrary position in the file

int fseek(FILE *stream, long offset, int whence);

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

User Perspective: A stream of bytes

% As a user, we have the idea of a file as being a “stream” or sequence of bytes.
= 3 continuous sequence of data made available over time.

" There are many kinds of streams, for now we are talking about files

+~ From our perspective, a file stream looks like this:
= A sequence of characters that come one after the other

10

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

User Perspective: A stream of bytes

% As a user, we have the idea of a file as being a “stream” or sequence of bytes.
= 3 continuous sequence of data made available over time.

" There are many kinds of streams, for now we are talking about files

+~ From our perspective, a file stream looks like this:
= A sequence of characters that come one after the other
= When we open a file, we start at the beginning of the file stream

11

University of Pennsylvania

LO7: File System Intro

User Perspective: A stream of bytes

% As a user, we have the idea of a file as being a “stream” or sequence of bytes.
= 3 continuous sequence of data made available over time.

" There are many kinds of streams, for now we are talking about files

+~ From our perspective, a file stream looks like this:
= A sequence of characters that come one after the other
= When we open a file, we start at the beginning of the file stream

= As we read chars, we “move forward” to the next chars in the file

- Now we know we are changing the cursor for that open file...

CIS 4480, Fall 2025

12

University of Pennsylvania

LO7: File System Intro

CIS 4480, Fall 2025

User Perspective: A stream of bytes

% As a user, we have the idea of a file as being a “stream” or sequence of bytes.
= 3 continuous sequence of data made available over time.

" There are many kinds of streams, for now we are talking about files

+~ From our perspective, a file stream looks like this:
= A sequence of characters that come one after the other

= When we open a file, we start at the beginning of the file stream

= As we read chars, we “move forward” to the next chars in the file

+ This is not just a C thing; this is probably what you have done in Java and other
languages.

" |tis a hardware thing

13

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

File System

+ File System: A system composed of algorithms and data structures for how
data is stored, organized & retrieved from a storage medium.

= E.g. how the operating system organizes the physical medium (Hard Disk, SSD, Tape,
Floppy Disk, etc) to make the interface/abstraction we saw in the previous slides

SSD

25"

3 Cache

Controller

NAND Flash Memory

14

University of Pennsylvania

LO7: File System Intro

The File System Foundations

%+ So, we have this complicated system of:

<+ What does the operating system get to implement this?

various files of different lengths

Files that can be written, read, extended, shrunk, deleted, copied...

CIS 4480, Fall 2025

Directories that contain files and other directories which can contain other directories etc.

« Directories can be of various sizes

Files can have different permissions (executable, read, write)

Files of the same name can exist in different directories

We want to try and support all of this, and have it run relatively fast

int the filesystem|

15

15

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

Not quite just an array of ints..

+» From the OS perspective, it has to create and manage a file system with this
int the filesystem[REALY REALLY BIG];

% This is not fully true
" The “unit” size of elements in the array is not an int (typically 4 bytes) but instead a block

- 512 or 4096 bytes, depending on the implementation and hardware

" The OS does not get to directly index into the array, it invokes functions (outside of
itself) that can read or write specific blocks.

16

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

Storage Mediums Interface: Blocks

+ A block is a fixed number of contiguous bytes
= Usually, 4096 bytes or 512 bytes

«» Storage Mediums can be thought of as a giant collection of blocks.

= The file system has to organize these blocks (and the bytes inside of them) to make the
abstractions we talked about. Otherwise, there would just be data with no clear
separation of files

+ A block is the unit of work for a file system
= Read and write operations to storage mediums (e.g. disk) are done in multiples of their
respective block size
- So even if you want to change (1 byte) within a file, you must write an entire block of the file
- The smallest space a file takes up on disk is 1 block

17

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

Operating System Perspective: Blocks

» The stream model is very convenient for user level programs, but hardware
works in terms of blocks.

» The file system breaks files up into blocks so that it can be stored into the
storage hardware.

