University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Scheduling ——
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez
Head TAs: Maya Huizar Akash Kaukuntla
Vedansh Goenka Joy Liu

TAs:
Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane
Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones
Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng
Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Administrivia

» Penn-shell is due this Friday-Oectober3 Monday, October 6t

= |f you have any questions, please stop by office hours! We are here to help.
" |atest time to turn it in is Friday, October 10t during fall break...don’t do this to yourself.

» Midterm will be on Thursday, October 16 from 5:15 - 6:45
® Locations: Towne 100 & Wu and Chen in Levine
" Towne 100
« A—-M
= Wu and Chen
« N-Z

= Practice exams and the official post will go out later today.

» Penn OS will come out Friday, October 17t after the midterm! 2

University of Pennsylvania

L11: Scheduling

Administrivia

+» PennOS:
= Specifications and team sign-up to be posted Friday (day after exam)
"= Done in groups of 4

= Partner signup due by end of day on Monday, 10/20
- Those left unassigned will be randomly assigned the next morning (Tuesday the 21st)
= |ecture dedicated to PennOS in class on Tuesday the 215t. Highly recommend you go.

=+ NO IN-PERSON LECTURE on 10/07

= | will record the entire lecture on Zoom this weekend and then upload it to canvas on
Tuesday. There will be a thread on Ed incase there are any questions.

" Do not come to AGH/try to join on zoom...l will not be here nor there...

University of Pennsylvania L11: Scheduling

Lecture Outline

» High Level: Scheduling

» Non-Preemptive Algorithms

" First Come First Serve (FCFS)
= Shortest Job First

+ Preemptive Algorithms
= Round Robin
= PennOS Round Robin
= Round Robin Variants
= Completely Fair Scheduling (CFS)

+» "Nice" Threads

» Extra: Earliest Eligible Virtual Deadline First, Interactive Tasks, Etc.

CIS 4480, Fall 2025

University of Pennsylvania L11: Scheduling

OS as the Scheduler

+ The scheduler is code that is part of the kernel (OS)

+» The scheduler runs when a thread:
= starts (“arrives to be scheduled”),
" Finishes
= Blocks (e.g., waiting on something, usually some form of 1/0)
®= Has run for a certain amount of time

+ It is responsible for scheduling threads
= Choosing which one to run
= Deciding how long to run it

CIS 4480, Fall 2025

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Scheduling Threads

+» Scheduler: It is responsible for scheduling threads
% From 4 threads, which do we select to run?

Time Needed at Minimum To Complete Task

SRR

Seems like we could just choose any; no preference.

vi| L | Ln| »n

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Scheduling Threads

+» Scheduler: It is responsible for scheduling threads
% From 4 threads, which do we select to run?

Time Needed at Minimum To Complete Task

0999 8

Now, the question doesn’t seem as straightforward.

vi| L | Ln| »n

WIFI Bluetooth

daemon daemon Discord Spotify

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Scheduling Threads

+» Scheduler: It is responsible for scheduling threads
%+ From 4 threads, how long do we select each thread to run?

0995

WIFI Bluetooth . : We don’t need to run threads until they finish.
Discord Spotify
daemon daemon

Time Needed at Minimum To Complete Task

O|lo| ®m| >
il B B W

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Scheduling Threads

+ An Example: Smaller Unit of Time smaller Unit of Time:

{ * Allows for finer interleaving patterns of threads.
* Might result in quicker response times.
* e.g. Need to handle network responses asap so

that we don’t lose packets....

z Much is still missing from the conversation here....

S

A 3 C D = 1 unit of time

on cpu
WIFI Bluetooth

daemon daemon Discord Spotify

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Goals

» Not as straightforward, schedular needs to balance a number of things...
" Minimizing wait time
- Starting Threads as soon as possible.
" Minimizing latency
 Quick response times and task completions are preferred
" Maximizing throughput
- Do as much work as possible per unit of time
" Maximizing fairness
- Make sure every thread can execute fairly

+ These goals depend on the system and can conflict with each other...

10

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Scheduler Terminology

+ The scheduler utilizes a scheduling algorithm to decide what runs next.

+» Algorithms are designed to consider many factors:

Fairness: Every program gets to run

Liveness: That “something” will eventually happen

Throughput: amount of work completed over an interval of time

Wait time: Average time a “task” is “alive” but not running

Turnaround time: time between task being ready and completing

Response time: time it takes between task being ready and when it can take user
input

Etc...

11

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Scheduling: Other Considerations

It takes ~1-2ns to context switch but

« |t takes time to context switch between threads .
really depends on machine.

