University of Pennsylvania L10: Intro to Threads

Intro to Threads
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez
Head TAs: Maya Huizar Akash Kaukuntla
Vedansh Goenka Joy Liu

TAs:
Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane
Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones
Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng
Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

AT

CIS 4480, Fall 2025




University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

%+ How are you doing?



CIS 4480, Fall 2025

University of Pennsylvania L10: Intro to Threads

Administrivia

+ Penn-shell is due this Friday, October 3

" |f you have any questions, please stop by office hours! We are here to help.

% Midterm will be on Thursday, October 16 from 5:15 — 6:45
" |ocations: Towne 100 & Wu and Chen in Levine
= Assigned locations are TBD; prolly based on last name.
" Practice exams and all that out this weekend

+» Penn OS will come out Friday, October 17t after the midterm!
= THINK ABOUT WHO YOUR GROUP WILL BE!!!!



University of Pennsylvania L10: Intro to Threads

Lecture Outline

<~ What is a thread?

+ pthreads

+ Processes vs threads

» Thread Interleaving & Sequential Consistency
+» Benefits of Concurrency

CIS 4480, Fall 2025



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Introducing Threads

% Separate the concept of a process from the “thread of execution”

" Threads are contained within a process
= Usually called a thread, this is a sequential execution stream within a process

— thread

« In most modern OS’s:

" Threads are the unit of scheduling.



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Threads vs. Processes

« In most modern OS’s:

= A Process has a unique: address space, OS resources, & security attributes
= A Thread has a unique: stack, stack pointer, program counter, & registers

" Threads are the unit of scheduling and processes are their containers; every process has at
least one thread runningin it



University of Pennsylvania

StaCkpa rent

!

I

Shared Libraries

Threads vs. Processes

fork()

L10: Intro to Threads

Shared Libraries

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

I

I

Heap (malloc/free)

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Read-Only Segments
.text, .rodata

CIS 4480, Fall 2025



CEX| . . .
% University of Pennsylvania

Threads vs. Processes

L10: Intro to Threads

pthread _create()

CIS 4480, Fall 2025



% University of Pennsylvania

Threads

L10: Intro to Threads

CIS 4480, Fall 2025

+» Threads are like lightweight processes
" They execute concurrently like processes
- Multiple threads can run simultaneously on multiple CPUs/cores
= Unlike processes, threads cohabitate the same address space

- Threads within a process see the same heap and globals and can communicate with each other
through variables and memory

— But, they can interfere with each other — need synchronization for shared resources
- Each thread has its own stack

+» Analogy: restaurant kitchen

= Kitchen is process
® Chefs are threads




University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Single-Threaded Address Spaces

_ + Before creating a thread

SP et == Stadipare“t " One thread of execution running
in the address space
- One PC, stack, SP
1 ®" That main thread invokes a
reredl | 550 function to create a new thread
1 - Typically pthread create()

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

10



University of Pennsylvania

L10: Intro to Threads

Multi-threaded Address Spaces

_ + After creating a thread

" Two threads of execution running
in the address space

« Original thread (parent) and new

thread (child)

« New stack created for child thread

« Child thread has its own values of
the PC and SP

= Both threads share the other

segments (code, heap, globals)

Stack
_ parent
5@ ent 1
) Stack g
5@ 1
Shared Libraries
Heap (malloc/free)
Read/Write Segments
.data, .bss
Read-Only Segments

.text, .rodata

- They can cooperatively modify
shared data

CIS 4480, Fall 2025

11



University of Pennsylvania L10: Intro to Threads

Lecture Outline

<~ What is a thread?

+ pthreads

+ Processes vs threads

+» Thread Interleaving & Sequential Consistency
+» Benefits of Concurrency

CIS 4480, Fall 2025

12



CIS 4480, Fall 2025

University of Pennsylvania L10: Intro to Threads

POSIX Threads (pthreads)

The POSIX APIs for dealing with threads
= Declared in pthread.h

 Not part of the C/C++ language

" To enable support for multithreading, must include -pthread flag
when compiling and linking with clang-15 command

- clang-15 -g -Wall -pthread -o main main.c

" Implemented in C
- Must deal with C programming practices and style

13



University of Pennsylvania

L10: Intro to Threads

Creating and Terminating Threads

[ int pthread create(
pthread t* thread,

void* arg);

~\

const pthread attr_t* attr,
void* (*start)(void*),

= Creates a new thread with attributes *attr

= Returns 0 on success and an error number on error (can check against error

constants)’

" The new thread runs start(arg)

@ Start routive

N\ .
b/' continues

pthread_create parent

CIS 4480, Fall 2025

This uses our previous conception of child vs parent metaphor, but really,

they are not treated this way. There is no hierarchy of threads.