= When the operating system interfaces with hardware, it works in terms of blocks.
= When the OS operates on a file, it reads/writes an entire block at a time
" The user still sees the file as a stream abstraction, can work with bytes instead of blocks

18

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

Operating System Perspective: Blocks

» User perspective: A sequence of bytes

Elvl|e
< < <
¥ &V
NAESAON

r|'|s|tle]|p ylo|u tlalk]|e ils flo|r|e|v|e|r

» More details: these bytes are broken up into a series of logical blocks

E|lvie|r]| |s|t]|e]p y|lo|u tlalkle ils flolr|je|vi|e|r
0tk Block 1t Block 2nd Block 3t Block
for this file for this file for this file for this file

These blocks are logically next to each other, but may not
be contiguous in physical memory.

19

University of Pennsylvania LO7: File System Intro

CIS 4480, Fall 2025

Lecture Outline

% Intro to File System
= User Perspective
= Blocks

% File Allocation

= Contiguous
" Linked List

20

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

Building up to a full filesystem

+» Lets start with a simple abstraction:
= We have disk that contains many blocks
= We want to store a few files and just one block per file (so each file is at max ~4096 bytes)

Disk:

free | free | L2) sl free | free free | free | 0= o [0S

+ How do we know where a certain file is on disk?

+ How do we know which blocks are free?

21

University of Pennsylvania

LO7: File System Intro

CIS 4480, Fall 2025

Solution: Directories

+~ We can solve one of these problems with the introduction of directories.

+ A directory is essentially like a file

= We will store its data on disk inside of blocks (like a file)

+ The directory content format is known to the file system.
= The file system might maintain a list of directory entries

= Each directory entry contains the name of the file, the first block number of the file, and
some other information

22

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

Solution: Directories

+ The directory content format is known to the file system.
= Contains a list of directory entries

= Each directory entry contains the name of the file, the first block number of the file, and
some other information

free free m free m free free m free free File C File E

Block O Block1l Block2 Block3 Block4 Block5 Block6 Block7 Block8 Block9 Block10 Block11

Directory:

A 7 Where does this directory go?
3 4 Where do we store its information?
How do we know where the directory is in disk?
C 10
D 2 Remember: a directory stores its data in blocks in disk too
E 11

23

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

Solution: Root Directory

+» Solution: we have an overall root directory that we always put in the same
place (Block 1 or Block 0)

Disk:
free | Root Dir | |ii[=]» m 2150 | free | free m free | free |[Fi[=e | F1[2F =
BO Bl B2 B3 B4 B5 B6 B7 B8 B9 B10 Bl11
Directory:

N EME Block Number

A
B
C 10
D
E

4 How do we know which blocks are free?

24

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

Bitmap

+ We can have a bitmap (similar to a bitset) stored in disk to keep track of which
blocks are free and which ones are not.

» |If we have N blocks, then we need N bits (1 bit per block) to keep track of this
information. If a bit is 1 the corresponding block is free, 0 means it is in use.

» It is also useful to stick this in the front of the disk, at a fixed location

Disk:

Bit- Root | 7= ») 1200 free | free free |free | Fl[=e | Fi[2]=
map | Dir

BO Bl B2 B3 B4 B5 B6 B7 B8 B9 Bi0 Bi1 25

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

Expanding on our model

+ What we have works, what happens if we want files that are more than 1 block

big?
Disk:
Bit- Root | Zll=p)]| free [#1201 free | free free |free | Fl[=e | i[5
map | Dir

BO Bl B2 B3 B4 B5 B6 B7 B3 B9 Bi10 B11

+~ Let’s say File B wants to be two blocks long instead of 1 block long

+~ What is the simplest thing we can do?

