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Administrivia

❖ Penn-shell is due Monday, October 6th

▪ If you have any questions, please stop by office hours! We are here to help. 

▪ Latest time to turn it in is Friday, October 10th during fall break…don’t do this to yourself.

❖ Midterm will be on Thursday, October 16 from 5:15PM – 6:45PM 

▪ Locations: Towne 100 & Wu and Chen in Levine

▪ Towne 100 

• Last time starts with: A – M

▪ Wu and Chen

• Last time starts with: N - Z

▪ Practice exams and the official post will go out later today
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Administrivia

❖ PennOS:

▪ Specifications and team sign-up to be posted Friday (day after exam)

▪ Done in groups of 4

▪ Partner signup due by end of day on Monday, 10/20

• Those left unassigned will be randomly assigned the next morning (Tuesday the 21st)

▪ Lecture dedicated to PennOS in class on Tuesday the 21st. Highly recommend you go.

❖ No Check-in 10/14!

▪ Study for the exam…come to the exam review that Tuesday! ☺ 
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Lecture Outline

❖ Threads Refresher

❖ Synchronization Mechanisms

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ It only gets worse
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Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique:  address space, OS resources, & security attributes

▪ A Thread has a unique:  stack, stack pointer, program counter, & registers

▪ Threads are the unit of scheduling and processes are their containers; every process has at 
least one thread running in it

5
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Threads vs. Processes

6
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Threads vs. Processes
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Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running 
in the address space

• One PC, stack, SP

▪ That main thread invokes a 
function to create a new thread

• Typically pthread_create()
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Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running 
in the address space

• Original thread (parent) and new 
thread (child)

• New stack created for child thread

• Child thread has its own values of 
the PC and SP

▪ Both threads share the other 
segments (code, heap, globals)

• They can cooperatively modify 
shared data

9

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild



CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

POSIX Threads (pthreads)

❖  The POSIX APIs for dealing with threads

▪ Declared in pthread.h

• Not part of the C/C++ language

▪ To enable support for multithreading, must include -pthread flag 
when compiling and linking with clang-15 command

• clang-15 –g –Wall –pthread –o main main.c

▪ Implemented in C

• Must deal with C programming practices and style

10
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❖  

▪ Creates a new thread with attributes *attr 

▪ Returns 0 on success and an error number on error (can check against error 
constants)`

▪ The new thread runs start(arg)

Creating and Terminating Threads

11

int pthread_create(
        pthread_t* thread,
        const pthread_attr_t* attr,
        void* (*start)(void*), 
        void* arg);

start_routine

continues

parentpthread_create

This uses our previous conception of child vs parent metaphor, but really, 
they are not treated this way. There is no hierarchy of threads. 

They are more like siblings.
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❖  

▪ pthread_t* thread 

• Output parameter: gives us a thread identifier

• Varies from OS to OS, in Linux it is an unsigned long in others, a struct.

▪ const pthread_attr_t* attr

• An struct detailing the attributes that the thread will take on. Null for default attributes.

▪ void* (*start)(void*)

• Function that the newly created thread will commence executing from. 

– (i.e. void *start(void *arg))

▪ void* arg: the argument that will be passed into start (you can do a lot with a ptr)

pthread_create in reality

12

int pthread_create(
        pthread_t* thread,
        const pthread_attr_t* attr,
        void* (*start)(void*), 
        void* arg);
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❖  

▪ The calling thread waits for the thread specified by thread to terminate, and as the name 
says, joins the two executions stream into one (hence, “join”) 

▪ You can think of it as the thread equivalent of waitpid(), although it really isn’t.

▪ The exit status of the terminated thread is placed in **retval

We Created a Thread, Now What?
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int pthread_join(pthread_t thread, void** retval);

thread 1 waits for thread  2 to exit, it 
obtains thread 2’s return value, and thread 

2 is cleaned up
start

execution continues

thread 1
create join

thread 1

No more, parent and child. JUST THREADS!

