
CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

FAT & I-nodes
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla 
  Vedansh Goenka Joy Liu  
TAs:

Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane

Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones

Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng

Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Lecture Outline

v Inodes
v Directories
v Block Caching

2



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Poll: how are you?

v What was the big downside of using FAT?

3

pollev.com/cis5480



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Poll: how are you?

v Instead, could we store most FAT blocks on disk and only load into memory 
the FAT blocks that are used for looking up files that are currently open used 
(aka have entries in the file table, etc)?

5

pollev.com/cis5480



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Explanation

v Blocks of a file could be spread out across disk. We may have to load all FAT 
blocks to lookup a file anyways

v Small example:
§ Consider block size 256,
§ FAT entry 2 bytes, so 128

entries per FAT block
§ FAT takes up 4 blocks

v Reminder: FAT region is separate from the data region (blocks it manages)

7

Disk:

FAT FAT FAT FAT

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 … BN

FAT region Data Region



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Explanation

8

Disk:

FAT FAT FAT FAT

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 … BN

FAT region

Block # Next

…

2 128

…

128 256

…

256 500

…

500

Consider we have a file 
that starts at the second 
block of the Data Region

v Blocks of a file could be spread out across disk. We may have to load all FAT 
blocks to lookup a file anyways

v Small example:
§ Consider block size 256,
§ FAT entry 2 bytes, so 128

entries per FAT block
§ FAT takes up 4 blocks



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Explanation

9

Disk:

FAT FAT FAT FAT

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 … BN

FAT region

Block # Next

…

2 128

…

128 256

…

256 500

…

500

Consider we have a file 
that starts at the second 
block of the Data Region

We would need to read in the whole FAT just to look up this file

v Blocks of a file could be spread out across disk. We may have to load all FAT 
blocks to lookup a file anyways

v Small example:
§ Consider block size 256,
§ FAT entry 2 bytes, so 128

entries per FAT block
§ FAT takes up 4 blocks



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Inode motivation
v Idea: we usually don’t care about ALL blocks in the file system, just the blocks 

for the currently open files
v Instead of spreading out the block numbers in a table, can we group the block 

numbers of a file together? 

v Yes: we call these inodes:
§ Contains some metadata about

the file and 13 physical block
numbers corresponding to the 
first 13 logical blocks of a file

10

meta data

0th phys block #

1st phys block #

2nd phys block #

3rd phys block #

4th phys block #

…

Data Blocks

*not all data blocks shown.

The Inode



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

General Inode layout

v Inodes contain:
§ some metadata about the file 

• Owner of the file
• Access permissions
• Size of the file
• File Type
• Time of 

– last change of file, last access to file, last change to INODE of file.

§ blocks[13]; 
• 13 physical block numbers corresponding to the first 13 logical blocks of a file

11

typedef block_no_t int

struct inode_st {
  attributes_t metadata;
  block_no_t blocks[13];
  // more fields to be shown
  // on later slides
};



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Inodes Disk Layout
v When we use Inodes instead of FAT, we get something 

like this instead:

12

Bit-map Inodes … … … … … … …

B0 B1 B2 B3 B4 B5 B6 B7 B8



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

v When we use Inodes instead of FAT, we get something 
like this instead:

13

Bit-map Inodes … … … … … … …

B0 B1 B2 B3 B4 B5 B6 B7 B8

pollev.com/cis5480

Wait, why do we need a Bit-Map for this filesystem implementation? 
How many blocks could we track if a block size is 512 bytes?



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

v When we use Inodes instead of FAT, we get something like this instead:

v \

v I-nodes are smaller than a block so we can fit multiple inodes in
a single block

v Each i-node is numbered via a corresponding i-number (it’s offset within the list)

Inodes Disk Layout

15

Bit-map Inodes … … … … … … …

B0 B1 B2 B3 B4 B5 B6 B7 B8

Bit-
map

Inode 
0

Inode 
1

Inode 
2

Inode 
3

… Inode 
n

… … … … … … …

B0 B1 B2 B3 B4 B5 B6 B7 B8



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Example File Block Lookup

v Each File will have an Inode with a corresponding i-number 
v Suppose that we wanted to look up a file that is made of 4 blocks.

