University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

FAT & I-nodes
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez
Head TAs: Maya Huizar Akash Kaukuntla
Vedansh Goenka Joy Liu

TAs:
Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane
Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones
Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng
Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Lecture Outline

« Inodes
<« Directories
+» Block Caching

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» What was the big downside of using FAT?

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

» Instead, could we store most FAT blocks on disk and only load into memory
the FAT blocks that are used for looking up files that are currently open used
(aka have entries in the file table, etc)?

University of Pennsylvania

Explanation

\/
0’0

Blocks of a fi
blocks to loo

%~ Small examp

\/
0’0

" Consider block size 256,
= FAT entry 2 bytes, so 128

kup a file anyways

e.

entries per FAT block
= FAT takes up 4 blocks

Reminder: FAT region is separate from the data region (blocks it manages)

LO8: FAT & I-nodes

e could be spread out across disk. We may have to load all FAT

FAT region '
Dick: 1 g Data lReglon
FAT FAT FAT FAT
BO Bl B2 B3 B4 B5 B6 B7 B8 B9 BN

CIS 4480, Fall 2025

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Explanation

+ Blocks of a file could be spread out across disk. We may have to load all FAT
blocks to lookup a file anyways

+ Small example: N [

" Consider block size 256, {2

= FAT entry 2 bytes, so 128
entries per FAT block

= FAT takes up 4 blocks

Consider we have a file
128 that starts at the second

—... block of the Data Region
— 128 256

= 256 500

oo
e

FAT region
FAT FAT FAT FAT

BO Bl B2 B3 B4 B5 B6 B7 B8 B9 BN 8

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Explanation

+ Blocks of a file could be spread out across disk. We may have to load all FAT
blocks to lookup a file anyways

+ Small example: N [

" Consider block size 256, {2

= FAT entry 2 bytes, so 128
entries per FAT block

= FAT takes up 4 blocks

Consider we have a file
128 that starts at the second

—... block of the Data Region
= 128 256

= 256 500

{500
i / We would need to read in the whole FAT just to look up this file

FAT region
FAT FAT FAT FAT

BO Bl B2 B3 B4 B5 B6 B7 B8 B9 BN 9

University of Pennsylvania

Inode motivation

ldea: we usually don’t care about ALL blocks in the file system, just the blocks
for the currently open files

Instead of spreading out the block numbers in a table, can we group the block
numbers of a file together?

Yes: we call these inodes:

= Contains some metadata about

the file and 13 physical block

numbers corresponding to the

first 13 logical blocks of a file

LO8: FAT & I-nodes

The Inode

Data Blocks

meta data

CIS 4480, Fall 2025

0t phys block #

15t phys block #

2" phys block #

3" phys block #

4t phys block #

\

*not all data blocks shown.

CIS 4480, Fall 2025

University of Pennsylvania LO8: FAT & I-nodes

General Inode layout

\/
0’0

. rtypedef block no t int
Inodes contain:

" some metadata about the file struct inode_st {

attributes t metadata;

» Owner of the file block_no t blocks[13];
 Access permissions // more fields to be shown
- Size of the file L};// on Later stides

- File Type

- Time of

— last change of file, last access to file, last change to INODE of file.

" blocks[13];
- 13 physical block numbers corresponding to the first 13 logical blocks of a file

11

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Inodes Disk Layout

+ When we use Inodes instead of FAT, we get something
like this instead:

Bit-map | Inodes

BO Bl B2 B3 B4 B5 B6 B7 B8

12

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ When we use Inodes instead of FAT, we get something
like this instead:

Bit-map | Inodes

BO Bl B2 B3 B4 B5 B6 B7 B8

Wait, why do we need a Bit-Map for this filesystem implementation?
How many blocks could we track if a block size is 512 bytes?

