
CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Intro to Threads
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla

Vedansh Goenka Joy Liu

TAs:

Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane

Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones

Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng

Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ How are you doing?

2

pollev.com/cis5480

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Administrivia

❖ Penn-shell is due this Friday, October 3rd

▪ If you have any questions, please stop by office hours! We are here to help.

❖ Midterm will be on Thursday, October 16 from 5:15 – 6:45
▪ Locations: Towne 100 & Wu and Chen in Levine

▪ Assigned locations are TBD; prolly based on last name.

▪ Practice exams and all that out this weekend

❖ Penn OS will come out Friday, October 17th after the midterm!

▪ THINK ABOUT WHO YOUR GROUP WILL BE!!!!

3

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Lecture Outline

❖ What is a thread?

❖ pthreads

❖ Processes vs threads

❖ Thread Interleaving & Sequential Consistency

❖ Benefits of Concurrency

4

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Introducing Threads

❖ Separate the concept of a process from the “thread of execution”

▪ Threads are contained within a process

▪ Usually called a thread, this is a sequential execution stream within a process

❖ In most modern OS’s:

▪ Threads are the unit of scheduling.

5

thread

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources, & security attributes

▪ A Thread has a unique: stack, stack pointer, program counter, & registers

▪ Threads are the unit of scheduling and processes are their containers; every process has at
least one thread running in it

6

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Threads vs. Processes

7

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Threads vs. Processes

8

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Threads

❖ Threads are like lightweight processes

▪ They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores

▪ Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can communicate with each other
through variables and memory

– But, they can interfere with each other – need synchronization for shared resources

• Each thread has its own stack

❖ Analogy: restaurant kitchen

▪ Kitchen is process

▪ Chefs are threads

9

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running
in the address space

• One PC, stack, SP

▪ That main thread invokes a
function to create a new thread

• Typically pthread_create()

10

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running
in the address space

• Original thread (parent) and new
thread (child)

• New stack created for child thread

• Child thread has its own values of
the PC and SP

▪ Both threads share the other
segments (code, heap, globals)

• They can cooperatively modify
shared data

11

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Lecture Outline

❖ What is a thread?

❖ pthreads

❖ Processes vs threads

❖ Thread Interleaving & Sequential Consistency

❖ Benefits of Concurrency

12

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads

▪ Declared in pthread.h

• Not part of the C/C++ language

▪ To enable support for multithreading, must include -pthread flag
when compiling and linking with clang-15 command

• clang-15 –g –Wall –pthread –o main main.c

▪ Implemented in C

• Must deal with C programming practices and style

13

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

❖

▪ Creates a new thread with attributes *attr

▪ Returns 0 on success and an error number on error (can check against error
constants)`

▪ The new thread runs start(arg)

Creating and Terminating Threads

14

int pthread_create(
 pthread_t* thread,
 const pthread_attr_t* attr,
 void* (*start)(void*),
 void* arg);

start_routine

continues

parentpthread_create

This uses our previous conception of child vs parent metaphor, but really,
they are not treated this way. There is no hierarchy of threads.

They are more like siblings.

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

❖

▪ pthread_t* thread

• Output parameter: gives us a thread identifier

• Varies from OS to OS, in Linux it is an unsigned long in others, a struct.

▪ const pthread_attr_t* attr

• An struct detailing the attributes that the thread will take on. Null for default attributes.

▪ void* (*start)(void*)

• Function that the newly created thread will commence executing from.

– (i.e. void *func(void *arg))

▪ void* arg: the argument that will be passed into start (you can do a lot with a ptr)

pthread_create in reality

15

int pthread_create(
 pthread_t* thread,
 const pthread_attr_t* attr,
 void* (*start)(void*),
 void* arg);

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

❖

▪ void* arg: the argument that will be passed into start (you can do a lot with a ptr)

pthread_create

16

int pthread_create(
 pthread_t* thread,
 const pthread_attr_t* attr,
 void* (*start)(void*),
 void* arg);

If you need a function that takes in various arguments, make arg a pointer to a struct that contains all of them.