§ First, we need the Inode number for the file (lets assume it is 2)

16

Bit-
map

Ino
de 0

Ino
de 1

Ino
de 2

Ino
de 3

… Ino
de n

… … … … … … …

B0 B1 B2 B3 B4 B5 B6 B7 B8



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Example File Block Lookup

v Each File will have an Inode with a corresponding i-number 
v Suppose that we wanted to look up a file that is made of 4 blocks.

§ First, we need the Inode number for the file (lets assume it is 2)
§ We can read the Inode to see which blocks makeup the file

17

Bit-
map

Ino
de 0

Ino
de 1

Ino
de 2

Ino
de 3

… Ino
de n

… … … … … … …

B0 B1 B2 B3 B4 B5 B6 B7 B8

meta data …

0th phys block # 0

1st phys block # 5

2nd phys block # 3

3rd phys block # 2

…

In this example, the block numbers in the Inode 
are indexes relative to the start of the data region. 

(Although they don’t have to be…)

You will be doing this in PennOS too



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Example File Block Lookup

v Each File will have an Inode with a corresponding i-number 
v Suppose that we wanted to look up a file that is made of 4 blocks.

§ First, we need the Inode number for the file (lets assume it is 2)
§ We can read the Inode to see which blocks makeup the file

18

Bit-
map

Ino
de 0

Ino
de 1

Ino
de 2

Ino
de 3

… Ino
de n

0th … 3rd 2nd … 1st …

B0 B1 B2 B3 B4 B5 B6 B7 B8

meta data …

0th phys block # 0

1st phys block # 5

2nd phys block # 3

3rd phys block # 2

…

In this example, the block numbers in the 
Inode are indexes relative to the start of the 
data region.

You will be doing this in PennOS too



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

File Sizes with Inode

v So with Inodes, how many blocks can we have per file?
§ So far: 13 blocks per file (this is not enough, way too small!)

• About 7,680 bytes with 512 size blocks.
• An average MP4 song would at least 3,000,000 bytes.

v We can allocate a block to hold more block numbers
§ This block can hold 128 block numbers (each block num is an int)

19

meta data …

0 phys block # 0

1 phys block # 5

… …

9 phys block # 2

Block of ptrs

…

12th phys block # --

13st phys block # --

… …

139th phys block # --

This is a singly indirect pointer; 
it points to a block of pointers (or block numbers)

Note: please do not imagine these structures like tables. 
They are not. 

They are purely arrays of integers.



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

File Sizes with Inode

v So with Inodes, how many blocks can we have per file?
§ So far: 13 blocks per file (this is not enough, way too small!)

• About 7,680 bytes with 512 size blocks.
• An average MP4 song would at least 3,000,000 bytes

v We can allocate a block to hold more block numbers

20

struct inode_st {
  attributes_t metadata;
  // the block number at index 10 
  // will point to a block of 
  // block numbers
  block_no_t blocks[13];
};



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

File Sizes with Inode

v So with Inodes, how many blocks can we have per file?
§ So far: 13 blocks per file (this is not enough, way too small!)

v We can allocate a block to hold more block numbers

21

Bit-
map

Ino
de 0

Ino
de 1

Ino
de 2

Ino
de 3

… Ino
de n

0th … 3rd 2nd ptr
blk

1st

B0 B1 B2 B3 B4 B5 B6 B7 B8

meta data …

0 phys block # 0

1 phys block # 5

… …

9 phys block # …

Block of ptrs 4

10 phys block # …

11 phys block # …

12 phys block # …

… …

136 phys block # …

137 phys block # …

If each block is 512 bytes, we 
can hold 128 block #s in a 

single block.



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

We need moreeeeee
v What if a file needs more than 137 blocks?
v We can make 11th block number refer to a block that refers to other blocks 

that refer to data blocks

22

meta data …

0 phys block # 0

1 phys block # 5

… …

9 phys block # 2

Single Indirect Ptr

Double Indirect Ptr

…

10th phys block # --

13st phys block # --

… …

137th phys block # --

Block for 138-265 --

Block for 266- --

… …

…. --

138 phys block # --

139 phys block # --

… …

265 phys block # --

266 phys block # --

267 phys block # --

… …

n phys block # --
This block refers to blocks that are 
composed of 128 blocks numbers. 