13

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Inodes Disk Layout

+ When we use Inodes instead of FAT, we get something like this instead:

Bit-map | Inodes

BO Bl B2 B3 B4 B5 B6 B7 B8

+ |-nodes are smaller than a block so we can fit multiple inodes in
a single block

+ Each i-node is numbered via a corresponding i-number (it’s offset within the list)

A
[|

Bit- Inode | Inode | Inode | Inode .- Inode
map 0 1 2 3 n

BO Bl B2 B3 B4 B5 B6 B7 B8

15

LO8: FAT & I-nodes

University of Pennsylvania

CIS 4480, Fall 2025

Example File Block Lookup

+» Each File will have an Inode with a corresponding i-number
+~ Suppose that we wanted to look up a file that is made of 4 blocks.

= First, we need the Inode number for the file (lets assume it is 2)

Bit- {Ino |Ino |Ino |Ino Ino
map |de0 |del |[de2 |de3 den
BO Bl B2 B3 B4 B5 B6 B7 B8

16

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Example File Block Lookup

+» Each File will have an Inode with a corresponding i-number
+~ Suppose that we wanted to look up a file that is made of 4 blocks.

" First, we need the Inode number for the file (lets assume it is 2)
= We can read the Inode to see which blocks makeup the file

meta data
In this example, the block numbers in the Inode
0th phys block # 0 : : .
are indexes relative to the start of the data region.
1% phys block # > (Although they don’t have to be...)
2d phys block # 3
3™ phys block # 2 You will be doing this in PennOS too
Bit- {Ino [Ino (Ino [Ilno |.. Ino
map |de0 |del |[de2 |de3 den

BO Bl B2 B3 B4 BS B6 B7 B3 .

LO8: FAT & I-nodes

University of Pennsylvania

Example File Block Lookup

\/
0’0

+~ Suppose that we wanted to look up a file that is made of 4 blocks.

= First, we need the Inode number for the file (lets assume it is 2)

meta data

0th phys block #

15t phys block #

2d phys block #

3rd phys block #

\

[

= We can read the Inode to see which blocks makeup the file

Each File will have an Inode with a corresponding i-number

CIS 4480, Fall 2025

In this example, the block numbers in the
Inode are indexes relative to the start of the
data region.

You will be doing this in PennOS too

ST

~
Bit- (Ino |Ino |[Ilno |Ino Ino | Oth 3rd | 2nd 1st
map |de0 |del |[de2 |de3 den

BO Bl B2 B3 B4 B5 B7 B8

18

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

File Sizes with Inode

%+ So with Inodes, how many blocks can we have per file?

= So far: 13 blocks per file (this is not enough, way too smalll)
- About 7,680 bytes with 512 size blocks.
- An average MP4 song would at least 3,000,000 bytes.

«» We can allocate a block to hold more block numbers

= This block can hold 128 block numbers (each block num is an int)

meta data 12th phys block #
0 phys block # 0 13t phys block #
1 phys block # 5
139t phys block #
9 phys block # 2 /
Block of ptrs /7

Note: please do not imagine these structures like tables.
This is a singly indirect pointer; They are not.

it points to a block of pointers (or block numbers) They are purely arrays of integers. 19

University of Pennsylvania LO8: FAT & I-nodes

CIS 4480, Fall 2025

File Sizes with Inode

%+ So with Inodes, how many blocks can we have per file?

= So far: 13 blocks per file (this is not enough, way too smalll)
- About 7,680 bytes with 512 size blocks.

- An average MP4 song would at least 3,000,000 bytes
+ We can allocate a block to hold more block numbers

(struct inode st { R

attributes t metadata;
// the block number at index 10
// will point to a block of
// block numbers
block no t blocks[13];
};

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

File Sizes with Inode

+~ So with Inodes, how many blocks can we have per file?
= So far: 13 blocks per file (this is not enough, way too smalll)

+ We can allocate a block to hold more block numbers It each block is 512 bytes, we
can hold 128 block #s in a
single block.
meta data 10 phys block # e
0 phys block # 0 N 11 phys block #

1 phys block # 5 \ 12 phys block # //j
\
9 phys block # 136 phys block # \
Block of ptrs 4 \ 137 phys block # \
[= =

Bit- |Ino (Ino |[Ino |Ino |.. Ino |Oth | .. 3rd | 2nd | ptr | 1st
map |de0 |del |[de2 |de3 den blk

BO Bl B2 B3 B4 BS B6 B7 B3

21

University of Pennsylvania

LO8: FAT & I-nodes

CIS 4480, Fall 2025

We need moreeeeee

« What if a file needs more than 137 blocks?
+ We can make 11t block number refer to a block t

that refer to data bloc

KS

meta data

nat refers to other blocks

10th phys block #

135t phys block #

0 phys block #
1 phys block # 5
137t phys block #
138 phys block #
9 phys block # 2/ / 139 phys block #
Single Indirect Ptr / Block for 138-265 -
Double Indirect Ptr \\ Block for 266- ——\\ 265 phys block #

266 phys block #

>
\

This block refers to blocks that are ,
composed of 128 blocks numbers.