26

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

Contiguous Allocation

\/
0’0

Solution: let B expand into the block next to it on disk. It is a free block and we can
take it

<l Bit- Root File D FileB Also File' A Ri--BERi-I-l File C "File E
Disk: map File B

BO B9 B10 B11

Only other change we need to make is probably have each directory entry also store

the number of blocks in the file

This way of allocating blocks to a file is called Contigious allocation. Each file occupies
a contiguous region of blocks 27

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

Contiguous Allocation: Random Access

« What if wanted to read the second block of File B?

= How many blocks would we need to read from disk?
- Assume we have not read anything in to the OS yet

Disk:
Bit- Root FileD File B Also 1200 free | free | Fl=ie | 215 S
map File B
BO B9 B10 B11

28

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ What if wanted to read the second block of File B?
= How many blocks would we need to read from disk?

Disk:
Bit- Root FileD File B Also 1200 free | free | Fl=ie | 215 S
map File B
BO B9 B10 B11

29

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

Contiguous allocation: problems

» Let’s say File C wants to be two blocks long instead of 1 block long
= What do we do?

File D Hﬁles Also HFlIeA free |free NalNe bzl :
File B

BO B9 B10 Bill
+ What if instead File D wants to be 5 blocks long?

» |If we wanted to extend the file but the next block is taken, we either give up or
have to rearrange other files in the file system.

Bit- Root

Disk: map | Dir

» Analysis: this doesn’t work very well for files that may grow over time. There is

fragmentation that can’t be used unless we move files around, which takes a
lot of time :/

31

University of Pennsylvania

LO7: File System Intro

CIS 4480, Fall 2025

Do blocks need to be contiguous?

» Logically (from the user view) a file is contiguous.

%+ The user never directly interfaces with disk, the operating system just has to
provide the data in the blocks in order

Logical File: [FE{[=0A0 10 File AB1 File A B2 File AB3 File AB4

PBO PB 3

PB1 PB 2 PB4 PB5 PB 6

<+ The operating system is maintaining the abstraction for the user. The user

asks for the 3" block of a file, and the operating system will figure out which
physical block it is.

+ Sort of similar to virtual vs physical address translation (haha more on that later) 32

LO7: File System Intro CIS 4480, Fall 2025

University of Pennsylvania

Implicit Linked List Allocation

+ We can have each block reserve some bits at the end that are pointers to the

next block in the file,
" or aspecial value to mark that there is no “next block”

NOTE: when we say “pointer” here, it is not the same as a memory pointer.
This is a “disk pointer”, meaning it refers to a place in disk and NOT a place in

\/
0’0

memory
Disk:
Bit- Root [71[=») FileB Also FileD FileA FileC FileC FileE
map | Dir FileB Blk2 Blk 2
B10 B11

BO Bl B2\ B3 B4 Vs \Bs B7 BS

\/
0’0

Root directory still holds the first block number for a file in that file’s file entry.

33

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

Implicit Linked List Allocation

+» What if | want to grow File D by 2 blocks?

Disk:
Bit- Root File B Also File C FileC FileE
map | Dir File B Blk 2
BO Bl B2 B3 B4 V B5 B6 B7 B8 B10 B11

= Scan the bitmap to find which blocks are free
= Allocate the blocks and set up pointers to them

Disk:
Bit- FileD FileD FileB Also FileD FileA FileC FileD FileC FileE
map FileB Blk 2 Blk2 Blk4

BO

34

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ Let’s say | wanted to read the 4t block of file D.
How many block reads would be needed? Why?

" You can assume we already know where the file begins (we have already read the
directory entry for the file)

Disk:
Bit- FileD FileA FileC FileD FileC FileE
map i FileB Blk 2 Blk2 Blk4

BO

35

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

Seek Time

+» To seek in a file is to move to a different position in the file. If we want to move
from one place on the hardware to another, that takes a VERY long time
(relatively)

- HDD (Hard Disk Drives) consist of a spinning disk and an arm that hovers over
the disk to read data

» Video:
= Start at 6:48 ish

» Since this is a physical operation,
much slower (relatively) than
electronic operations