These blocks 
refer to real data 
blocks.



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

MORE MORE MORE MORE MORE MORE MORE

v What if our file needs more than that?
§ We can make the 13th block number in our Inode refer to a pointer block that refers to 

pointer blocks that refer to data blocks…

23

meta data …

0 phys block # 0

1 phys block # 5

… …

9 phys block # 2

Single Indirect

Double Indirect 
Pointers

Triple Indirect 
Pointers

10th phys block # --

11 phys block # --

… …

137 phys block # --

Block for 138-265 --

Block for 266- --

… …

…. --

138 phys block # --

139 phys block # --

… …

265 phys block # --

266 phys block # --

267 phys block # --

… …

bigth phys block # --

--

--

…

--

--

--

…

--

--

--

…

--

ath phys block # --

bth phys block # --

… …

cth phys block # --

dth phys block # --

eth phys block # --

… …

fth phys block # --

gth phys block # --

hth phys block # --

… …

ith phys block # --



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

More?

v No more (at least on the Version 7 Unix File System Implementation)
v If you need more space than this, the operating system will tell you no

24

Version 6 Unix File System

struct inode_st {
  attributes_t metadata;
  block_no_t blocks[8];
};

Metadata will contain a bit telling us if the file is “large”. 

If it is, all 8 blocks are singly indirect blocks.

Version 7 Unix File System

struct inode_st {
  attributes_t metadata;
  block_no_t blocks[13];
};

This is the example we just went through! 
Helps support much larger files. 

If the file is large, then block_numbers at indexies 10, 11, and 12 are singly
doubly, and triply indirect block pointers.



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Linux ext2 (Extended 2)

v In the linux ext2 filesystem, it is very similar to Version 7 as it is a descendant 
of this file system. 

25

struct inode_st {
  attributes_t metadata;
  block_no_t blocks[12];
  block_no_t *single_ind;
  block_no_t **double_ind;
  block_no_t ***triple_ind;
};

The Linux EXT2 is based on the Unix File System which is a direct descendant of the BSD FFS which is based on the Version 7 Unix File System. Feel free to research this on your own. Too much lore.



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Poll: how are you?

26

pollev.com/tqmpollev.com/cis5480

What is the largest file possible if each block is 512 bytes and each block_n_t is 4 bytes?

struct inode_st {
  attributes_t metadata;
  block_no_t blocks[12];
  block_no_t *single_ind;
  block_no_t **double_ind;
  block_no_t ***triple_ind;
};



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Poll: how are you?

v How is this better than FAT?

28

pollev.com/tqmpollev.com/cis5480



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Lecture Outline

v Inodes
v Directories
v Block Caching

30



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Directory Entries with Inodes

v With FAT we said a directory entry had:
§ The file name
§ The number of the first block of the file

v With i-nodes, we instead store the inode number for the file in the directory 
entry

31



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Reminder: Directories

v A directory is essentially like a file
§ We will store its data on disk inside of blocks (like a file)

v The directory content format is known to the file system.
§ Contains a list of directory entries
§ Each directory entry contains the name of the file, some metadata and…

• If using Inodes, the inode for the file
• If using FAT, the first block number of the file

§ I know we just said Inodes are better and more modern, but PennOS uses FAT (:/) so my 
examples will follow that, it is not much different for Inodes though

32



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Review: Directories

v In FAT our file system looked something like this:
§ 2 regions, and assuming FAT is just 1 block

v And the root Directory contains a list of directory entries

33

FAT Root 
Dir

??? ??? ??? ??? ??? ??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

File Name Block Number

A 7

B 4

C 9

D 2

E 10

Data regionFAT region



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Growing a Directory

v In FAT our file system looked something like this:
§ 2 regions, and assuming FAT is just 1 block

v What happens if the root directory starts filling up?
§ The root directory is itself a file, it can expand to another block

34

FAT Root 
Dir

??? ??? ??? ??? ??? ??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Data regionFAT region

FAT Root 
Dir

??? ??? ??? ??? Root 
Dir

??? ??? ??? ??? ???