267 phys block #

n phys block #

These blocks

refer to real data
blocks.

22

LO8: FAT & I-nodes CIS 4480, Fall 2025

University of Pennsylvania

- MORE MORE MORE MORE MORE MORE MORE

< What if our file needs more than that?

= We can make the 13t block number in our Inode refer to a pointer block that refers to
pointer blocks that refer to data blocks...

meta data

10th phys block #

138 phys block #

0 phys block #

11 phys block #

139 phys block #

266 phys block #

1 phys block #

267 phys block #

137 phys block #

265 phys block #

bigth phys block #

9 phys block #

Block for 138-265

\[\

Single Indirect

Block for 266-

Double Indirect
Pointers

Triple Indirect
Pointers

v

ath phys block #

bth phys block #

cth phys block #

dth phys block #

eth phys block #

gth phys block #

hth phys block #

fth phys block #

ith phys block #

23

LO8: FAT & I-nodes CIS 4480, Fall 2025

University of Pennsylvania

More?

+ No more (at least on the Version 7 Unix File System Implementation)
+ If you need more space than this, the operating system will tell you no

Version 6 Unix File System

struct inode st {
attributes t metadata;
block no t blocks[8];

b

)

Metadata will contain a bit telling us if the file is “large”.

If it is, all 8 blocks are singly indirect blocks.

Version 7 Unix File System

struct inode st {
attributes t metadata;
block no t blocks[13];

b

This is the example we just went through!
Helps support much larger files.

If the file is large, then block_numbers at indexies 10, 11, and 12 are singly

doubly, and triply indirect block pointers.
24

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Linux ext2 (Extended 2)

+ In the linux ext2 filesystem, it is very similar to Version 7 as it is a descendant
of this file system.

[struct inode st {
attributes t metadata;
block no t blocks[12];
block no t *single ind;
block no t **double ind;
block no t ***triple_ind;

}s

The Linux EXT2 is based on the Unix File System which is a direct descendant of the BSD FFS which is based on the Version 7 Unix File System. Feel free to research this on your own. Too much lore. 25

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

What is the largest file possible if each block is 512 bytes and each block _n_t is 4 bytes?

([struct inode st {]

attributes t metadata;
block no t blocks[12];
block no t *single ind;
block no t **double ind;
block no t ***triple _ind;

};

26

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

« How is this better than FAT?

28

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Lecture Outline

+ |nodes
« Directories

+~ Block Caching

30

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Directory Entries with Inodes

+» With FAT we said a directory entry had:
" The file name
" The number of the first block of the file

+» With i-nodes, we instead store the inode number for the file in the directory
entry

31

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Reminder: Directories

+ A directory is essentially like a file
= We will store its data on disk inside of blocks (like a file)

+» The directory content format is known to the file system.

= Contains a list of directory entries

= Each directory entry contains the name of the file, some metadata and...
- If using Inodes, the inode for the file
- If using FAT, the first block number of the file

" | know we just said Inodes are better and more modern, but PennOS uses FAT (:/) so my
examples will follow that, it is not much different for Inodes though

32

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Review: Directories

+ In FAT our file system looked something like this:
= 2 regions, and assuming FAT is just 1 block

FAT region Data region

A A
1 |

FAT Root | ??? ??? ?7?? ??? ??? ?7?? ?7?? ?7?? ?7?? ?7??
Dir
BO Bl B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

+ And the root Directory contains a list of directory entries

A 7
B 4
C 9
D 2
E 10

33

LO8: FAT & I-nodes

University of Pennsylvania

CIS 4480, Fall 2025

Growing a Directory

+ In FAT our file system looked something like this:
= 2 regions, and assuming FAT is just 1 block