They are more like siblings.

14



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

pthread_create in reality

[ int pthread create(

pthread t* thread,

const pthread attr_t* attr,
void* (*start)(void*),
void* arg); )

pthread t* thread

- Output parameter: gives us a thread identifier
« Varies from OS to OS, in Linux it is an unsigned long in others, a struct.

const pthread_attr_t* attr
-« An struct detailing the attributes that the thread will take on. Null for default attributes.
void* (*start)(void*)
- Function that the newly created thread will commence executing from.
— (i.e. void *func(void *arg))
void* arg:the argument that will be passed into start (you can do a lot with a ptr)

15



L10: Intro to Threads CIS 4480, Fall 2025

University of Pennsylvania

pthread_create

[ int pthread create(

pthread t* thread,

const pthread attr_t* attr,
void* (*start)(void*),
void* arg); )

= void* arg:the argument that will be passed into start (you can do a lot with a ptr)

If you need a function that takes in various arguments, make arg a pointer to a struct that contains all of them.

There are no variable length arguments here. (C++ has them tho, but those aren’t posix threads)

16



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

pthread_create is not fork()

+ Unlike fork, the newly created execution context starts executing the given
function. It does not continue from pthread_create.

N

[ ° * ° ° *
void® print_hello(void® arg) { new_thread will start its execution

printf("Hi I am a thread!\n"); : h
return NULL; rom nere
} when it returns it will not return to

—~ main

int main() {
pthread t new thread;
pthread create(&new thread, NULL, print_hello, NULL)
printf("Yeah but I’m the main thread.\n");
//more down here...

The life time of new_thread is
contained to this function
(and the functions it calls).

17



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

pthread_create is not fork()

int x = 10;

void* print_hello(void* arg) {
printf("X is the number %d.\n", x);
return NULL;

The life time of new_thread is
contained to this function

t But, it still has access to the same
variables as the main thread

int main() { THEY ARE NOT COPIES!
pthread_t new_thread;

pthread create(&new thread, NULL, print _hello, NULL)
printf("Yeah but I’m the main thread.\n");
//more down here...

All threads share the same address
space.

18



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

We Created a Thread, Now What?

[int pthread join(pthread_t thread, void** retval); ]

" The calling thread waits for the thread specified by thread to terminate, and as the name
says, joins the two executions stream into one (hence, “join”)

" You can think of it as the thread equivalent of waitpid(), although it really isn’t.
" The exit status of the terminated thread is placed in **retval

thread 1 waits for thread 2 to exit, it
obtains thread 2’s return value, and thread

start .
1 R 2 is cleaned up
y g \
<
Q
thread 1 > x execution continues
rea = ~ :
create .
thread 1 join

No more, parent and child. JUST THREADS!
19



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

We Created a Thread, Now What?

start
’L >
thread 1 > : execution continues
create thread 1 join

Once a new thread is created, we are at the mercy of the schedular.
We can not assume when it will run.

20



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Thread Example

«» Let’s take alook at cthreads.c

= How do you properly handle memory management?
- Who allocates and deallocates memory?
« How long do you want memory to stick around?

" Threads execute in parallel

21



University of Pennsylvania L10: Intro to Threads

Lecture Outline

+» Threads High Level

» pthreads

+ Processes vs threads

» Thread Interleaving & Sequential Consistency
+» Benefits of Concurrency

CIS 4480, Fall 2025

22



University of Pennsylvania

StaCkpa rent

!

