
CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Intro to Threads
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla

Vedansh Goenka Joy Liu

TAs:

Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane

Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones

Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng

Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh



CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ How are you doing?
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Administrivia

❖ Penn-shell is due this Friday, October 3rd 

▪ If you have any questions, please stop by office hours! We are here to help. 

❖ Midterm will be on Thursday, October 16 from 5:15 – 6:45 
▪ Locations: Towne 100 & Wu and Chen in Levine

▪ Assigned locations are TBD; prolly based on last name.

▪ Practice exams and all that out this weekend

❖ Penn OS will come out Friday, October 17th after the midterm! 

▪ THINK ABOUT WHO YOUR GROUP WILL BE!!!!
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Lecture Outline

❖ What is a thread? 

❖ pthreads 

❖ Processes vs threads

❖ Thread Interleaving &  Sequential Consistency

❖ Benefits of Concurrency
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Introducing Threads

❖ Separate the concept of a process from the “thread of execution” 

▪ Threads are contained within a process

▪ Usually called a thread, this is a sequential execution stream within a process

❖ In most modern OS’s:

▪ Threads are the unit of scheduling.

5

thread
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Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique:  address space, OS resources, & security attributes

▪ A Thread has a unique:  stack, stack pointer, program counter, & registers

▪ Threads are the unit of scheduling and processes are their containers; every process has at 
least one thread running in it
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Threads vs. Processes
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Threads vs. Processes
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Threads

❖ Threads are like lightweight processes

▪ They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores

▪ Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can communicate with each other 
through variables and memory

– But, they can interfere with each other – need synchronization for shared resources

• Each thread has its own stack

❖ Analogy: restaurant kitchen

▪ Kitchen is process

▪ Chefs are threads
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Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running 
in the address space

• One PC, stack, SP

▪ That main thread invokes a 
function to create a new thread

• Typically pthread_create()
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Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running 
in the address space

• Original thread (parent) and new 
thread (child)

• New stack created for child thread

• Child thread has its own values of 
the PC and SP

▪ Both threads share the other 
segments (code, heap, globals)

• They can cooperatively modify 
shared data
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Lecture Outline

❖ What is a thread? 

❖ pthreads

❖ Processes vs threads

❖ Thread Interleaving &  Sequential Consistency

❖ Benefits of Concurrency
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POSIX Threads (pthreads)

❖  The POSIX APIs for dealing with threads

▪ Declared in pthread.h

• Not part of the C/C++ language

▪ To enable support for multithreading, must include -pthread flag 
when compiling and linking with clang-15 command

• clang-15 –g –Wall –pthread –o main main.c

▪ Implemented in C

• Must deal with C programming practices and style

13
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❖  

▪ Creates a new thread with attributes *attr 

▪ Returns 0 on success and an error number on error (can check against error 
constants)`

▪ The new thread runs start(arg)

Creating and Terminating Threads

14

int pthread_create(
        pthread_t* thread,
        const pthread_attr_t* attr,
        void* (*start)(void*), 
        void* arg);

start_routine

continues

parentpthread_create

This uses our previous conception of child vs parent metaphor, but really, 
they are not treated this way. There is no hierarchy of threads. 

They are more like siblings.
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❖  

▪ pthread_t* thread 

• Output parameter: gives us a thread identifier

• Varies from OS to OS, in Linux it is an unsigned long in others, a struct.

▪ const pthread_attr_t* attr

• An struct detailing the attributes that the thread will take on. Null for default attributes.

▪ void* (*start)(void*)

• Function that the newly created thread will commence executing from. 

– (i.e. void *func(void *arg))

▪ void* arg: the argument that will be passed into start (you can do a lot with a ptr)

pthread_create in reality

15

int pthread_create(
        pthread_t* thread,
        const pthread_attr_t* attr,
        void* (*start)(void*), 
        void* arg);
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❖  

▪ void* arg: the argument that will be passed into start (you can do a lot with a ptr)

pthread_create

16

int pthread_create(
        pthread_t* thread,
        const pthread_attr_t* attr,
        void* (*start)(void*), 
        void* arg);

If you need a function that takes in various arguments, make arg a pointer to a struct that contains all of them. 