FAT region Data region
:) (: \
FAT Root | ??? ??? ??? ??? ??? ??? ??? ??? ??7? ???
Dir
BO B1 B2 B3 B4 B5 B6 B7 BS B9 B10 Bi11
+ What happens if the root directory starts filling up?
" The root directory is itself a file, it can expand to another block
FAT region Data region
:) (: \
FAT Root | ??? ??? ??? ??? Root | ??? ??? ??? ??7? ???
Dir Dir
BO B1 B2 B3 B4 B5 B6 B7 BS B9 B10 B11

34

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Growing a Directory

+ We would also need to update the FAT to account for this change.
= Root directory in PennFAT starts at index 1 into the data region
" |Index 1 into the data region is the first block in the data region

Block # Next
(FAT Index) | (FAT value)

Block # Next
(FAT Index) | (FAT value)

0 METADATA 0 METADATA
1 END 1 6
6 EMPTY 6 END

7 EMPTY 7 EMPTY

35

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Poll Yourself Discussss

. FAT
+ Let's say PennFAT is 4

Block # Next
blocks (FAT Index) | (FAT value)

0 METADATA
Root DIR
Block ;)
ocC
- What are value of the m 2 8
remaining blocks in the 3 END
4 END
diagram? B)
5 EMPTY
C 6 6 END
7 END
. 8 3
FAT rleglon Data region
I

FAT FAT FAT FAT Root | ??? 77 7?7 77 7?? 77 7?7
Dir
BO B1 B2 B3 1 2 3 4 5 6 7 8 36

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Sub Directories

%+ In PennQOS, we are only required to deal with 1 directory, but you can
implement sub-directories.
= Sub directories are just other (special) files

+» Consider we have the following two directories and files
= /a.txt

= [usr/a.txt
= Above are two separate files!

FAT region Data region

|
[| \ \

FAT |FAT |FAT |FAT | Root 2?7 [22?7 | usr 72?2
Dir Dir

BO Bl B2 B3 1 2 3 4 5 6 7 3

45

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Sub Directories

+ We would also have some information in a directory entry to specify what kind

of file it is
Root DIR usr DIR

Block File Block File
Number | Type Number | Type

a.txt Regular a.txt Regular

usr/ 5 directory

1
FAT region Data region
A A
[1 [\

FAT |FAT |FAT |FAT | Root 2?7 [22?7 | usr 72?2
Dir Dir

BO Bl B2 B3 1 2 3 4 5 6 7 8 -

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

.and ..

% It would be useful to support . and ..

= . Refersto the current directory, . . refers to parent directory
root DIR

Number | Type Block File
Number | Type

1 directory
1 directory «- :;Zrzotgzg: K directory
a.txt 2 Regular .. 1 directory
usr/ 5 directory a.txt 6 Regular
; . !
FAT region

A
| | l

FAT |FAT |FAT |FAT | Root 2?7 [22?7 | usr 72?2
Dir Dir

BO Bl B2 B3 1 2 3 4 5 6 7 8 .

Data region I
|

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Lecture Outline

+» FAT & PennFAT wrap-up

+ Inodes

+» Directories

+ Block Caching (A quick optimization)

48

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Block Caching

» Disk I/O is really slow (relative to accessing memory)

» What can we do instead to make it faster?
= Keep data that we want to access in memory ©
= We already did this with FAT and Inodes for open files

- We can do the same for data blocks we think we may use again in the future
and allow them to reside in kernel memory.

- No need to request blocks from disk!

49

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Block Caching Data Structure

« We can use a linked list to store blocks in LRU

Most Recently Used Least Recently Used
Data Block "| Data Block [____| Data Block [__| Data Block [Data Block

» What is the algorithmic runtime analysis to: | Discuss

= |ookup a specific block?
= Removal time of LRU?