There are no variable length arguments here. (C++ has them tho, but those aren’t posix threads)

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

pthread_create is not fork()

❖ Unlike fork, the newly created execution context starts executing the given
function. It does not continue from pthread_create.

17

void* print_hello(void* arg) {
printf("Hi I am a thread!\n");
return NULL;

}

int main() {
pthread_t new_thread;
pthread_create(&new_thread, NULL, print_hello, NULL)
printf("Yeah but I’m the main thread.\n");

 //more down here...
}

new_thread will start its execution
from here

when it returns it will not return to
main

The life time of new_thread is
contained to this function
(and the functions it calls).

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

pthread_create is not fork()

18

int x = 10;

void* print_hello(void* arg) {
 printf("X is the number %d.\n", x);
 return NULL;
}

int main() {
pthread_t new_thread;
pthread_create(&new_thread, NULL, print_hello, NULL)
printf("Yeah but I’m the main thread.\n");

 //more down here...
}

The life time of new_thread is
contained to this function

But, it still has access to the same
variables as the main thread

THEY ARE NOT COPIES!

All threads share the same address
space.

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

❖

▪ The calling thread waits for the thread specified by thread to terminate, and as the name
says, joins the two executions stream into one (hence, “join”)

▪ You can think of it as the thread equivalent of waitpid(), although it really isn’t.

▪ The exit status of the terminated thread is placed in **retval

We Created a Thread, Now What?

19

int pthread_join(pthread_t thread, void** retval);

thread 1 waits for thread 2 to exit, it
obtains thread 2’s return value, and thread

2 is cleaned up
start

execution continues

thread 1
create join

thread 1

No more, parent and child. JUST THREADS!

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

We Created a Thread, Now What?

20

start

execution continues

thread 1
create join

thread 1

Once a new thread is created, we are at the mercy of the schedular.
We can not assume when it will run.

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Thread Example

❖ Let’s take a look at cthreads.c
▪ How do you properly handle memory management?

• Who allocates and deallocates memory?

• How long do you want memory to stick around?

▪ Threads execute in parallel

21

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Threads High Level

❖ pthreads

❖ Processes vs threads

❖ Thread Interleaving & Sequential Consistency

❖ Benefits of Concurrency

22

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Threads vs. Processes

23

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Threads vs. Processes

24

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

Note: want to
change where
the stacks are
for different

threads?
One of the

many attributes
you can set. ☺

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ What does each process print?

❖ What is the ultimate sum total?

25

pollev.com/cis5480

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Poll: how are you?

26

pollev.com/cis4480

❖ What does each thread print?

❖ What is the ultimate sum total?

❖ Note: in linux, we can grab a thread’s
id using gettid()

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Demos:

❖ See total.c and total_processes.c
▪ Threads share an address space, if one thread increments a global, it is seen by other

threads

▪ Processes have separate address spaces, incrementing a global in one process does not
increment it for other processes

❖ NOTE: sharing data between threads is actually kinda unsafe if done wrong (we
are doing it wrong in this example), more on this next laterrrr

27

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Revisiting: Process Isolation

❖ Process Isolation is a set of mechanisms implemented to protect processes from
each other and protect the kernel from user processes.

▪ Processes have separate address spaces (More on this later)

▪ Processes have privilege levels to restrict access to resources (Not covered in this class)

▪ If one process crashes, others will keep running (The schedular is agnostic, just another less
thing to schedule. ☺)

❖ Inter-Process Communication (IPC) is limited, but possible

▪ Pipes via pipe()

▪ Sockets via socketpair()

▪ Shared Memory via shm_open()

❖ Threads on the other hand, can see everything within the process.
28

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Parallelism

❖ You can gain "performance" by running things in parallel

▪ Each thread can use another core

❖ Let’s say I have a 3800 x 3800 integer matrix, and I want to count the number
of odd integers in the matrix

Personally got grilled on a question like this when interviewing for the Apple Kernel Team.

29

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Parallelism

❖ I have a 3800 x 3800 integer matrix, and I want to count the number of odd
integers in the matrix

❖ I can speed this up by giving each thread a part of the matrix to check!