" Could get more work done if thread switching is minimized

: x0/zero : L x1/ra J : x2/sp J - - x0/zero J L x1/ra : L x2/sp : - -
[wsno | [emr | [oame || 78- x9/s1 [sno | [e | [x| | 73- x9/s1
x10/a0 x11/al x12/a2 x13/a3 J x14/a4 : : x10/a0 x11/al L x12/a2 x13/a3 x14/a4
x15/a5 x16/a6 x17/a7 x18/s2 x19/s3 : x15/a5 x16/a6 x17/a7 x18/s2 x19/s3
- x20/s4 x21/s5 x22/s6 x23/s7 x24/s8 x20/s4 x21/s5 x22/56 x23/s7 x24/8 |
x25/s9 x26/s10 x27/511: x28/t3 x29/t4 x25/s9 j x26/s10 j x27/sllj x28/t3 x29/t4
X30/t5 x31/t6 x30/t5 B1/t6 |
l I
Save Thread A’s registers to memory Load Thread B'’s registers from memory

These are the General Purpose Registers in RISC-V, but this extends to all architectures.... 12

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Scheduling: Other Considerations

+» Scheduling takes resources
= |t takes time to decide which thread to run next
= |t takes space to hold the required data structures

Kernel Memory

Thread 1 State

Thread 2 State

You don’t want to waste valuable time looping through
Thread 3 State all Threads to find the most optimal; selecting the next
thread should be a O(1) operation!

Thread 4 State

13

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Scheduling: Other Considerations

» |t takes time to context switch between threads
" Could get more work done if thread switching is minimized

» Scheduling takes resources
" |t takes time to decide which thread to run next

= |t takes space to hold the required data structures

» Different tasks have different priorities
" Higher priority tasks should finish first

14

University of Pennsylvania L11: Scheduling

Lecture Outline

» High Level: Scheduling

» Non-Preemptive Algorithms

" First Come First Serve (FCFS)
= Shortest Job First

+ Preemptive Algorithms
= Round Robin
= PennOS Round Robin
= Round Robin Variants
= Completely Fair Scheduling (CFS)

+» "Nice" Threads

» Extra: Earliest Eligible Virtual Deadline First, Interactive Tasks, Etc.

CIS 4480, Fall 2025

15

University of Pennsylvania

L11: Scheduling

CIS 4480, Fall 2025

Types of Scheduling Algorithms

» Non-Preemptive: if a thread is running, it continues to run until it completes or
until it gives up the CPU

" First come first serve (FCFS)
= Shortest Job First (SJF)

+~ Also called "Co-Operative" threading because well, the threads co-operate
with each other...©

16

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

First Come First Serve (FCFS)

» |ldea: Whenever a thread is ready, schedule it to run until it is finished (or
blocks).

» Maintain a queue of ready threads
= Threads go to the back of the queue when it arrives or becomes unblocked
" The thread at the front of the queue is the next to run

17

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Example of FCFS

Time to Finish

1 CPU Job 1 24
Job 2 arrives slightly after job 1.
Job 3 arrives slightly after job 2

« FCFS schedule: Job3 3

| Job 1 | Job 2 | 3Job 3 |
%) 24 27 30

+» Example workload with three “jobs”:

Job 2 3

18

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Example of FCFS

Time to Finish

1 CPU Job 1 24
Job 2 arrives slightly after job 1.

+» Waiting Time: From Ready To Running

Job 3 arrives slightly after job 2 lob 2 3
+» FCFS schedule: Job 3 3
| Job 1 | Job 2 | 3Job 3 |
9 24 27 30
-
\ 24 J
|
\ ~27 l
|

Total waiting time: 0+ 24 + 27 =51
Average waiting time: 51/3 = 17

19

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Example of FCFS

Time to Finish

1 CPU Job 1 24
Job 2 arrives slightly after job 1.

« Turnaround Time: From Arrival to Finished

Job 3 arrives slightly after job 2 Job 2 3
+ FCFS schedule: 3 -

| 3o0b 1 | Job 2 | 3Job3 |

0\ ~24 ZI4 27 30

|
\ ~27 |
|
\ ~30)
|

Total waiting time: 24 + 27 + 30 =81

Average waiting time: 81/3 = 27

20

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» What are the advantages/disadvantages/concerns with
First Come First Serve

+~ Things a scheduler should prioritize:
" Minimizing Waitime
" Minimizing Latency
= Maximizing fairness
" Maximizing throughput
= Task priority
= Cost to schedule things
= Cost to context Switch

*

%+ Imagine we have 1 core, and tasks of various (finite) lengths... 21

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Shortest Job First (SJF)

» ldea: variation on FCFS, but have the tasks with the smallest CPU-time
requirement run first

= Arriving jobs are instead put into the queue depending on their run time, shorter jobs
being towards the front

= Scheduler selects the shortest job (1°t in queue) and runs till completion

23

University of Pennsylvania

Example of SJF

*

*

Example workload with three “jobs”:

SJF schedule:
| Job 2| Job3 | Job1

L11: Scheduling

CIS 4480, Fall 2025

Time to Finish

1 CPU

Job 1, 2, & 3 arrive at the same

time.