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Data regionFAT region



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Growing a Directory

v We would also need to update the FAT to account for this change.
§ Root directory in PennFAT starts at index 1 into the data region
§ Index 1 into the data region is the first block in the data region 🤢

35

Block #
(FAT Index)

Next
(FAT value)

0 METADATA

1 END

… …

…. …

… …

6 EMPTY

7 EMPTY

… …

Block #
(FAT Index)

Next
(FAT value)

0 METADATA

1 6

… …

…. …

… …

6 END

7 EMPTY

… …



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

FAT Lookup

v Let's say PennFAT is 4 
blocks

v What are value of the
remaining blocks in the
diagram?

36

FAT FAT FAT FAT Root 
Dir

??? ??? ??? ??? ??? ??? ???

B0 B1 B2 B3 1 2 3 4 5 6 7 8

DiscussQuestion is not good format for pollev L

Block #
(FAT Index)

Next
(FAT value)

0 METADATA

1 4

2 8

3 END 

4 END

5 EMPTY

6 END

7 END

8 3

… …

FAT

Root DIR

File 
Name

Block 
Number

A 7

B 2

C 6

Data regionFAT region

DiscussssPoll Yourself



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Sub Directories

v In PennOS, we are only required to deal with 1 directory, but you can 
implement sub-directories.
§ Sub directories are just other (special) files 

v Consider we have the following two directories and files
§ /a.txt
§ /usr/a.txt
§ Above are two separate files!

45

FAT FAT FAT FAT Root 
Dir

a.txt ??? ??? usr
Dir

a.txt ??? ???

B0 B1 B2 B3 1 2 3 4 5 6 7 8

Data regionFAT region



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Sub Directories

v We would also have some information in a directory entry to specify what kind 
of file it is

46

FAT FAT FAT FAT Root 
Dir

a.txt ??? ??? usr
Dir

a.txt ??? ???

B0 B1 B2 B3 1 2 3 4 5 6 7 8

Data regionFAT region

Root DIR
File 
Name

Block 
Number

File
Type

a.txt 2 Regular

usr/ 5 directory

… ..

usr DIR
File 
Name

Block 
Number

File
Type

a.txt 6 Regular

… ..



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

. and ..

v It would be useful to support . and ..
§ . Refers to the current directory, .. refers to parent directory

47

FAT FAT FAT FAT Root 
Dir

a.txt ??? ??? usr
Dir

a.txt ??? ???

B0 B1 B2 B3 1 2 3 4 5 6 7 8

Data regionFAT region

root DIR
File 
Name

Block 
Number

File
Type

. 1 directory

.. 1 directory

a.txt 2 Regular

usr/ 5 directory

… ..

usr DIR
File 
Name

Block 
Number

File
Type

. 5 directory

.. 1 directory

a.txt 6 Regular

… ..

Has no parent,
refers to self



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Lecture Outline

v FAT & PennFAT wrap-up
v Inodes
v Directories
v Block Caching (A quick optimization)

48



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Block Caching

v Disk I/O is really slow (relative to accessing memory)

v What can we do instead to make it faster?
§ Keep data that we want to access in memory J
§ We already did this with FAT and Inodes for open files

v We can do the same for data blocks we think we may use again in the future 
and allow them to reside in kernel memory. 

v No need to request blocks from disk! 

49



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Block Caching Data Structure

v We can use a linked list to store blocks in LRU

v What is the algorithmic runtime analysis to:
§ lookup a specific block?
§ Removal time of LRU?
§ Time to move a block to the front or back?

• Consider search time

50

Discuss

Data Block Data Block Data Block Data BlockData Block

Most Recently Used Least Recently Used



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Block Caching Data Structure

v We can use a linked list to store blocks in LRU

v What is the algorithmic runtime analysis to:
§ lookup a specific block?
§ Removal time of LRU?
§ Time to move a block to the front or back?