▪ Works with threads since they share memory

30

Diminishing returns

After 4 threads, no gain

in speed

why? Machine run on

only has 4 cores

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Parallelism vs Concurrency

❖ Two commonly used terms (often mistakenly used interchangeably).

❖ Concurrency: When there are one or more “tasks” that have overlapping
lifetimes (between starting, running and terminating).

▪ That these tasks are both running within the same period.

❖ Parallelism: when one or more “tasks” run at the same instant in time.

❖ Consider the lifetime of these
threads. Which are concurrent with A?
Which are parallel with A?

31

A

B

C

D

thread

time

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

How fast is fork()?

❖ ~ 0.5 milliseconds per fork*

❖ ~ 0.05 milliseconds per thread creation*

▪ 10x faster than fork()

❖ *Past measurements are not indicative of future performance – depends on hardware, OS, software versions, …

▪ Processes are known to be even slower on Windows

32

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Context Switching

❖ Processes are considered “more expensive” than threads. There is more
overhead to enforce isolation

❖ Advantages:

▪ No shared memory between processes

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:
▪ More overhead than threads during creation and context switching

▪ Cannot easily share memory between processes – typically communicate through the file
system

33

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Threads High Level

❖ pthreads

❖ Processes vs threads

❖ Thread Interleaving & Sequential Consistency

❖ Benefits of Concurrency

34

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Polling Question

❖ What are all possible outputs of this program?

35

void* thrd_fn(void* arg) {
 int* ptr = (int*) arg;
 printf("%d\n", *ptr);
 return NULL;
}

int main() {
 pthread_t thd1;
 pthread_t thd2;
 int x = 1;
 pthread_create(&thd1, NULL, thrd_fn, &x);
 x = 2;
 pthread_create(&thd2, NULL, thrd_fn, &x);

 pthread_join(thd1, NULL);
 pthread_join(thd2, NULL);
}

Are these outputs possible?

1
2

2
2

1
1

2
1

pollev.com/cis4480

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Visualization

36

int main() {
 int x = 1;
 pthread_create(...);
 x = 2;
 pthread_create(...);

 pthread_join(...);
 pthread_join(...);
}

thrd_fn() {
 printf(*ptr);
 return NULL;
}

thrd_fn() {
 printf(*ptr);
 return NULL;
}

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

❖ The variable x is shared across all threads.

Visualization: Memory

37

int x

main()

1

int main() {
 int x = 1;
 pthread_create(thd1);
 x = 2;
 pthread_create(thd2);

 pthread_join(thd1);
 pthread_join(thd2);
}

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

❖ The variable x is shared across all threads.

Visualization: Memory

38

int main() {
 int x = 1;
 pthread_create(thd1);
 x = 2;
 pthread_create(thd2);

 pthread_join(thd1);
 pthread_join(thd2);
}

int x

main()

1

thd1

int* ptr

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

❖ The variable x is shared across all threads.

Visualization: Memory

39

int main() {
 int x = 1;
 pthread_create(thd1);
 x = 2;
 pthread_create(thd2);

 pthread_join(thd1);
 pthread_join(thd2);
}

int x

main()

2

thd1

int* ptr

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

❖ The variable x is shared across all threads.

Visualization: Memory

40

int main() {
 int x = 1;
 pthread_create(thd1);
 x = 2;
 pthread_create(thd2);

 pthread_join(thd1);
 pthread_join(thd2);
}

int x

main()

2

thd1

int* ptr

thd2

int* ptr

We only know that these threads have been
created. We know nothing about their execution.

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Sequential Consistency

❖ Within a single thread, we assume* that there is sequential consistency.
That the order of operations within a single thread are the same as the
program order.