(% 3 6

Total waiting time: 0+3 +6=9
Average waiting time: 3

Total turnaround time: 3 + 6 + 30 = 39
Average turnaround time: 39/3 = 13

Job1 24
Job 2 3
Job 3 3

24

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» What are the advantages/disadvantages/concerns with
Shortest Job First

+~ Things a scheduler should prioritize:
" Minimizing wait time
" Minimizing Latency
= Maximizing fairness
" Maximizing throughput
= Task priority
= Cost to schedule things
= Cost to context Switch

*

%+ Imagine we have 1 core, and tasks of various (finite) lengths ... 25

University of Pennsylvania L11: Scheduling

Lecture Outline

» High Level: Scheduling

» Non-Preemptive Algorithms

= First Come First Serve (FCFS)
= Shortest Job First

+ Preemptive Algorithms
= Round Robin
" PennOS Round Robin
= Round Robin Variants
= Completely Fair Scheduling (CFS)

+» "Nice" Threads

» Extra: Earliest Eligible Virtual Deadline First, Interactive Tasks, Etc.

CIS 4480, Fall 2025

27

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Types of Scheduling Algorithms

» Preemptive: the thread may be interrupted after a given time and/or if
another thread becomes ready
= Round Robin

= Priority Round Robin

28

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Round Robin

+» Sort of a preemptive version of FCFS
" Whenever a thread is ready, add it to the end of the queue.
" Run whatever job is at the front of the queue

» BUT only led it run for a fixed amount of time (quantum).

= |f it finishes before the time is up, schedule another thread to run
" |f time is up, then send the running thread back to the end of the queue.

29

University of Pennsylvania L11: Scheduling

CIS 4480, Fall 2025

Example of Round Robin

Time to Finish

Same Example workload with three “jobs”:

)
0’0

1 CPU
Job 2 arrives slightly after job 1.
Job 3 arrives slightly after job 2

FCFS schedule:
Job 1|Job 2|Job 3|Job 1|Jo2|Jo3|Job 1| .. | | Job 1 |
(%) 2 4 6 8 9 10 12,14.. 28 30

)
0’0

Job1 24
Job 2 3
Job 3 3

30

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Example of Round Robin

Time to Finish

1 CPU Job 1 24
Job 2 arrives slightly after job 1.

» Waiting Time: From Ready To Running

Job 3 arrives slightly after job 2 lob 2 3

FCFS schedule: Job 3 3
Job 1|Job 2|Job 3|Job 1|Jo2|Jo3|Job 1| .. | | Job 1 |
(%) 2 4 6 8 9 10 12,14.. 28 30
V \ l \ ;

| |
Y} \ l

|
\ J \ J
| |

Total waiting time: : (0+4+2)+(2+4)+(4+3) =19
Average waiting time: 19/3 (~6.33)

31

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Example of Round Robin

Time to Finish

1 CPU Job 1 24
Job 2 arrives slightly after job 1.

)
0’0

Turnaround Time: From Arrival to Finished

Job 3 arrives slightly after job 2 lob 2 3
» FCFS schedule: Job 3 3
Job 1|Job 2|Job 3|Job 1|Jo2|Jo3|Job 1| .. | | Job 1 |
0 2 4 6 8 9 10 12,14.. 28 30
\ Y l
\ l

\ !)

Total turnaround time: 30+ 9 + 10 = 49
Average turnaround time: 49/3 (~16.33)

32

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» What are the advantages/disadvantages/concerns with
Round Robin

+~ Things a scheduler should prioritize:
" Minimizing wait time
" Minimizing Latency
= Maximizing fairness
" Maximizing throughput
= Task priority
= Cost to schedule things
= Cost to context Switch

*

+~ Imagine we have 1 core, and tasks of various lengths... 33

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

FCFS Example!

+» Assume that we had the following set of processes that ran on a single CPU
following the First Come First Serve (FCFS) scheduling policy.

o |f we EXDFESSEd this with a Process | Arrival Time | Finishing Time
drawing, where a black -‘; (1’ ;
square represents that the C > 3
process is executing, D 3 15

E 4 18

we would get:

m |0 |0 | |>

35

University of Pennsylvania L11: Scheduling

FCFS Example: Different Visualization

Process

Arrival Time

F

CIS 4480, Fall 2025

inishing Time

O|@|@I>|I>I>|>
ololo|m|wm|wm
mO|lOo|loO|O

O
m

= 1 unit of time

36

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Round Robin Practice!