I

Shared Libraries

Threads vs. Processes

fork()

L10: Intro to Threads

Shared Libraries

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

I

I

Heap (malloc/free)

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Read-Only Segments
.text, .rodata

CIS 4480, Fall 2025

23



CEX| . . .
% University of Pennsylvania

Threads vs. Processes

L10: Intro to Threads

pthread _create()

CIS 4480, Fall 2025

Note: want to
change where
the stacks are
for different
threads?
One of the
many attributes
you can set. ©

24



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ What does each process print? e W D
+» What s the ultimate sum total? 0t sun-total = 0

void loop_incr() {
for (int i = @; i < LOOP_NUM; i++) {
sum_total++;
}
printf("Process ID: %d with sum total of %d.\n", getpid(), sum_total);
}

int main(int argc, charsx argv) {

pid_t pids [NUM_PROCESSES];

for (int i = @; i < NUM_PROCESSES; i++) {
pids[i] = fork();
if (pids[i] == o
loop_incr();
exit (EXIT_SUCCESS);

}
for (int i = @; i < NUM_PROCESSES; i++) {

waitpid(pids[i], NULL, @);
}

printf("The ultimate sum total is %d\n", sum_total)ﬂ
return EXIT_SUCCESS;




University of Pennsylvania

@ Poll Everywhere

+» What does each thread print?
«» What is the ultimate sum total?

% Note: in linux, we can grab a thread’s
id using gettid()

L10: Intro to Threads

pollev.com/cis4480

#define NUM_THREADS 50
#define LOOP_NUM 100

int sum_total = 0;

void xloop_incr(void *arg) {
for (int i = @; i < LOOP_NUM; i++) {
sum_total++;
)
printf("Thread ID: %d with sum total of %d.\n", gettid
return NULL;
}

, sum_total);

int main(int argc, charkx argv) {
othread_t thds[NUM_THREADS] ;

for (int i = @; i < NUM_THREADS; i++) {
if (pthread_create(&thds[i], NULL, &loop_incr, NULL) != @
fprintf(stderr, "pthread_create failed\n");

for (int i = @; i < NUM_THREADS; i++) {
if (pthread_join(thds[i], NULL) != @
fprintf(stderr, "pthread_join failed\n");

}

printf("The ultimate sum total is %d\n", sum_total);
return EXIT_SUCCESS;

CIS 4480, Fall 2025



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Demos:

+ See total.c and total processes.c

" Threads share an address space, if one thread increments a global, it is seen by other
threads

" Processes have separate address spaces, incrementing a global in one process does not
increment it for other processes

%+ NOTE: sharing data between threads is actually kinda unsafe if done wrong (we
are doing it wrong in this example), more on this next laterrrr

27



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Revisiting: Process Isolation

L)

+ Process Isolation is a set of mechanisms implemented to protect processes from
each other and protect the kernel from user processes.

" Processes have separate address spaces (More on this later)

" Processes have privilege levels to restrict access to resources (Not covered in this class)

" |f one process crashes, others will keep running (The schedular is agnostic, just another less
thing to schedule. ©)

% Inter-Process Communication (IPC) is limited, but possible
" Pipes via pipe()

L)

= Sockets via socketpair()
= Shared Memory via shm_open()

+» Threads on the other hand, can see everything within the process.

28



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Parallelism

% You can gain "performance" by running things in parallel

® Each thread can use another core

% Let’s say | have a 3800 x 3800 integer matrix, and | want to count the number
of odd integers in the matrix

Personally got grilled on a question like this when interviewing for the Apple Kernel Team.

29



University of Pennsylvania L10: Intro to Threads

Parallelism

CIS 4480, Fall 2025

% | have a 3800 x 3800 integer matrix, and | want to count the number of odd

integers in the matrix

+ | can speed this up by giving each thread a part of the matrix to check!

= Works with threads since they share memory

matrix thread shared

20000000
70000000
w 50000000
2
S 50000000

(]

2 40000000
% 30000000
< 20000000

10000000

0

1 2 3 E 3 6 7 8 9 10

Number of threads

wm ratrix thread shared

Diminishing returns

After 4 threads, no gaiv
v speed

why? Machive ruv on
only has 4 cores

30



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Parallelism vs Concurrency

+» Two commonly used terms (often mistakenly used interchangeably).

» Concurrency: When there are one or more “tasks” that have overlapping
lifetimes (between starting, running and terminating).
" That these tasks are both running within the same period.

» Parallelism: when one or more “tasks” run at the same instant in time.

thread
A | —— —
» Consider the lifetime of these L
threads. Which are concurrent with A? ) T
Which are parallel with A? 5 .

time 31



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

How fast is fork()?