41

int x = 1

main()

create thd1

x = 2

create thd2

In the main thread,
x is set to 1
then thread 1 is created
then x is set to 2
then thread 2 is created

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

42

int x = 1

main() thd1 thd2

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

43

int x = 1

main() thd1 thd2

create thd1

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

44

int x = 1

main() thd1 thd2

create thd1

x = 2

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

45

int x = 1

main() thd1 thd2

create thd1

x = 2

create thd2

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

46

int x = 1

main() thd1 thd2

create thd1

x = 2

create thd2

print x print x

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

47

int x = 1

main() thd1 thd2

create thd1

x = 2

create thd2

print x print x

We know that x is initialized to 1 before thd1 is created
We know that x is set to 2 and thd1 is created before thd2 is created

Anything else that we know? No. Beyond those statements, we do not know the ordering
of main and the threads running.

This is also why total.c malloc’d individual
integers for each thread.
Though it could have also just made an array on the stack

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Closer to the truth: assembly…

48

void* thrd_fn(void* arg) {
 int* ptr = (int*) arg;
 printf("%d\n", *ptr);
 return NULL;
}

thrd_fn:
addi sp, sp, -16
sw ra, 12(sp)
lw a1, 0(a0)
lui a0, %hi(.L.str)
addi a0, a0, %lo(.L.str)
call printf
li a0, 0
lw ra, 12(sp)
addi sp, sp, 16
ret

.L.str:
 .asciz "%d\n"

This is where we set up
registers for the call to printf.

"Load a word from the
address @ a0 into a1"

a0 contains the address in arg

a1 becomes the second arg to printf

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Scenario 1:

49

thrd_fn:
addi sp, sp, -16
sw ra, 12(sp)
lw a1, 0(a0)
lui a0, %hi(.L.str)
addi a0, a0, %lo(.L.str)
call printf
li a0, 0
lw ra, 12(sp)
addi sp, sp, 16
ret

.L.str:
 .asciz "%d\n"

int main() {
 int x = 1;
 pthread_create(thd1);
 x = 2;
 pthread_create(thd2);

 pthread_join(thd1);
 pthread_join(thd2);
}

Thread 1:
a1 = 1

Address Value

0x10000 1x

main

thread 1

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Scenario 1:

50

thrd_fn:
addi sp, sp, -16
sw ra, 12(sp)
lw a1, 0(a0)
lui a0, %hi(.L.str)
addi a0, a0, %lo(.L.str)
call printf
li a0, 0
lw ra, 12(sp)
addi sp, sp, 16
ret

.L.str:
 .asciz "%d\n"

int main() {
 int x = 1;
 pthread_create(thd1);
 x = 2;
 pthread_create(thd2);

 pthread_join(thd1);
 pthread_join(thd2);
}

Thread 1:
a1 = 1

Thread 2:
a1 = 2

Address Value

0x10000 2x

main thread 2

Now, it can go either way.

Either thread 2 can finish
first or thread 1.

2
1

1
2

or

REMEMBER: EACH THREAD HAS ITS OWN REGISTERS! AHHH!

thread 1

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Scenario 2:

51

thrd_fn:
addi sp, sp, -16
sw ra, 12(sp)
lw a1, 0(a0)
lui a0, %hi(.L.str)
addi a0, a0, %lo(.L.str)
call printf
li a0, 0
lw ra, 12(sp)
addi sp, sp, 16
ret

.L.str:
 .asciz "%d\n"

int main() {
 int x = 1;
 pthread_create(thd1);
 x = 2;
 pthread_create(thd2);

 pthread_join(thd1);
 pthread_join(thd2);
}

Thread 1:
a1 = ?

Address Value

0x10000 1x

main thread 1

pre-empted: taken off a cpu to run another thread.

thread 1 is
pre-empted

by main before
load.

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Scenario 2:

52

thrd_fn:
addi sp, sp, -16
sw ra, 12(sp)
lw a1, 0(a0)
lui a0, %hi(.L.str)
addi a0, a0, %lo(.L.str)
call printf
li a0, 0
lw ra, 12(sp)
addi sp, sp, 16
ret

.L.str:
 .asciz "%d\n"

int main() {
 int x = 1;
 pthread_create(thd1);
 x = 2;
 pthread_create(thd2);

 pthread_join(thd1);
 pthread_join(thd2);
}

Thread 1:
a1 = ?

Address Value

0x10000 1x

main

thread 1

pre-empted: taken off a cpu to run another thread.