• Consider search time

51

Discuss

Data Block Data Block Data Block Data BlockData Block

Most Recently Used Least Recently Used

O(n)

O(1)

O(n)

Is there a structure we know of that has O(1) lookup time?



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Chaining Hash Cache

v We can use a combination of two data structures:
§ linked_list<block>
§ hash_map<block_num, node*>

52

Data Block Data Block Data Block Data BlockData Block

Most Recently Used Least Recently Used

list

key vlaue

0

0xFDEA

4312

75

13

O(1) lookup
O(1) remove
O(1) move to front



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Chaining Hash Cache

v We can use a combination of two data structures:
§ linked_list<block>
§ hash_map<block_num, node*>

53

Data Block Data Block Data Block Data BlockData Block

Most Recently Used Least Recently Used

list

key vlaue

0

0xFDEA

4312

75

13

O(1) lookup
O(1) remove
O(1) move to front

The kernel can maintain these data structures to 
reduce the number of I/O operations that truly go to 
disk. But, increased overhead in syncing with FS.



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

That’s all! See y’all on Thursday!

54



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Poll: how are you?

v What was the big downside of using FAT?

v Huge memory consumption!
§ We need an entry in the FAT for every single block in the FS! 

• Remember, we map block #s (indices in the table) to other blocks.
§ A FAT will more than likely span multiple blocks
§ This size also grows as disk grows :/ (bc more blocks!)

55

pollev.com/cis5480



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Poll: how are you?

v Instead, could we store most FAT blocks on disk and only load into memory 
the FAT blocks that are used for looking up files that are currently open used 
(aka have entries in the file table, etc)?

v Yes, but the blocks of a file could be spread out across disk. We may have to 
load all FAT blocks to lookup a file anyways

56

pollev.com/cis5480



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

v When we use Inodes instead of FAT, we get something 
like this instead:

57

Bit-map Inodes … … … … … … …

B0 B1 B2 B3 B4 B5 B6 B7 B8

pollev.com/cis5480

Wait, why do we need a Bit-Map for this filesystem implementation? 
How many blocks could we track if a block size is 512 bytes?

Inodes don’t track which blocks are free so we need a separate structure to track which blocks are free. 

512 bytes is 4096 blocks! (One bit for each block)



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Poll: how are you?

58

pollev.com/tqmpollev.com/cis5480

struct inode_st {
  attributes_t metadata;
  block_no_t blocks[12];
  block_no_t *single_ind;
  block_no_t **double_ind;
  block_no_t ***triple_ind;
};

What is the largest file possible if each block is 512 bytes 
and each block_n_t is 4 bytes?

12 * 512 bytes

(128 * 512) bytes

(128 * 128 * 512) bytes

(128 * 128 * 128 * 512) bytes

In total, around 1082202112 bytes.

Really, Linux ext2 supports 1024 bytes, 2048, and 4096 byte blocks sizes. For 4086 byte blocks, the max size is ~ 4TB.

What is the largest file possible if each block is 512 bytes and each block_n_t is 4 bytes?



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

Poll: how are you?

v How is this better than FAT?

v Inodes keep all the information of a file near each other
v if we wanted to store in memory only the information of open files, we could 

do that with less memory consumption
v In other words: only need to store in memory the inodes of the open files 

instead of the whole FAT

59

pollev.com/tqmpollev.com/cis5480



CIS 4480, Fall 2025L08: FAT & I-nodesUniversity of Pennsylvania

FAT Lookup

v Let's say PennFAT is 4 
blocks

v What are value of the
remaining blocks in the
diagram?

60

FAT FAT FAT FAT Root 
Dir

File B File B Root 
Dir

EMP
TY

File C File A File B

B0 B1 B2 B3 1 2 3 4 5 6 7 8

DiscussQuestion is not good format for pollev L

Block #
(FAT Index)

Next
(FAT value)

0 METADATA

1 4

2 8

3 END 

4 END

5 EMPTY

6 END

7 END

8 3

… …

FAT

Root DIR

File 
Name

Block 
Number

A 7

B 2

C 6

Data regionFAT region

Hint: Index into data 
region starting at index 1

DiscussssPoll Yourself