% ~ 0.5 milliseconds per fork*

% ~0.05 milliseconds per thread creation*
= 10x faster than fork()

*Past measurements are not indicative of future performance — depends on hardware, OS, software versions, ...
"  Processes are known to be even slower on Windows

32



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Context Switching

% Processes are considered “more expensive” than threads. There is more
overhead to enforce isolation

+~ Advantages:

" No shared memory between processes
" Processes are isolated. If one crashes, other processes keep going

+» Disadvantages:
" More overhead than threads during creation and context switching

" Cannot easily share memory between processes — typically communicate through the file
system

33



University of Pennsylvania L10: Intro to Threads

Lecture Outline

+» Threads High Level

» pthreads

+ Processes vs threads

+» Thread Interleaving & Sequential Consistency
+» Benefits of Concurrency

CIS 4480, Fall 2025

34



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

0 Poll Everywhere pollev.com/cis4480

+» What are all possible outputs of this program?

(void* thrd _fn(void* arg) { )
int* ptr = (int*) arg; Are these outputs possible?
printf("%d\n", *ptr);
return NULL; e e e
} 1
int main() { 2
pthread t thdil; T
pthread _t thd2; 2
int x = 1; 2
pthread_create(&thdl, NULL, thrd_fn, &x); mmmmmmmmmmommommmoomoooo-
X = 2; 1
pthread create(&thd2, NULL, thrd fn, &x); 1
pthread join(thdl, NULL); 2
pthread join(thd2, NULL); 1
}
\ J

35



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Visualization

int main() { (thrd_fn() { ) (thrd_fn() { 1
int x = 1; printf(*ptr); printf (*ptr);
pthread create(...); return NULL; return NULL;
X = 2; n} ) \} y

pthread_create(...);

pthread join(...);
pthread join(...);

36



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Visualization: Memory

« The variable x is shared across all threads.

main()

int X |1

int main() {

—— int x = 1;

pthread create(thdl);
X = 2;

pthread create(thd2);

pthread join(thdl);
pthread join(thd2);

37



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Visualization: Memory

« The variable x is shared across all threads.

main() thdl
. « T\\
int x |1 int* ptr

int main() {
int x = 1;
—t+— pthread create(thdl);
X = 2;
pthread create(thd2);

pthread join(thdl);
pthread_join(thd2);

38



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Visualization: Memory

« The variable x is shared across all threads.

main() thdl
. « T\\
int x |2 int* ptr

int main() {

int x = 1;

pthread create(thdl);
—> X = 2;

pthread_create(thd2);

pthread join(thdl);
pthread_join(thd2);

}

39



University of Pennsylvania

Visualization: Memory

L10: Intro to Threads

« The variable x is shared across all threads.

main()

thdl

int x |2 —

int* ptr—

int main() {
int x = 1;
pthread create(thdl);
X = 2;

—1» pthread create(thd2);

pthread join(thdl);
pthread join(thd2);

thd2

int* ptr

We only know that these threads have been
created. We know nothing about their execution.

CIS 4480, Fall 2025

40



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Sequential Consistency

+» Within a single thread, we assume* that there is sequential consistency.
That the order of operations within a single thread are the same as the

der.
program order nain()

int x = 1
create thdl

X = 2
create thd2

In the main thread,
Xissetto1l
then thread 1 is created
then x is set to 2
then thread 2 is created
41



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Visualization: Ordering

% Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main() thd1 thd?2
int x = 1

42




University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Visualization: Ordering

% Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main() thd1 thd?2
int x = 1

create thdl /

43




University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Visualization: Ordering

% Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main() thd1 thd?2
int x = 1

create thdl /

X = 2

44




University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Visualization: Ordering

% Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main() thd1 thd?2
int x = 1

create thdl /
X = 2
create thd2 -~

45




University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Visualization: Ordering

% Threads run concurrently; we can’t be sure of the ordering of things across
threads.

main() thd1 thd2
int x = 1 print X print x

create thdl /
X = 2
create thd2 -~

46




University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

This is also why total.c malloc’d individual

Visualization: Ordering integers for each thread.

Though it could have also just made an array on the stack

% Threads run concurrently; we can’t be sure of the ordering of things across

threads.
main() thd1 thd2
int x = 1 print X print x

create thdl /
X = 2
create thd2 -~

We know that x is initialized to 1 before thd1 is created
We know that x is set to 2 and thd1 is created before thd2 is created

Anything else that we know? No. Beyond those statements, we do not know the ordering

of main and the threads running. 47



University of Pennsylvania

L10: Intro to Threads

Closer to the truth: assembly...

rthrd_fn:

void* thrd fn(void* arg) {
int* ptr = (int*) arg;
printf("%d\n", *ptr);
return NULL;

}

.L.str:

addi sp, sp, -16
SW ra, 12(sp1’—’—___,,———
lw al, 0(a0)

lui a@, %hi(.L.str)

addi a@, a0, %lo(.L.str)
call printf

1i a@, ©

lw ra, 12(sp)

addi sp, sp, 16
ret

.asciz "%d\n"

CIS 4480, Fall 2025

This is where we set up
registers for the call to printf.