There are no variable length arguments here. (C++ has them tho, but those aren’t posix threads)
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pthread_create is not fork()

❖ Unlike fork, the newly created execution context starts executing the given 
function. It does not continue from pthread_create.
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void* print_hello(void* arg) {
printf("Hi I am a thread!\n");
return NULL; 

}

int main() {
pthread_t new_thread;
pthread_create(&new_thread, NULL, print_hello, NULL)
printf("Yeah but I’m the main thread.\n");

   //more down here...
}

new_thread will start its execution 
from here 

when it returns it will not return to 
main

The life time of new_thread is 
contained to this function 
(and the functions it calls).
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pthread_create is not fork()
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int x = 10;

void* print_hello(void* arg) {
    printf("X is the number %d.\n", x);
    return NULL; 
}

int main() {
pthread_t new_thread;
pthread_create(&new_thread, NULL, print_hello, NULL)
printf("Yeah but I’m the main thread.\n");

   //more down here...
}

The life time of new_thread is 
contained to this function

But, it still has access to the same 
variables as the main thread

THEY ARE NOT COPIES!

All threads share the same address 
space.
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❖  

▪ The calling thread waits for the thread specified by thread to terminate, and as the name 
says, joins the two executions stream into one (hence, “join”) 

▪ You can think of it as the thread equivalent of waitpid(), although it really isn’t.

▪ The exit status of the terminated thread is placed in **retval

We Created a Thread, Now What?
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int pthread_join(pthread_t thread, void** retval);

thread 1 waits for thread  2 to exit, it 
obtains thread 2’s return value, and thread 

2 is cleaned up
start

execution continues

thread 1
create join

thread 1

No more, parent and child. JUST THREADS!
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We Created a Thread, Now What?

20

start

execution continues

thread 1
create join

thread 1

Once a new thread is created, we are at the mercy of the schedular. 
We can not assume when it will run.
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Thread Example

❖ Let’s take a look at cthreads.c
▪ How do you properly handle memory management?

• Who allocates and deallocates memory?

• How long do you want memory to stick around?

▪ Threads execute in parallel

21
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Lecture Outline

❖ Threads High Level

❖ pthreads

❖ Processes vs threads

❖ Thread Interleaving &  Sequential Consistency

❖ Benefits of Concurrency
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Threads vs. Processes

23
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Threads vs. Processes
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Note: want to 
change where 
the stacks are 
for different 

threads? 
One of the 

many attributes 
you can set. ☺ 
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Poll: how are you?

❖ What does each process print?

❖ What is the ultimate sum total?

25
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Poll: how are you?

26

pollev.com/cis4480

❖ What does each thread print?

❖ What is the ultimate sum total?

❖ Note: in linux, we can grab a thread’s 
id using gettid()
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Demos:

❖ See total.c and total_processes.c
▪ Threads share an address space, if one thread increments a global, it is seen by other 

threads

▪ Processes have separate address spaces, incrementing a global in one process does not 
increment it for other processes

❖ NOTE: sharing data between threads is actually kinda unsafe if done wrong (we 
are doing it wrong in this example), more on this next laterrrr

27
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Revisiting: Process Isolation

❖ Process Isolation is a set of mechanisms implemented to protect processes from 
each other and protect the kernel from user processes.

▪ Processes have separate address spaces (More on this later)

▪ Processes have privilege levels to restrict access to resources (Not covered in this class)

▪ If one process crashes, others will keep running (The schedular is agnostic, just another less 
thing to schedule. ☺)

❖ Inter-Process Communication (IPC) is limited, but possible

▪ Pipes via pipe()

▪ Sockets via socketpair()

▪ Shared Memory via shm_open()

❖ Threads on the other hand, can see everything within the process. 
28
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Parallelism

❖ You can gain "performance" by running things in parallel

▪ Each thread can use another core

❖ Let’s say I have a 3800 x 3800 integer matrix, and I want to count the number 
of odd integers in the matrix

Personally got grilled on a question like this when interviewing for the Apple Kernel Team.

29
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Parallelism

❖ I have a 3800 x 3800 integer matrix, and I want to count the number of odd 
integers in the matrix

❖ I can speed this up by giving each thread a part of the matrix to check!

▪ Works with threads since they share memory

30

Diminishing returns

After 4 threads, no gain 

in speed

why? Machine run on

only has 4 cores
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Parallelism vs Concurrency

❖ Two commonly used terms (often mistakenly used interchangeably).

❖ Concurrency: When there are one or more “tasks” that have overlapping 
lifetimes (between starting, running and terminating).

▪ That these tasks are both running within the same period.

❖ Parallelism: when one or more “tasks” run at the same instant in time.

❖ Consider the lifetime of these 
threads. Which are concurrent with A?
Which are parallel with A?

31

A

B

C

D

thread

time
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How fast is fork()?