Any thread within the same process can join with any other thread.
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The Pain Point: Shared Resources

❖ POSIX.1: Some resources are shared between threads and processes

❖ All Threads Share the Following

▪ PID, Parent PID, PGID, Controlling Terminal, File Descriptors, Interval timers (sleep, 
alarm…)

▪ nice value (niceness applies per process, not per thread according to POSIX)

▪ global memory (data and heap segments)

❖ The following attributes are distinct for each thread

▪ Stack

▪ thread ID (the pthread_t data type)

▪ signal mask (pthread_sigmask(3))

▪ the errno variable 

14

Our focus

https://man7.org/linux/man-pages/man3/pthread_sigmask.3.html
https://man7.org/linux/man-pages/man3/errno.3.html
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Data Races

❖ Two memory accesses form a data race if different threads access the same 
location, at least one is a write, and the accesses can co-occur.

▪ The state of a program can vary depending on scheduling…

• Which thread ran first? 

• When did a thread get interrupted?

15
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Data Race Example

❖ If your fridge has no milk, then go out and
buy some more

▪ What could go wrong?

❖ If you live alone:

❖ If you live with a roommate:

16

if (!milk) {
  buy(milk);
}

! !
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Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem 

• (with two threads, not roommates)

 

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

17

if (!note) {
  if (!milk) {
    leave(note);
    buy(milk);
    remove(note);
  }
}

pause and think!
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Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem 

• (with two threads, not roommates)

 

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

18

if (!note) {
  if (!milk) {
    leave(note);
    buy(milk);
    remove(note);
  }
}

time

you roommate

Check note

Check milk

Leave note

Buy milk

Check note

Check milk

Leave note

Buy milk

*There are other 

possible scenarios 

that result in 

multiple milks

We can be interrupted

between checking note and 

leaving note 

pause and think!

Nothing has changed! 

We are still reading and modifying a value; note.
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Threads and Data Races

❖ Data races might interfere in painful, non-obvious ways, depending on the 
specifics of the data structure

❖ Example:  two threads try to read from and write to the same shared memory 
location

▪ Could get “correct” answer

▪ Could accidentally read old value

▪ One thread’s work could get “lost”

❖ Example: two threads try to push an item onto the head of the linked list at the 
same time

▪ Could get “correct” answer

▪ Could get different ordering of items

▪ Could break the data structure!  
19

This should remind you of the signal interruption! 

We were essentially interrupting one stream of
 execution with another!
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Remember this?

❖ What does this print?

20

Always prints 0, the global 

counter is not shared across 

processes, so the parent’s 

global never changes
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Remember this?

❖ What does this print?

21

Usually 5000
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Previous Demos:

❖ See total.c and total_processes.c
▪ Threads share an address space, if one thread increments a global, it is seen by other 

threads

▪ Processes have separate address spaces, incrementing a global in one process does not 
increment it for other processes

❖ NOTE: sharing data between threads is unsafe if done wrong (we are doing it 
wrong in this example); let’s expand on that now ☺

22
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Increment Data Race

❖ What can be written in one line in c
is multiple assembly instructions in one. The increment
looks something like this in assembly:

❖ What happens if we context switch to a different thread while executing these three 
instructions?

❖ Reminder: Each thread has its own registers to work with. Each thread would have 
its own a0 & t0 

▪ But, they would share the memory location stored within t0
23

lw a0, 0(t0)
addi a0, a0, 1
sw a0, 0(t0)

sum_total++

a0  = *t0 
a0  = a0 + 1
*t0 = a0

Equivalent pseudo
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Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute 

24

lw a0, 0(t0)

++sum_total

Thread 0

Thread 1

a0 = 0

sum_total = 0
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Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute 

25

lw a0, 0(t0)

++sum_total

lw a0, 0(t0)

Thread 0

Thread 1

a0 = 0

sum_total = 0

a0 = 0
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Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute 

26

lw a0, 0(t0)

++sum_total

lw a0, 0(t0)
addi a0, a0, 1

Thread 0

Thread 1

a0 = 0

sum_total = 0

a0 = 1
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Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute 

27

lw a0, 0(t0)

++sum_total

lw a0, 0(t0)
addi a0, a0, 1
sw a0, 0(t0)

Thread 0

Thread 1

a0 = 0

sum_total = 1

a0 = 1
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Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute 

28

lw a0, 0(t0)

addi a0, a0, 1

++sum_total

lw a0, 0(t0)
addi a0, a0, 1
sw a0, 0(t0)

Thread 0

Thread 1

a0 = 1

sum_total = 1

a0 = 1
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Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute 

❖ With this example, we could get 1 as an output instead of 2, even though we 
executed addi twice.