37

https://yewtu.be/watch?v=p-JJp-oLx58
https://yewtu.be/watch?v=p-JJp-oLx58
https://yewtu.be/watch?v=p-JJp-oLx58
https://yewtu.be/watch?v=p-JJp-oLx58
https://yewtu.be/watch?v=p-JJp-oLx58

CIS 4480, Fall 2025

University of Pennsylvania LO7: File System Intro

Linked Allocation Analysis

% Linked List Pros:
" Growing a file is more feasible

" Fragmentation issues are less present

+ Linked List Cons:
= Reading can take a lots of seeks to different parts of disk.
Seeks take up time ®

= This con is big enough to warrant a different allocation scheme.
Computer science typically cares A LOT about how quick something is

38

University of Pennsylvania

Lecture Outline

% Intro to File System
= User Perspective
= Blocks
+ File Allocation
= Contiguous
" Linked List
% File Allocation Table (FAT)

= FAT Walkthrough
" PennFAT

LO7: File System Intro

CIS 4480, Fall 2025

39

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

Linked List via FAT

%+ We can still have a linked-list “style” approach, we just need a way to make
looking up the blocks of a file quicker. We don’t want to access disk so many
times if we can help it. O(N) look up to traverse all blocks in the file...

» What can we do instead of accessing disk?

= What if we could access memory instead?

40

CIS 4480, Fall 2025

University of Pennsylvania
>

LO7: File System Intro

Memory Hierarchy

Smaller,
faster,
and
costlier
(per byte)
storage
devices

Larger,
slower,
and
cheaper
(per byte)

storage ||5.

devices

L6:

LO:

L1 cache
(SRAM)

L1:

L1 cache holds cache lines retrieved

Files systems are really
really really slow compared
to accessing memory

CPU registers hold words retrieved

T'll talk abont

L2: e from the L2 cache. 0&10‘/] es [ﬁ+@V
(SRAM) .
L2 cache holds cache lines

L3: L3 cache
(SRAM)

retrieved from L3 cache.

L3 cache holds cache lines

L4: Main memory
(DRAM)

retrieved from main memory.

Main memory holds disk blocks

Local secondary storage
(local disks)

retrieved from local disks.

Local disks hold files

Remote secondary storage
(e.g., Web servers)

retrieved-fromrdisks
on remote servers.

41

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

FAT (File Allocation Table)

« Instead of this:

Disk:
Bit- 161l FileD FileD FileB gaylM FileD FileA FileC FileD FileC FileE
map | Dir Blk 3 Yy Blk 2 Blk2 Blk4
BO Bl

+ We can instead store the pointers or “links” in a table in memory to get...

42

University of Pennsylvania LO7: File System Intro

FAT (File Allocation Table)

0

0

*

0

D)

*

0

D)

This table is called the
File Allocation Table (FAT)

This table is in memory when it is running

Table stored in disk initially, loaded into
memory when computer is booted.

Replaces the bitmap
= Why can it do that?

pollev.com/cis5480

Disk:

Dir Blk 3 Blk 2
BO Bl B2 B3 B4 B5 B6

CIS 4480, Fall 2025

Block # Net

O 00 N OO U o W N B O

=
= O

BITMAP/SPECIAL
END

6

9

END

EMPTY / UNUSED
3

END

END

END

8

END

FAT 161l FileD FileD FileB gaylM FileD FileA FileC FileD FileC FileE
y Blk2 Blk4

B3

B11 43

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

Let’s say | wanted to read the 4" block Elocki e
. 0 BITMAP/SPECIAL
of file D. . o
How many block reads would be 5 c
needed? Why? 3 9
" You can assume we already know where E END
the file begins (we have already read the 2 EMPTY / UNUSED
directory entry for the file) g 3
7 END
8 END
9 END
10 8
11 END

FAT ilJoi 3 FileD FileD FileB g3yl i@ FileD FileA FileC FileD FileC FileE
Dir Blk 3 y Blk 2 Blk2 Blk4