❖ ~ 0.5 milliseconds per fork*

❖ ~ 0.05 milliseconds per thread creation*

▪ 10x faster than fork()

❖ *Past measurements are not indicative of future performance – depends on hardware, OS, software versions, …

▪ Processes are known to be even slower on Windows

32
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Context Switching

❖ Processes are considered “more expensive” than threads. There is more 
overhead to enforce isolation

❖ Advantages:

▪ No shared memory between processes

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:
▪ More overhead than threads during creation and context switching

▪ Cannot easily share memory between processes – typically communicate through the file 
system

33
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Lecture Outline

❖ Threads High Level

❖ pthreads

❖ Processes vs threads

❖ Thread Interleaving &  Sequential Consistency

❖ Benefits of Concurrency

34
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Polling Question

❖ What are all possible outputs of this program?

35

void* thrd_fn(void* arg) {
  int* ptr = (int*) arg;
  printf("%d\n", *ptr);
  return NULL;
}

int main() {
  pthread_t thd1;
  pthread_t thd2;
 int x = 1;
  pthread_create(&thd1, NULL, thrd_fn, &x); 
  x = 2;
  pthread_create(&thd2, NULL, thrd_fn, &x);

  pthread_join(thd1, NULL);
  pthread_join(thd2, NULL);
}

Are these outputs possible?

---------------------------
1
2
---------------------------
2
2
---------------------------
1
1
---------------------------
2
1

pollev.com/cis4480
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Visualization

36

int main() {
  int x = 1;
  pthread_create(...); 
  x = 2;
  pthread_create(...);

  pthread_join(...);
  pthread_join(...);
}

thrd_fn() {
  printf(*ptr);
  return NULL;
}

thrd_fn() {
  printf(*ptr);
  return NULL;
}
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❖ The variable x is shared across all threads.

Visualization: Memory

37

int x

main()

1

int main() {
  int x = 1;
  pthread_create(thd1); 
  x = 2;
  pthread_create(thd2);

  pthread_join(thd1);
  pthread_join(thd2);
}
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❖ The variable x is shared across all threads.

Visualization: Memory

38

int main() {
  int x = 1;
  pthread_create(thd1); 
  x = 2;
  pthread_create(thd2);

  pthread_join(thd1);
  pthread_join(thd2);
}

int x

main()

1

thd1

int* ptr
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❖ The variable x is shared across all threads.

Visualization: Memory

39

int main() {
  int x = 1;
  pthread_create(thd1); 
  x = 2;
  pthread_create(thd2);

  pthread_join(thd1);
  pthread_join(thd2);
}

int x

main()

2

thd1

int* ptr
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❖ The variable x is shared across all threads.

Visualization: Memory

40

int main() {
  int x = 1;
  pthread_create(thd1); 
  x = 2;
  pthread_create(thd2);

  pthread_join(thd1);
  pthread_join(thd2);
}

int x

main()

2

thd1

int* ptr

thd2

int* ptr

We only know that these threads have been 
created. We know nothing about their execution.
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Sequential Consistency

❖ Within a single thread, we assume* that there is sequential consistency.
That the order of operations within a single thread are the same as the 
program order.

41

int x = 1

main()

create thd1

x = 2

create thd2

In the main thread, 
x is set to 1
then thread 1 is created
then x is set to 2
then thread 2 is created
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Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across 
threads.

42

int x = 1

main() thd1 thd2
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Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across 
threads.

43

int x = 1

main() thd1 thd2

create thd1
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Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across 
threads.

44

int x = 1

main() thd1 thd2

create thd1

x = 2
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Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across 
threads.

45

int x = 1

main() thd1 thd2

create thd1

x = 2

create thd2
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Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across 
threads.

46

int x = 1

main() thd1 thd2

create thd1

x = 2

create thd2

print x print x
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Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across 
threads.

47

int x = 1

main() thd1 thd2

create thd1

x = 2

create thd2

print x print x

We know that x is initialized to 1 before thd1 is created
We know that x is set to 2 and thd1 is created before thd2 is created

Anything else that we know? No. Beyond those statements, we do not know the ordering
of main and the threads running. 

This is also why total.c malloc’d individual
integers for each thread.
Though it could have also just made an array on the stack
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Closer to the truth: assembly…

48

void* thrd_fn(void* arg) {
  int* ptr = (int*) arg;
  printf("%d\n", *ptr);
  return NULL;
}

thrd_fn:
addi sp, sp, -16
sw ra, 12(sp)
lw a1, 0(a0) 
lui a0, %hi(.L.str)
addi a0, a0, %lo(.L.str)
call printf
li a0, 0
lw ra, 12(sp)
addi sp, sp, 16
ret

.L.str:
 .asciz "%d\n"

This is where we set up 
registers for the call to printf.