"Load a word from the
address @ a@ into al™

a0 contains the address in arg

al becomes the second arg to printf

48



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Scenario 1:

int main() { rthrd_fn: | Thread 1:
. int x = 1; addi sp, sp, -16 _
Mmain}l__ pthread_create(thd1); Py b =t

sw ra, 12(sp)

X = 2; thread 1
pthread create(thd2); lw.al’ @o(a?)
lui a@, %hi(.L.str)

v

pthread join(thd2); call printf
} 1i a@, ©

lw ra, 12(sp)
addi sp, sp, 16

Address Value ret

X | ©x10000 1

.L.str:
.asciz "%d\n"

49



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Scenario 1:

int main() { rthrd_fn: | Thread 1:
int x = 1; addi sp, sp, -16 =
pthread_create(thdl); Py b - .

sw ra, 12(sp)

X =2 thread 1
main| pthread create(thd2); lthread 2 > i‘l’;’ia;é @;232 -
i ) (o] ° .

pthread join(thd1l); addi a@,. a0, %lo(.L.str) Thread 2:
pthread join(thd2); call printf al = 2
} 1i ao@, ©

lw ra, 12(sp)

) Now, it can go either way.
addi sp, sp, 16

Address Value ret Either thread 2 can finish
X | Ox10000 2 first or thread 1.
.L.str: 2 1
.asciz "%d\n" 1 or 2

REMEMBER: EACH THREAD HAS ITS OWN REGISTERS! AHHH! 50



University of Pennsylvania

Scenario 2:

int main() {
int x = 1;
main| | pthread create(thdl);
X = 2;
pthread create(thd2);

pthread join(thdl);
pthread_join(thd2);

¥

Address Value

X | ©x10000 1

thread 1

L10: Intro to Threads

thread 1 is
pre-empted
by main before
load.

pre-empted: taken off a cpu to run another thread.

rthrd_fn:

addi sp, sp, -16

_ SW ra, 12(sp)

lw al, 0(a0)

lui a@, %hi(.L.str)

addi a@, a0, %lo(.L.str)
call printf

1i a@, ©

lw ra, 12(sp)

addi sp, sp, 16

ret

.L.str:

.asciz "%d\n"

Thread 1:

al

?

CIS 4480, Fall 2025



University of Pennsylvania

Scenario 2:

int main() {
int x = 1;
pthread_create(thdl);

X = 2;
mai (; pthread create(thd2);

—t—)

pthread join(thdl);
pthread_join(thd2);

}
Address Value
x |ox10000 |1 .

pre-empted: taken off a cpu to run another thread.

thread 1

L10: Intro to Threads

rthrd_fn:
addi sp, sp, -16
sw ra, 12(sp)

lw al, 0(a0)
lui a@, %hi(.L.str)

call printf

1i a@, ©

lw ra, 12(sp)
addi sp, sp, 16
ret

.L.str:

.asciz "%d\n"

addi a@, a0, %lo(.L.str)

Thread 1:

al

?

CIS 4480, Fall 2025



University of Pennsylvania

Scenario 2:

int main() {
int x = 1;
pthread_create(thdl);
X = 2;

|, pthread_create(thd2);

pthread join(thdl);
pthread_join(thd2);

¥

Address Value
Ox10000 2

thread 1

L10: Intro to Threads

rthrd_fn:
addi sp, sp, -16
sw ra, 12(sp)

thread 2

v

| 1w al, 9(a@)

ui a0, %hi(.L.str)
addi a@, a0, %lo(.L.str)
call printf
1i a@, ©
lw ra, 12(sp)
addi sp, sp, 16
ret

.L.str:

.asciz "%d\n"

CIS 4480, Fall 2025

Thread 1:
al = 2

Now when thread 1 continues it
will load in the value 2.

Thread 2:
al = 2

Now, it can go either way.