29

lw a0, 0(t0)

addi a0, a0, 1
sw a0, 0(t0)

++sum_total

lw a0, 0(t0)
addi a0, a0, 1
sw a0, 0(t0)

Thread 0

Thread 1

a0 = 1

sum_total = 1

a0 = 1
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Remember this?

❖ What is the minimum value that 
could be printed by main thread?

▪ Single Core

▪ Concurrent Threading Only

❖ Important: all three exec on each loop

❖ Joel said 100 in lecture on Thursday, but 
this only applies in one specific scenario.

30

pause and think

lw a0, 0(t0)
addi a0, a0, 1
sw a0, 0(t0)
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Remember this?

❖ Most common mistake: 100.

❖ One of the scenarios: 

31

pause and think

lw a0, 0(t0) //loads 0

addi a0, a0, 1
sw a0, 0(t0) //stores 1
// 99 more times

lw a0, 0(t0)
addi a0, a0, 1
sw a0, 0(t0)

Threads 2 - 50

all finish before thread 1 
stores for first time  

Thread 1

100!
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Remember this?

❖ What is the minimum value that could be printed?
▪ Single Core

▪ Concurrent Threading Only

32

pause and think

lw a0, 0(t0) //loads 0

addi a0, a0, 1
sw a0, 0(t0) //stores 1

//finishes executing 

lw a0, 0(t0)
addi a0, a0, 1
sw a0, 0(t0)

Threads 3 - 50

finish before thread 1 
stores for first time  

//does loop 99 X

lw a0, 0(t0)

addi a0, a0, 1
sw a0, 0(t0)

Thread 2

finish….

Thread 1

loads 1!

stores 2!
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Remember this?

❖ True Minimum Value: True for any multithreaded program with any # of 
increments.

33

pause and think

lw a0, 0(t0) //loads 0

addi a0, a0, 1
sw a0, 0(t0) //stores 1

//finishes executing 

lw a0, 0(t0)
addi a0, a0, 1
sw a0, 0(t0)

Threads 3 - 50

finish before thread 1 
stores for first time  

//does loop 99 X

lw a0, 0(t0)

addi a0, a0, 1
sw a0, 0(t0)

Thread 2

finish….

Thread 1

loads 1!

stores 2!If we need to repeatedly load and store to a global:
The minimum is 2.
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Remember this?

❖Things to consider: 
▪ When are values loaded? Every time? Before the loop? What if there 

are optimizations?

▪ With optimizations, the minimum is no longer 2. It is 100.

34

pause and think

for 100 times:
lw a0, 0(t0) //loads 0
addi a0, a0, 1
sw a0, 0(t0) //stores 1

lw a0, 0(t0) //loads global
addi a0, a0, 100
sw a0, 0(t0) //stores global + 100

-O1
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Lecture Outline

❖ Threads Refresher

❖ Synchronization Mechanisms

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ It only gets worse

35
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Synchronization

❖ Synchronization is the act of preventing two (or more) concurrently 
running threads from interfering with each other when operating on 
shared data
▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented

❖ Goals of synchronization:

▪ Liveness – ability to execute in a timely manner 
(informally, “something good eventually happens”)

▪ Safety – avoid unintended interactions with shared data structures (informally, 
“nothing bad happens”)

36
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Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that only one thread can 
operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ “Wait” until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to
37

// non-critical code

lock.acquire();
// critical section
lock.release();

// non-critical code

block
if locked

❖ Pseudocode:
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Lock API

❖ Locks are constructs that are provided by the operating system to help ensure 
synchronization

▪ There are many types of locks (e.g. Mutex Lock, Spin Lock…) 

❖ Only one thread can acquire a lock at a time,
No thread can acquire that lock until it has been released

38
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Milk Example – What is the Critical Section?

❖ What if we use a lock on the 
refrigerator?

▪ Probably overkill – what if 
roommate wanted to get eggs?