BO Bl B2 B3 B4 B5 B6 B7 B3 B9 Bi10 B11l 44

University of Pennsylvania

FAT Walkthrough

LO7: File System Intro

Block # Net

+» The FAT is the reason why the 0 BITMAP/SPECIAL
operating system knows which block is 1 END
used for which purpose 2 °
3 9
» If we wanted to read the 4t block from END
file D: 5 EMPTY / UNUSED
6 3
7 END
8 END
9 END
10 8
11 END
FAT |Root |?22 [22? 272|222 [?%2 [?22 |72 272 |27 |*%?
Dir
BO Bl B2 B3 B4 B5 B6 B7 B8 B9 B0 BIll

CIS 4480, Fall 2025

46

University of Pennsylvania

FAT Walkthrough

+» The FAT is the reason why the
operating system knows which block is
used for which purpose

+ If we wanted to read the 4t block from
file D:

= Read the directory entry for File D (from the
root dir) to see that it starts at block 2

LO7: File System Intro

BITMAP/SPECIAL
END

6

9

END

EMPTY / UNUSED
3

END

END

END

8

END

O 00 N O U p W N —» O

=
= O

FAT Root | Zl[=ia)] 22? ?7?? ?7??
Dir Blk 0

oo SRR I & S I o o S B & S I o & S I O o

BO Bl B2 B3 B4 B5

B6 B7 B3 B9 Bi10 B11l

CIS 4480, Fall 2025

47

University of Pennsylvania LO7: File System Intro

FAT Walkthrough

+» The FAT is the reason why the 0 BITMAP/SPECIAL
operating system knows which block is 1 END
used for which purpose — R s
+ If we wanted to read the 4t block from z END
file D: 5 EMPTY / UNUSED
= Lookup next block in the FAT. We go to FAT © 3
entry #2 and the “next” says where the next 7/ END
block is (physical block 6) 8 END
9 END
10 8
11 END

FAT |Root [allonl] 222 [222 |222 [FllE0)| 222 |222 222|272 |22
Dir [l Blk 1

BO Bl B2 B3 B4 B5 B6 B7 B3 B9 Bi10 B11l

CIS 4480, Fall 2025

48

University of Pennsylvania LO7: File System Intro

FAT Walkthrough
ot New
+» The FAT is the reason why the 0 BITMAP/SPECIAL
operating system knows which block is 1 END
used for which purpose — K °
» If we wanted to read the 4t block from z END
file D: 5 EMPTY / UNUSED
= |ookup next block in the FAT. We go to FAT ©
entry #6 and the “next” says where the next ’/ END
block is (physical block 3) 8 END
9 END
10 8
11 END

FAT |Root |zlloibalBn| 222 [222 [llo0d 222|222 [?272 |?7? |222
NISIBIkO | Blk2 Blk 1

BO Bl B2 B3 B4 B5 B6 B7 B3 B9 Bi10 B11l

CIS 4480, Fall 2025

49

University of Pennsylvania LO7: File System Intro

FAT Walkthrough
ot New
+» The FAT is the reason why the 0 BITMAP/SPECIAL
operating system knows which block is 1 END
used for which purpose — K °
» If we wanted to read the 4t block from z END
file D: 5 EMPTY / UNUSED
= |ookup next block in the FAT. We go to FAT ©
entry #3 and the “next” says where the next ’/ END
block is (physical block 9) 8 END
9 END
10 8
11 END

FAT | Root |[Fl[solgil-iei 2?27 ??? File D Exss ??? File D Exgs ?7??
Dir BlkO Blk2 Blk 1 Blk 3

BO Bl B2 B3 B4 B5 B6 B7 B3 B9 Bi10 B11l

CIS 4480, Fall 2025

50

University of Pennsylvania LO7: File System Intro

FAT Walkthrough
Block# _ [Next
+» The FAT is the reason why the 0 BITMAP/SPECIAL
operating system knows which block is 1 END
used for which purpose — °
» If we wanted to read the 4t block from z END
file D: 5 EMPTY / UNUSED
= The FAT entry for block 9 has a special value ©
for “next” to indicate it is the last block in / END
the file 8 END
9 END
10 8
11 END