= Time to move a block to the front or back?
« Consider search time

50

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Block Caching Data Structure

« We can use a linked list to store blocks in LRU

Most Recently Used Least Recently Used
Data Block "| Data Block [____| Data Block [__| Data Block [Data Block

» What is the algorithmic runtime analysis to: | Discuss

= |ookup a specific block? 0O(n)

= Removal time of LRU? 0O(1)

= Time to move a block to the front or back? o(n)
- Consider search time

Is there a structure we know of that has O(1) lookup time? e

University of Pennsylvania
>

LO8: FAT & I-nodes

CIS 4480, Fall 2025

Chaining Hash Cache

«+ We can use a combination of two data structures:
C linked;list<block>

" hash map<block num, node*>

Tist

Most Recently Used

l

Data Block

Data Block [

* Data Block

1

Least Recently Used

l

X

* Data Block

Data Block

1

key
0
OxFDEA —_

4312 \\\\5__’)

13

O(1) lookup
O(1) remove
O(1) move to front

52

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Chaining Hash Cache

«+ We can use a combination of two data structures:
C linked;list<block>

" hash map<block num, node*>

Tist
Most Recently Used Least Recently Used
Data Block "| Data Block [__| Data Block [Data Block [Data Block
\ 4 X 4

key
0
OxFDEA —_

4312 \)

13

O(1) lookup
O(1) remove
O(1) move to front

The kernel can maintain these data structures to
reduce the number of 1/O operations that truly go to
disk. But, increased overhead in syncing with FS.

53

LO8: FAT & I-nodes CIS 4480, Fall 2025

That’s all! See y’all on Thursday!

54

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

@ Poll Everywhere

pollev.com/cis5480

+» What was the big downside of using FAT?

<+ Huge memory consumption!
= We need an entry in the FAT for every single block in the FS!

- Remember, we map block #s (indices in the table) to other blocks.
= A FAT will more than likely span multiple blocks

= This size also grows as disk grows :/ (bc more blocks!)

55

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

» Instead, could we store most FAT blocks on disk and only load into memory
the FAT blocks that are used for looking up files that are currently open used
(aka have entries in the file table, etc)?

+» Yes, but the blocks of a file could be spread out across disk. We may have to
load all FAT blocks to lookup a file anyways

56

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ When we use Inodes instead of FAT, we get something
like this instead:

Bit-map | Inodes

BO Bl B2 B3 B4 B5 B6 B7 B8

Wait, why do we need a Bit-Map for this filesystem implementation?
How many blocks could we track if a block size is 512 bytes?

Inodes don’t track which blocks are free so we need a separate structure to track which blocks are free.

512 bytes is 4096 blocks! (One bit for each block)

57

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

What is the largest file possible if each block is 512 bytes and each block _n_t is 4 bytes?

[struct inode st {) What is the largest file possible if each block is 512 bytes
attributes t metadata; and each block n_tis 4 bytes?
block no t blocks[12]; « 12 * 512 bytes
block_no_t *single indj«— In total, around 1082202112 bytes.
block no t **double_lnd;\\ (128 * 512) bytes
block no t ***triple ind; T
- - - * *
1 \ (128 * 128 * 512) bytes

(128 * 128 * 128 * 512) bytes

Really, Linux ext2 supports 1024 bytes, 2048, and 4096 byte blocks sizes. =~ For 4086 byte blocks, the max size is ~ 4TB. e

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ How is this better than FAT?

» Inodes keep all the information of a file near each other

+ if we wanted to store in memory only the information of open files, we could
do that with less memory consumption

» In other words: only need to store in memory the inodes of the open files
instead of the whole FAT

59

University of Pennsylvania LO8: FAT & I-nodes CIS 4480, Fall 2025

Poll Yourself Discussss

, FAT
+ Let's say PennFAT is 4

Block # Next
blocks (FAT Index) | (FAT value)

0 METADATA
Root DIR
Block ;)
oc
- What are value of the m 2 8
remaining blocks in the 3 END
4 END
diagram? B 5
5 EMPTY
Hint: Index into data ¢ £ 6 END
region starting at index 1 7 END
. 8 3
FAT rleglon Data region
A

| 1 [\

FAT FAT FAT FAT {eJo]dM File B | File B B: (14N ;20 File C File A FileB
Dir TY

Dir
BO B1 B2 B3 1 2 3 4 5 6 7 8 60