+ Instead, lets switch our algorithm to round-robin with a time auantum of 3
time units. Process | Arrival Time | Finishing Time

+» YOU can assume:
= Context switching and running the Scheduler are instantaneous.

= |f 3 process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.

m O [O @ >

37

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Round Robin Practice!

% Instead, lets switch our algorithm to round-robin with a time quantum of 3

time units. Process | Arrival Time | Finishing Time Process | Arrival Time Length
A 0 4 A 0 4
B : 6 . B 1 2
C 2 13 c 5 .
D 3 15 0 2 »
<~ YOu can assume: E 4 18 E - -

= Context switching and running the Scheduler are instantaneous. useful to convert to this style of table.

= |f 3 process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.

m O [O @ >

38

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

RR Variant: PennOS Scheduler

» In PennOS you will have to implement a priority scheduler based mostly off of
round robin.

+~ You will have 3 queues, each with a different priority
(0,1, 2)

= Each queue acts like normal round robin within the queue

%+ You spend time quantum processing each queue proportional to the priority

" Priority O is scheduled 1.5 times more often than priority 1
" Priority 1 is scheduled 1.5 times more often than priority 2

45

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

RR Variant: Priority Round Robin

+ Same idea as round robin, but with multiple queues for different priority
levels.

+» Scheduler chooses the first item in the highest priority queue to run

+ Scheduler only schedules items in lower priorities if all queues with higher
priority are empty.

46

L11: Scheduling CIS 4480, Fall 2025

University of Pennsylvania

RR Variant: Multi Level Feedback

— = DM: 10
‘i:L time quantum
£ increases
as
M-—1: 12 priority level

,,,#f«;::> desreases

O:

+ Each priority level has a ready queue, and a time quantum

+» Thread enters highest priority queue initially
= Move to lower queue with each timer interrupt (e.g. it was pre-empted by the scheduler)

+ |f a thread 'voluntarily' stops using CPU before time is up, it is moved to the end of the current queue

+» Bottom queue is standard Round Robin
+» Thread in a given queue not scheduled until all higher queues are empty

47

University of Pennsylvania L11: Scheduling

Multi Level Feedback Analysis

+» Threads with high 1/0 bursts are preferred
= Makes higher utilization of the I/O devices

" Good for interactive programs (keyboard, terminal, mouse is 1/0)

+ Threads that need the CPU a lot will sink to lower priority, giving shorter
threads a chance to run

+ Still have to be careful in choosing time quantum

+» Also have to be careful in choosing how many layers

CIS 4480, Fall 2025

48

L11: Scheduling CIS 4480, Fall 2025

University of Pennsylvania

Multi Level Feedback Variants: Priority

% Can assign tasks different priority levels upon initiation that decide which

gueue it starts in
= E.g. the bluetooth daemon should have higher priority than HelloWorld.java

- Update the priority based on recent CPU usage rather than overall cpu usage

of a task
= Makes sure that priority is consistent with recent behavior

- Many others that vary from system to system

49

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Multiple Cores

%+ On a modern machine, we have multiple CPU Cores, each can run tasks
= Generally each core has its own run-queue
= |t helps to keep threads in the same process on the same processor

" Threads in the same process use the same memory: lower overhead

- If we want to there are ways to make sure a thread/process is “pinned” to a CPU
— See: Thread Affinity / Processor Affinity / CPU Pinning

% There is other stuff to balance tasks across cores, but | am leaving that out for
time ©

50

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

"Completely Fair Scheduling"

» “Fairness” — making sure that each task gets its fair share of the CPU
= This is not always achievable
= “Fairness, it turns out, is enough to solve many CPU-scheduling problems.”

51

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

"Completely Fair Scheduling"

/

+» “Fairness” — making sure that each task gets its fair share of the CPU

= This is not always achievable
= “Fairness, it turns out, is enough to solve many CPU-scheduling problems.”

THIS IS WHAT CFS IS TRYING TO
REPLICATE. AS IF WE ARE ON AN

+ Here is an example of fairness: “IDEAL PROCESSOR”
= Within some “slice” of time, each task gets an equal proportion of the
processor
Task

A 1/3
A 1

B 1/3
5

C 1/3
C 2

52

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

"Completely Fair Scheduling"

/

+» “Fairness” — making sure that each task gets its fair share of the CPU

= This is not always achievable
= “Fairness, it turns out, is enough to solve many CPU-scheduling problems.”

THIS IS WHAT CFS IS TRYING TO
REPLICATE. AS IF WE ARE ON AN

+ Here is an example of fairness: “IDEAL PROCESSOR”
= Within some “slice” of time, each task gets an equal proportion of the
processor
Task

A . A 1/3 1/3 1/3
c B 1/3 1/3 1/3
C 1/3 1/3 1/3

C 2

53

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

"Completely Fair Scheduling"

/

+» “Fairness” — making sure that each task gets its fair share of the CPU

= This is not always achievable
= “Fairness, it turns out, is enough to solve many CPU-scheduling problems.”