FAT | Root |[Fl[solgil-iei 2?27 ??? File D Exss ??? File D Exgs ?7??
Dir BlkO Blk2 Blk 1 Blk 3

BO Bl B2 B3 B4 B5 B6 B7 B3 B9 Bi10 B11l

CIS 4480, Fall 2025

51

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

Linked List via FAT

» FAT is logically very similar as a linked list, we just store the links somewhere
else that can be conveniently stored in memory

+ Since the links are in memory, we can find the Nt block of a file with much
fewer disk accesses

» Disk accesses take a long time, so this is good ©

52

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

» |If we want to extend a file in FAT what steps do we need to take?

» Hint: FAT is in memory, what are the big differences between Disk and
Memory?

53

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

FAT is great ©*

» FAT has allowed us to have non-contiguous blocks for a file.
+~ At the same time, we only need one disk read to access the Nth block of a file

+ What could go wrong with this?

" FAT is really big and is in memory, so memory consumption goes up &

55

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

FAT (The Table) size

+~ A FAT is similar to a bitmap
= A bitmap needs 1 bit per block
" A FAT needs ~16-bits per block ®

% At least we don’t need a bitmap anymore!

*

D)

» Grows a lot as the size of disk grows

As the disk grows, there are more blocks in the disk. We need more FAT entries, and each

entry needs more bits. (To hold the block number. # of bits for block # grows to support
more blocks)

The File Allocation Table may be bigger than one block

we need to keep the FAT in memory to keep accesses fast, memory consumption goes up!
FAT got fazed out for I-nodes (next lecture) because of this (thank god | hate FAT)

56

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

» When you create a file system with PennFAT, you specify the number of blocks
the File Allocation Table takes up and the size of a block.

» Let’s say | want to create a FAT that spans 4 blocks, a block is 4096 (21%) bytes,
and an entry in the table is 2 bytes.
" How many entries do | have?

FAT region Data Region

Disk: L 1

FAT |FAT |FAT |FAT

BO Bl B2 B3 B4 B5 B6 B7 B3 B9 BN

57

CIS 4480, Fall 2025

University of Pennsylvania LO7: File System Intro

PennOS FAT Details

- If we have N entries in the File Allocation Table, we only have N -1
references to data blocks in the FAT

+ The first File Allocation Table entry FAT[0] holds meta data about
the FAT, so it doesn’t refer/point to a “real” block

+» An entry is 16-bits, which is 2 bytes.

+ Consider the example 2-byte value: 0x2004
= We can split this into two bytes for FAT[0]
"= The MSB (Most Significant Byte) 0x20 ->32 in decimal
" The LSB (Least Significant Byte) 0x04 ->4in decimal

59

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

PennOS FAT[0] MSB

% The first FAT entry FAT [0] holds meta data about the FAT, so it
doesn’t correspond to a “real” block

» Consider the example 2-byte value: 0x2004

= We can split this into two bytes
"= The MSB (Most Significant Byte) 0x20 ->32 in decimal
" The LSB (Least Significant Byte) 0x04 ->4in decimal

« The MSB is size of the File Allocation Table in units of blocks
= in this example, the FAT is 32 blocks

60

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

PennOS FAT[0] LSB

+» The first FAT entry FAT [0] holds meta data about the FAT, so it
doesn’t correspond to a “real” block

» Consider the example 2-byte value: 0x2004

= We can split this into two bytes
= The MSB (Most Significant Byte) 0x20 ->32 in decimal
" The LSB (Least Significant Byte) 0x04 ->4in decimal

+ The LSB is between 0 and 4, and
. . 0 256
specifies the size of the blocks for . c15
the file system) 1,024

3 2,048

4 4,096

61

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

PennOS FAT Entry Special Values

+» A PennFAT entry is 16-bits and only contains the block number of the next
block in the file.