Either thread 2 can finish
first or thread 1.

2 or 2
2 2

But they’re identical.

53



University of Pennsylvania L10: Intro to Threads

Lecture Outline

+» Threads High Level

+» pthreads

+ Processes vs threads

» Thread Interleaving & Sequential Consistency

<~ Remember is all assembly, even c is higher level...

CIS 4480, Fall 2025

54



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Why Threads?

+» Advantages:

" You (mostly) write sequential-looking code
® Threads can run in parallel if you have multiple CPUs/cores

+» Disadvantages:

@ If threads share data, you need locks or other synchronization

- Very bug-prone and difficult to debug
® Threads can introduce overhead

- Lock contention, context switch overhead, and other issues

" Need language support for threads

55



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

Threads vs. Processes

« In most modern OS’s:

= A Process has a unique: address space, OS resources, & security attributes
=" A Thread has a unique: stack, stack pointer, program counter, & registers

" Threads are the unit of scheduling and processes are their containers; every process has at
least one thread running in it

56



University of Pennsylvania

StaCkpa rent

!

I

Shared Libraries

Threads vs. Processes

fork()

L10: Intro to Threads

Shared Libraries

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

I

I

Heap (malloc/free)

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Read-Only Segments
.text, .rodata

CIS 4480, Fall 2025

57



CEX| . . .
% University of Pennsylvania

Threads vs. Processes

L10: Intro to Threads

pthread _create()

CIS 4480, Fall 2025

58



University of Pennsylvania L10: Intro to Threads

Alternative: Processes

+» What if we forked processes instead of threads?

+» Advantages:
" No shared memory between processes
" No need for language support; OS provides “fork”
" Processes are isolated. If one crashes, other processes keep going

+ Disadvantages:

" More overhead than threads during creation and context switching
(Context switching == switching between threads/processes)

= Cannot easily share memory between processes — typically
communicate through the file system

CIS 4480, Fall 2025

59



University of Pennsylvania L10: Intro to Threads CIS 4480, Fall 2025

That’s all!

+» See you next time!

60



	Default Section
	Slide 1: Intro to Threads Computer Operating Systems, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Introducing Threads
	Slide 6: Threads vs. Processes
	Slide 7: Threads vs. Processes
	Slide 8: Threads vs. Processes
	Slide 9: Threads
	Slide 10: Single-Threaded Address Spaces
	Slide 11: Multi-threaded Address Spaces
	Slide 12: Lecture Outline
	Slide 13: POSIX Threads (pthreads)
	Slide 14: Creating and Terminating Threads
	Slide 15: pthread_create in reality
	Slide 16: pthread_create
	Slide 17: pthread_create is not fork()
	Slide 18: pthread_create is not fork()
	Slide 19: We Created a Thread, Now What?
	Slide 20: We Created a Thread, Now What?
	Slide 21: Thread Example
	Slide 22: Lecture Outline
	Slide 23: Threads vs. Processes
	Slide 24: Threads vs. Processes
	Slide 25: Poll: how are you?
	Slide 26: Poll: how are you?
	Slide 27: Demos:
	Slide 28: Revisiting: Process Isolation
	Slide 29: Parallelism
	Slide 30: Parallelism
	Slide 31: Parallelism vs Concurrency
	Slide 32: How fast is fork()?
	Slide 33: Context Switching
	Slide 34: Lecture Outline
	Slide 35: Polling Question
	Slide 36: Visualization
	Slide 37: Visualization: Memory
	Slide 38: Visualization: Memory
	Slide 39: Visualization: Memory
	Slide 40: Visualization: Memory
	Slide 41: Sequential Consistency
	Slide 42: Visualization: Ordering
	Slide 43: Visualization: Ordering
	Slide 44: Visualization: Ordering
	Slide 45: Visualization: Ordering
	Slide 46: Visualization: Ordering
	Slide 47: Visualization: Ordering
	Slide 48: Closer to the truth: assembly…
	Slide 49: Scenario 1:
	Slide 50: Scenario 1:
	Slide 51: Scenario 2:
	Slide 52: Scenario 2:
	Slide 53: Scenario 2:
	Slide 54: Lecture Outline
	Slide 55: Why Threads?
	Slide 56: Threads vs. Processes
	Slide 57: Threads vs. Processes
	Slide 58: Threads vs. Processes
	Slide 59: Alternative: Processes
	Slide 60: That’s all!