THIS IS WHAT CFS IS TRYING TO
REPLICATE. AS IF WE ARE ON AN

+ Here is an example of fairness: “IDEAL PROCESSOR”
= Within some “slice” of time, each task gets an equal proportion of the
processor
Task
A . A 1/3 1/3 1/3
. B 1/3 1/3 1/3 1/2
C 1/3 1/3 1/3 1/2
C 2

54

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

"Completely Fair Scheduling"

/

+» “Fairness” — making sure that each task gets its fair share of the CPU

= This is not always achievable
= “Fairness, it turns out, is enough to solve many CPU-scheduling problems.”

THIS IS WHAT CFS IS TRYING TO
REPLICATE. AS IF WE ARE ON AN

+ Here is an example of fairness: “IDEAL PROCESSOR”
= Within some “slice” of time, each task gets an equal proportion of the
processor
Task
A . A 1/3 1/3 1/3
c B 1/3 1/3 1/3 1/2 1/2
c , C 1/3 1/3 1/3 1/2 1/2

55

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

"Completely Fair Scheduling"

/

+» “Fairness” — making sure that each task gets its fair share of the CPU

= This is not always achievable
= “Fairness, it turns out, is enough to solve many CPU-scheduling problems.”

THIS IS WHAT CFS IS TRYING TO
REPLICATE. AS IF WE ARE ON AN

+ Here is an example of fairness: “IDEAL PROCESSOR”
= Within some “slice” of time, each task gets an equal proportion of the
processor
Task
A . A 1/3 1/3 1/3
c B 1/3 1/3 1/3 1/2 1/2 1 1 1
c , C 1/3 1/3 1/3 1/2 1/2

56

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

CFS — Reality

In reality there are things that prevent us from having a “perfect multi-tasking
processor”

Time to context switch
Time for the scheduler run
Time spent running other things in the kernel that don't really belong to a single task

Task may not be pre-emptible sometimes and we need to wait for the task to
become pre-emptible.

Etc.

57

University of Pennsylvania L11: Scheduling

CIS 4480, Fall 2025

CFS — Implementation

% CFS maintains a current count for “how long has a task run” called vruntime.
% The runtimes of all tasks are stored by the scheduler

% Unlike round robin, a thread is not run for a fixed amount of time
= Run a task till there is some thing with a lower vruntime

" To avoid constantly switching back and forth between two tasks there is a minimum
“granularity” (~2.25 milliseconds iirc)

58

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

CFS — Implementation Details

% CFS maintains a current count for “how long has a task run” called vruntime.

%+ The runtimes of all tasks are stored by the scheduler inside of a Red-Black Tree
= Red-Black Tree is a Self balancing binary tree l Root
= Sorted on the vruntime for each task
= Smallest vruntime task is the leftmost node

+» Adding a node is O(log N) operation Q c e
+» Pointer to leftmost node is maintained,
so looking up is O(1)

min vruntime

59

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

CFS — Implementation Details

% CFS maintains a current count for “how long has a task run” called vruntime.

% On each scheduler “tick” the processor compares the current
running task to the leftmost task l Root

+ |f the min_vruntime is less than the current node
(and granularity has passed) then start G a
running the minimum task.

min vruntime

60

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

CFS — New Tasks

+» New tasks haven’t run on the CPU, so their vruntime is 0 when they are
created?
= No, instead new tasks start with their vruntime equal to the min_vruntime.

= This way fairness is maintained between newer and older tasks.

61

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

CFS — 1/0 Bound Tasks

+» CFS will also maintain whether a job is sleeping or blocked. Won’t schedule to
run those tasks and store them in a separate structure.

+» CFS handles 1I/0O bound tasks pretty well :)

+» Tasks with many /O bursts will have small usage of CPU.
So they also have a low vruntime and have higher priority.