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Scenario 2:

53

thrd_fn:
addi sp, sp, -16
sw ra, 12(sp)
lw a1, 0(a0)
lui a0, %hi(.L.str)
addi a0, a0, %lo(.L.str)
call printf
li a0, 0
lw ra, 12(sp)
addi sp, sp, 16
ret

.L.str:
 .asciz "%d\n"

int main() {
 int x = 1;
 pthread_create(thd1);
 x = 2;
 pthread_create(thd2);

 pthread_join(thd1);
 pthread_join(thd2);
}

Thread 1:
a1 = 2

Address Value

0x10000 2x

main

thread 1

Now when thread 1 continues it
will load in the value 2.

thread 2

Thread 2:
a1 = 2

Now, it can go either way.

Either thread 2 can finish
first or thread 1.

2
2

2
2

or

But they’re identical.

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Threads High Level

❖ pthreads

❖ Processes vs threads

❖ Thread Interleaving & Sequential Consistency

❖ Remember is all assembly, even c is higher level…

54

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads

55

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources, & security attributes

▪ A Thread has a unique: stack, stack pointer, program counter, & registers

▪ Threads are the unit of scheduling and processes are their containers; every process has at
least one thread running in it

56

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Threads vs. Processes

57

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Threads vs. Processes

58

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

Alternative: Processes

❖ What if we forked processes instead of threads?

❖ Advantages:

▪ No shared memory between processes

▪ No need for language support; OS provides “fork”

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context switching
(Context switching == switching between threads/processes)

▪ Cannot easily share memory between processes – typically
communicate through the file system

59

CIS 4480, Fall 2025L10: Intro to ThreadsUniversity of Pennsylvania

That’s all!

❖ See you next time!

60

	Default Section
	Slide 1: Intro to Threads Computer Operating Systems, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Introducing Threads
	Slide 6: Threads vs. Processes
	Slide 7: Threads vs. Processes
	Slide 8: Threads vs. Processes
	Slide 9: Threads
	Slide 10: Single-Threaded Address Spaces
	Slide 11: Multi-threaded Address Spaces
	Slide 12: Lecture Outline
	Slide 13: POSIX Threads (pthreads)
	Slide 14: Creating and Terminating Threads
	Slide 15: pthread_create in reality
	Slide 16: pthread_create
	Slide 17: pthread_create is not fork()
	Slide 18: pthread_create is not fork()
	Slide 19: We Created a Thread, Now What?
	Slide 20: We Created a Thread, Now What?
	Slide 21: Thread Example
	Slide 22: Lecture Outline
	Slide 23: Threads vs. Processes
	Slide 24: Threads vs. Processes
	Slide 25: Poll: how are you?
	Slide 26: Poll: how are you?
	Slide 27: Demos:
	Slide 28: Revisiting: Process Isolation
	Slide 29: Parallelism
	Slide 30: Parallelism
	Slide 31: Parallelism vs Concurrency
	Slide 32: How fast is fork()?
	Slide 33: Context Switching
	Slide 34: Lecture Outline
	Slide 35: Polling Question
	Slide 36: Visualization
	Slide 37: Visualization: Memory
	Slide 38: Visualization: Memory
	Slide 39: Visualization: Memory
	Slide 40: Visualization: Memory
	Slide 41: Sequential Consistency
	Slide 42: Visualization: Ordering
	Slide 43: Visualization: Ordering
	Slide 44: Visualization: Ordering
	Slide 45: Visualization: Ordering
	Slide 46: Visualization: Ordering
	Slide 47: Visualization: Ordering
	Slide 48: Closer to the truth: assembly…
	Slide 49: Scenario 1:
	Slide 50: Scenario 1:
	Slide 51: Scenario 2:
	Slide 52: Scenario 2:
	Slide 53: Scenario 2:
	Slide 54: Lecture Outline
	Slide 55: Why Threads?
	Slide 56: Threads vs. Processes
	Slide 57: Threads vs. Processes
	Slide 58: Threads vs. Processes
	Slide 59: Alternative: Processes
	Slide 60: That’s all!