+» There are two special values a PennFAT entry can hold

% 0x0000 (0 in decimal)

" Indicate the block is free.
= We start indexing into our blocks in the data region starting with index 1 ©0 2@

+» OXFFFF (65535 as unsigned, -1 as signed)

" |ndicates that there is no block after this logically in the file
" That this is the last block in the file

62

CIS 4480, Fall 2025

University of Pennsylvania LO7: File System Intro

PennOS root Directory

» PennFAT has a special value for FAT[1] as well.
» |t still corresponds to a data block, but that data block is the first block of the
root directory

%+ This means we always know where the root directory starts. (at index 1 into
the data region), and from there we can find all other files

= ..pathname resolution soon...

FAT region '
Dick: 1 g DatalReglon

FAT FAT FAT FAT Root
Blk 0

BO Bl B2 B3 B4 B5 B6 B7 B3 B9 BN

63

LO7: File System Intro CIS 4480, Fall 2025

Think About How You’d like to Design your Penn-FAT ©

64

University of Pennsylvania

Lecture Outline

*

Intro to File System
= User Perspective

= Blocks

» File Allocation

= Contiguous
" Linked List

» File Allocation Table (FAT)

= FAT Walkthrough
" PennFAT

» Poll Everywhere Solutions

LO7: File System Intro

CIS 4480, Fall 2025

65

University of Pennsylvania LO7: File System Intro

@ Poll Everywhere

+ What if wanted to read the second block of File B?
= How many blocks would we need to read from disk?

2 Blocks! Why? Second, we read the
Block of Interest

CIS 4480, Fall 2025

pollev.com/cis5480

free [Flg e | F]=5

Disk:
Bit- Root FileD File B Also J1200 free
map File B
BO

First, we read

the Root Dir Directory: m Block # m

Block.

A 4
W
I
N

B9 B10 B11

66

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ Let’s say | wanted to read the 4t block of file D.
How many block reads would be needed? Why?

" You can assume we already know where the file begins (we have already read the
directory entry for the file)

Disk:
Bit- FileD FileA FileC FileD FileC FileE
map i FileB Blk 2 Blk2 Blk4
BO

+ 4 block reads ®
+ We need to read each block to find where the next block is located. ®

67

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

Block# [Next
Let’s say | wanted to read the 4th block B
PO 0 BITMAP/SPECIAL
ornie . 1 END We can do this
How many block reads would be 2 1 traversal in
needed? Why? 3 , 9 software land,
7 END no need to read
" You can assume we already know where these blocks
the file begins (we have already read the ° PN/ UNEEED every time.
directory entry for the file) ° [
7 END
8 END
Just one block!!! . 9 END
10 8
11 END

Dir Blk 3 Blk 2 Blk2 Blk4
BO Bl B2 B3 B4 B5 B6 B7 B3 B9 B10 B11 68

Nl FileD FileD 'File B FileD FileA FileC FileD FileC FileE
y

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» If we want to extend a file in FAT what steps do we need to take?

= |ookup a free block in the FAT, mark it as a last block

= |ookup the last block in the file, change its FAT entry to think the newly allocated block is
the new “last”

= Write the FAT table to disk, memory is volatile storage

+~ Hint: FAT is in memory, what are the big differences between Disk and
Memory?

69

University of Pennsylvania LO7: File System Intro CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

» When you create a file system with PennFAT, you specify the number of blocks
the File Allocation Table takes up and the size of a block.

» Let’s say | want to create a FAT that spans 4 blocks, a block is 4096 (21%) bytes,
and an entry in the table is 2 bytes.
" How many entries do | have? 4 * 212 / 2 = [213]

FAT region Data Region

Disk: L 1

FAT |FAT |FAT |FAT

BO Bl B2 B3 B4 B5 B6 B7 B3 B9 BN

70