62

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

63

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

nice

L)

*

Linux has a way to set priority with a 'nice value.
= Each process starts with a nice value of 0
= Nice is clamped to [-20, 19]

D)

*

The higher your nice score, the “nicer” you are
(the task runs less often thus letting other tasks run instead of it)

+~ Higher nice score -> lower priority

*

D)

*

Lower nice score -> higher priority

64

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

CFS — Vruntime

CFS uses vruntime as the dominant metric
= \/ stands for virtual (e.g. not real runtime)

*

» You may have thought:

" curr task->runtime += time running

= This is false

» vruntime takes other things (like nice scores) into consideration

" curr task->vruntime += (time running * weight based on nice)

+ CFS takes other things into consideration that make it more complex :)

65

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Earliest Eligible Virtual Deadline First (EEVDF)

%+ New Linux scheduler!
= Replaced CFS less than a year ago (April 2024)

= Still aims for fairness, just with some different metrics

+ Utilizes a new concept called “lag” (in addition to vruntime)

= A measurement for how much time a task is “owed” if it did not get its fair share of time

= Tasks that took more CPU time than its fair share have negative “lag”
- Will not be considered “Eligible”. will not be run until lag >=0
- Sleeping / blocked tasks will not get free lag increases

66

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Earliest Eligible Virtual Deadline First (EEVDF)

+ Some Lore: Wrote the CFS Schedular

From: Peter Zijlstra <peterz@infradead.crg>

To: mingo@kernel.org, vincent.guittot@linaro.org

Cc: linux-kernel@vger.kernel.org, peterz@infradead.org,
juri.lelli@redhat.com, dietmar.eggemann@arm.com,
rostedt@goodmis.org, bsegall@google.com, mgorman@suse.de,
bristot@redhat.com, corbet@lwn.net, qyousef@layalina.io,
chris.hyser@oracle.com, patrick.bellasi@matbug.net,
pjt@google.com, pavel@ucw.cz, qperret@google.com,
tim.c.chen@linux.intel.com, joshdon@google.com, timj@gnu.org,
kprateek.nayak@amd.com, yu.c.chen@intel.com,

youssefesmat@chromium.org, joel@joelfernandes.org, efault@gmx.de,
tglx@linutronix.de

Subject: [PATCH 08/15] sched: Commit to EEVDF

Date: Wed, 31 May 2023 13:58:47 +0200 [thread overview]

Message-ID: <20230531124604.137187212@infradead.org> (raw)

In-Reply-To: 20230531115839.089944915@infradead.org

EEVDF is a better defined scheduling policy, as a result it has less
heuristics/tunables. There is no compelling reason to keep CFS around.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>

67

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2

Earliest Eligible Virtual Deadline First (EEVDF)

0:0 SOl I le LO re : From: Ingo Molnar <mingo@kernel.org>

To: Joel Fernandes <joel@joelfernandes.org>

Cc: Peter Zijlstra <peterz@infradead.org>,
vincent.guittot@linaro.org, linux-kernel@vger.kernel.org,
juri.lelli@redhat.com, dietmar.eggemann@arm.com,
rostedt@goodmis.org, bsegall@google.com, mgorman@suse.de,
bristot@redhat.com, corbet@lwn.net, gqyousef@layalina.io,
chris.hyser@oracle.com, patrick.bellasi@matbug.net,
pjt@google.com, pavel@ucw.cz, gperret@google.com,
tim.c.chen@linux.intel.com, joshdon@google.com, timj@gnu.org,
kprateek.nayak@amd.com, yu.c.chen@intel.com,
youssefesmat@chromium.org, efault@gmx.de, tglx@linutronix.de

Subject: Re: [PATCH 08/15] sched: Commit to EEVDF

Date: Thu, 22 Jun 2023 14:01:07 +0200 [thread overview]

Message-ID: <ZJQ4A2Im4VoGMKbl@gmail.com> (raw)

In-Reply-To: <20230616212353.GA628850@google. com>

* Joel Fernandes <joel@joelfernandes.org> wrote:

the "removal” in this patch is in significant part an

artifact of the patch series itself, because first EEVDF bits get added by

three earlier patches, in parallel to CFS:

kernel/sched/fair.c | 137 b ——
kernel/sched/fair.c | 162+ttt bbb bbb
kernel/sched/fair.c | 338 4ttt

... and then we remove the old CFS policy code in this 'commit to EEVDF' patch:
kernel/sched/fair.c | 465 +++

The combined diffstat is close to 50% / 50% balanced:

kernel/sched/fair.c | 1105 +++++ttttttttttttt

But having said that, I do agree that EEVDF as submitted by Peter is better
defined, with fewer heuristics, which is an overall win - so no complaints

From me! Wrote the CFS Schedular

Thanks,

Ingo 68

University of Pennsylvania

L11: Scheduling

Earliest Eligible Virtual Deadline First (EEVDF)

+ Not going over it due to:

= Time in lecture, looks like it may be more complex and take longer to explain
"= |tis new! Not as much information out there on it

| could read the Linux kernel source code, but that takes time :)))))))
- | invite you to read the 13718 lines of the schedular implementation. ©

+» Take a look at these articles from LWN.net if you want to learn more about
EEVDF

= https://lwn.net/Articles/925371/
" https://lwn.net/Articles/969062/

CIS 4480, Fall 2025

69

https://github.com/torvalds/linux/blob/master/kernel/sched/fair.c
https://github.com/torvalds/linux/blob/master/kernel/sched/fair.c
https://lwn.net/Articles/925371/
https://lwn.net/Articles/925371/
https://lwn.net/Articles/969062/
https://lwn.net/Articles/969062/

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Why did we talk about this?