"Load a word from the 
address @ a0 into a1"

a0 contains the address in arg

a1 becomes the second arg to printf 
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Scenario 1:

49

thrd_fn:
addi sp, sp, -16
sw ra, 12(sp)
lw a1, 0(a0) 
lui a0, %hi(.L.str)
addi a0, a0, %lo(.L.str)
call printf
li a0, 0
lw ra, 12(sp)
addi sp, sp, 16
ret

.L.str:
 .asciz "%d\n"

int main() {
  int x = 1;
  pthread_create(thd1); 
  x = 2;
  pthread_create(thd2);

  pthread_join(thd1);
  pthread_join(thd2);
}

Thread 1:
a1 = 1

Address Value

0x10000 1x

main

thread 1
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Scenario 1:

50

thrd_fn:
addi sp, sp, -16
sw ra, 12(sp)
lw a1, 0(a0) 
lui a0, %hi(.L.str)
addi a0, a0, %lo(.L.str)
call printf
li a0, 0
lw ra, 12(sp)
addi sp, sp, 16
ret

.L.str:
 .asciz "%d\n"

int main() {
  int x = 1;
  pthread_create(thd1); 
  x = 2;
  pthread_create(thd2);

  pthread_join(thd1);
  pthread_join(thd2);
}

Thread 1:
a1 = 1

Thread 2:
a1 = 2

Address Value

0x10000 2x

main thread 2

Now, it can go either way. 

Either thread 2 can finish 
first or thread  1.

2
1

1
2

or

REMEMBER: EACH THREAD HAS ITS OWN REGISTERS! AHHH!

thread 1
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Scenario 2:
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thrd_fn:
addi sp, sp, -16
sw ra, 12(sp)
lw a1, 0(a0) 
lui a0, %hi(.L.str)
addi a0, a0, %lo(.L.str)
call printf
li a0, 0
lw ra, 12(sp)
addi sp, sp, 16
ret

.L.str:
 .asciz "%d\n"

int main() {
  int x = 1;
  pthread_create(thd1); 
  x = 2;
  pthread_create(thd2);

  pthread_join(thd1);
  pthread_join(thd2);
}

Thread 1:
a1 = ?

Address Value

0x10000 1x

main thread 1

pre-empted: taken off a cpu to run another thread.

thread 1 is
pre-empted

by main before
load.
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Scenario 2:

52

thrd_fn:
addi sp, sp, -16
sw ra, 12(sp)
lw a1, 0(a0) 
lui a0, %hi(.L.str)
addi a0, a0, %lo(.L.str)
call printf
li a0, 0
lw ra, 12(sp)
addi sp, sp, 16
ret

.L.str:
 .asciz "%d\n"

int main() {
  int x = 1;
  pthread_create(thd1); 
  x = 2;
  pthread_create(thd2);

  pthread_join(thd1);
  pthread_join(thd2);
}

Thread 1:
a1 = ?

Address Value

0x10000 1x

main

thread 1

pre-empted: taken off a cpu to run another thread.
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Scenario 2:

53

thrd_fn:
addi sp, sp, -16
sw ra, 12(sp)
lw a1, 0(a0) 
lui a0, %hi(.L.str)
addi a0, a0, %lo(.L.str)
call printf
li a0, 0
lw ra, 12(sp)
addi sp, sp, 16
ret

.L.str:
 .asciz "%d\n"

int main() {
  int x = 1;
  pthread_create(thd1); 
  x = 2;
  pthread_create(thd2);

  pthread_join(thd1);
  pthread_join(thd2);
}

Thread 1:
a1 = 2

Address Value

0x10000 2x

main

thread 1

Now when thread 1 continues it 
will load in the value 2.

thread 2

Thread 2:
a1 = 2

Now, it can go either way. 

Either thread 2 can finish 
first or thread  1.

2
2

2
2

or

But they’re identical.
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Lecture Outline

❖ Threads High Level

❖ pthreads

❖ Processes vs threads

❖ Thread Interleaving &  Sequential Consistency

❖ Remember is all assembly, even c is higher level…

54
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Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads
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Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique:  address space, OS resources, & security attributes

▪ A Thread has a unique:  stack, stack pointer, program counter, & registers

▪ Threads are the unit of scheduling and processes are their containers; every process has at 
least one thread running in it
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Threads vs. Processes
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OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()
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Threads vs. Processes
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OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild
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Alternative: Processes

❖ What if we forked processes instead of threads?

❖ Advantages:

▪ No shared memory between processes

▪ No need for language support; OS provides “fork”

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context switching 
(Context switching == switching between threads/processes)

▪ Cannot easily share memory between processes – typically 
communicate through the file system
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That’s all!

❖ See you next time!
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