+ Scheduling is fundamental towards how computer can multi-task
% This is a great example of how “systems” intersects with algorithms :)

» |t shows up ‘occasionally’ in the real world :)

70

University of Pennsylvania

L11: Scheduling

More

+» For those curious, there was a LOT left out

%+ RTOS (Real Time Operating Systems)
" For real time applications

= CRITICAL that data and events meet defined time constraints
= Different focus in scheduling. Throughput is de-prioritized
+» Fair-share scheduling

= Equal distribution across different users instead of by processes

< EtcC.

CIS 4480, Fall 2025

71

University of Pennsylvania L11: Scheduling

FCFS Analysis

+» Advantages:

0

= Simple, low overhead
" Hard to screw up the implementation lol

= Each thread will DEFINITELY get to run eventually.

Disadvantages

= Doesn’t work well for interactive systems

" Throughput can be low due to long threads

= Large fluctuations in average turn around time

= Priority not taken into considerations

CIS 4480, Fall 2025

72

L11: Scheduling CIS 4480, Fall 2025

University of Pennsylvania

SJF Analysis

+» Advantages:
= Still relatively simple, low overhead
= perhaps minimal average turnaround time

+» Disadvantages

= Starvation possible
- If quick jobs keep arriving, long jobs will keep being pushed back and won’t execute

= How do you know how long it takes for something to run?
- You CAN’T. You can use a history of past behavior to make a guess.

= Priority not taken into considerations

73

University of Pennsylvania

L11: Scheduling

Round Robin Analysis

+» Advantages:
= Still relatively simple

= Can work for interactive systems

+» Disadvantages

= |f quantum is too small, can spend a lot of time context switching
" |f quantum is too large, approaches FCFS
= Still assumes all processes have the same priority.

«» Rule of thumb:

" Choose a unit of time so that most jobs (80-90%) finish in one usage of CPU time

CIS 4480, Fall 2025

74

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Round Robin Practice!

% Instead, lets switch our algorithm to round-robin with a time quantum of 3

time units. Process | Arrival Time | Finishing Time Process | Arrival Time Length
A 0 4 A 0 4
B : 6 . B 1 2
C 2 13 c 5 .
D 3 15 0 2 »
<~ YOu can assume: E 4 18 E - -

= Context switching and running the Scheduler are instantaneous.

= |f 3 process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

0. 1. 2. 3. 4 5 6. 7. 8 9 10. 11. 12, 13. 14. 15. 16. 17. 18.

m |0 [O | |

75

University of Pennsylvania

RR Example: Different Visualization

time

O 0o N OO0 1 »p W N L O

P R R R R R R
N o 0 pWON - O

A4

A3 | B?

A2 | B> | C/

B2 | C’| D?| A!
B | C’| D2 | A'| B3
cC’| D2| A | B
ct| D2| A | E®
c| D2 | Al | B3
D2 | A | E3 | C*
DI | AY| E3 | C*
Al | B3| C*

E3 | C*

E2 | C*

EL | C?

c4

C3

C2

L11: Scheduling

CIS 4480, Fall 2025

Process | Arrival Time Length
A 0 4
B 1 2
C 2 7
D 3 2
E 4 3

= 1 unit of time

76

University of Pennsylvania

Poll Everywhere

time

O 0o N OO0 1 »p W N L O

P R R R R R R
N o 0 pWON - O

L11: Scheduling

CIS 4480, Fall 2025

pollev.com/cis5480

A4
A3 B2 Process | Arrival Time Length
A 0 4
A | B2 | C’
B 1 2
B2 | C’ | D?| Al . > -
Bl C’ D2 Al E3 . - >
C’| D>| Al| E . ? »
co| D2 | Al | E®
cc| D?| Al | B3 . L
+ What is the average wait time?
D2 | Al | B3| C*
D | At | B3| C°
Al E3 C4 . .
— +~ What is the average turnaround time?
E2 | C*
EL | c?
c4
C3
C2

= 1 unit of time

77

University of Pennsylvania

Poll Everywhere

time

O 0o N OO0 1 »p W N L O

P R R R R R R
N o 0 pWON - O

L11: Scheduling

CIS 4480, Fall 2025

pollev.com/cis5480

Process | Arrival Time Length
A 0 4
B 1 2
C 2 7
D 3 2
E 4 3

+» What is the average wait time?

A4

A3 | B?

A2 | B> | C/

B2 | C’| D?| A!

B | C’| D2 | A'| B3
cC’| D2| A | B

ct| D2| A | E®

c| D2 | Al | B3

D2 | A | E3 | C*

DI | AY| E3 | C*

Al | B3| C*

E3 | C*

E2 | C*

EL | C?

c4

c3 R
C? ’

= A->(0+7)

= B->(3)

= C->(3+6)

= D->(5)

= E->(7)
(7+3+9+5+7)/5=6.2

= 1 unit of time

78

University of Pennsylvania

Poll Everywhere

time

O 0o N OO0 1 »p W N L O

P R R R R R R
N o 0 pWON - O

L11: Scheduling

CIS 4480, Fall 2025

pollev.com/cis5480

Process | Arrival Time Length
A 0 4
B 1 2
C 2 7
D 3 2
E 4 3

+ What is the average turnaround time?

+ (11+4+16+7+10)/5=9.6

A4

A3 B2

A2 B2 C’

B2 C’ D2 Al

Bl C’ D2 Al E3

C’ D2 | Al E3

co D2 | Al E3

C D2 Al E3

D2 | Al E3 c4

D1 Al E3 c4 = A-> (11)
Al | B3| C* = B->(4)
e | ¢ = C->(16)
E2 c4

= = D->(7)
C4 - E '> (10)
C3

C2

Cl

= 1 unit of time

79

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Round Robin VS. FCFS

What is the average wait time? +» What is the average wait time?

= (7+43+9+5+7)/5=6.2 "= 0+3+4+10+11)/5=5.6

What is the average turnaround time? +» What is the average turnaround time?
= (11+4+16+7+10)/5=9.6 = (4+5+12+12+14)/5=9.4

In this small example FCFS does better than Round Robin! But does it really?

| invite you to think about what we could change this to make it much worse for FCFS.

80

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

Consideration: Interactive Tasks

+~ There is still ongoing work to make schedulers that are better
= “Better” either in general or to specific situations

+» Example: People are already working on EEVDF upgrades. VARD scheduler for
SteamOQOS
https://youtu.be/xJjZ5tzIHOY?si=lgGNWaQe03gSgCP2&t=1682

81

https://youtu.be/xJjZ5tzlHOY?si=lgGNWaQe03qSgCP2&t=1682

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

More Round Robin Practice

+~ Four processes are executing on one CPU following round robin scheduling:
0. 1. 2 3 4 5 6 7. 8 9 10 11. 12. 13. 14.

O |0 |m|>

+» YOU can assume:
= All processes do not block for I/O or any resource.
= Context switching and running the Scheduler are instantaneous.

= |f 3 process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

Solutions at end of slide deck

83

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

More Round Robin Practice

0. 1. 2. 3. 4. 5 6. 7.8 9 100 11. 12, 13, 14

O |0 |m|>

= All processes do not block for I/O or any resource.
= Context switching and running the Scheduler are instantaneous.

= |f 3 process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

+ What is the earliest time that process C could have arrived?
+ Which processes are in the ready queue at time 9?

+ If this algorithm used a quantum of 3 instead of 2, how many fewer context
switches would there be?

Solutions at end of slide deck

84

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

More Round Robin Practice

0. 1. 2. 3. 4. 5 6. 7.8 9 100 11. 12, 13, 14

O |0 |m|>

= All processes do not block for I/O or any resource.
= Context switching and running the Scheduler are instantaneous.

= |f 3 process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

+ What is the earliest time that process C could have arrived?
= |f Carrived attime O, 1, or 2, it would have run at time 4
= C could have shown up at time 3 and come after A in the queue
" Cshowed up at time 3 at earliest

85

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

More Round Robin Practice

0. 1. 2. 3. 4. 5 6. 7.8 9 100 11. 12, 13, 14

O |0 |m|>

= All processes do not block for I/O or any resource.
= Context switching and running the Scheduler are instantaneous.

= |f 3 process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

+ Which processes are in the ready queue at time 9?

®" Disrunning, soitis notin the queue
= A has finished

= B and Cstill have to finish, so they are in the queue.

86

University of Pennsylvania L11: Scheduling CIS 4480, Fall 2025

More Round Robin Practice

\/
0’0

5. 10. 11. 12. 13 14

If this algorithm used a quantum of 3 instead of 2, how many fewer context
switches would there be?

O[O |w|>

= Currently there are 7 context switches

= |f quantum was 3: . 0. 1. 2 3 4 5 6 1 8 9_-10_ 11, 12. 13. 14.
Depends on if C shows B]
up at time 2 or 4 g — I
= Or 0. 1 2 3 4 5 6 7. 8 9 10. 11. 12. 13. 14
A ------
. B
Either way, ouly 4 c] |
context switches, so 2 D I

less +hav duantum = 2 87