❖ For performance reasons, only 
put what is necessary in the 
critical section

▪ Lock all steps that must run
uninterrupted; only lock the milk.

▪ (i.e. must run as an atomic unit)

39

fridge.lock()
if (!milk) {
  buy milk
}
fridge.unlock()

milk_lock.lock()
if (!milk) {
  buy milk
}
milk_lock.unlock()
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▪ If the mutex is currently unlocked, it becomes locked and owned by the calling thread.

▪ If the mutex is already locked by another thread, pthread_mutex_lock() suspends the 
calling thread until the mutex is unlocked.

▪ unlocks the given mutex.  The mutex is assumed to be locked and owned by the calling 
thread on entrance to pthread_mutex_unlock(). Linux allows any thread to unlock a 
mutex, even if it isn’t its owner. But, this isn’t true across OS’s.

pthread mutex locks

▪ initializes the mutex object pointed to by mutex according to the mutex attributes 
specified in mutexattr.

• You could even make locks shareable across processes...

40

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,
                const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex); Check the man page..
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pthread Mutex Examples

❖ See total.c
▪ Data race between threads

❖ See total_locking.c
▪ Adding a mutex fixes our data race

❖ How does total_locking compare to sequential code and to total?

▪ Likely slower than both– only 1 thread can increment at a time, and must deal with 
checking the lock and switching between threads

▪ One possible fix:  each thread increments a local variable and then adds its value (once!) to 
the shared variable at the end

• See total_locking_better.c

❖ How about with optimizations? 
▪ Let’s see total_locking_opt.c with compiler optimizations. 

41
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Lecture Outline

❖ Threads Refresher

❖ Synchronization Mechanisms

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ It only gets worse

42
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Is there a data race here?

❖ Does this code have a data race?

▪ Can this program enter an “invalid” 
(unexpected or error) state from having 
concurrent memory accesses?

❖ Follow up: Does this code feel good?

43

Pause and think 

pthread_mutex_t lock;
bool print_ok = false;

void* thrd_fn1(void* arg) {
 pthread_mutex_lock(&lock);
 print_ok = true;
 pthread_mutex_unlock(&lock);
 return NULL;
}

void* thrd_fn2(void* arg) {
 pthread_mutex_lock(&lock);
 if (print_ok) {
  printf("print ok is true\n");
 } else {
  printf("print ok is false\n");
 }
 pthread_mutex_unlock(&lock);
 return NULL;
}

int main() {
 // assume main sets ups the threads & locks, etc.
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Race Condition vs Data Race

❖ Data-Race: when there are concurrent accesses to a shared resource, with at 
least one write, that can cause the shared resource to enter an invalid or 
“unexpected” state.

❖ Race-Condition: Where the program has different behavior depending on the 
ordering of concurrent threads. This can happen even if all accesses to shared 
resources are “atomic” or “locked”
▪ THINK SCHEDULER! SCHEDULER SCHEDULER SCHEDULER!

❖ The previous example has no data-race, but it does have a race condition 

❖ Data-races are a subset of race-conditions

44
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Thread Communication

❖ Sometimes threads may need to communicate with each other to know when 
they can perform operations

❖ Example: Producer and consumer threads

▪ One thread creates tasks/data

▪ One thread consumes the produced tasks/data to perform some operation

▪ The consumer thread can only produce things once the creator has created them 

❖ Need to make sure this communication has no data race or race condition

45
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Lecture Outline

❖ Threads Refresher

❖ Synchronization Mechanisms

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ It only gets worse

46
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Software Synchronization

❖ Lets try a more complicated software approach..

❖ We create two threads running thread_code, one with me = 0, other thread 
has me = 1

❖ Each thread tries to increment sum_total. Does this work?

47

int sum_total = 0;
atomic bool flag[2] = {false, false};
atomic int turn = 0
void thread_code(void *arg) {
  int me = (int)arg;

  flag[me] = true;
  turn = 1 - me;
  while((flag[1-me] == true) && (turn != me)) { }
  ++sum_total;
  flag[me] = false;
}

Pause and think

Note: atomic <type> is a real thing just not as 
I’ve written it here. 
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Peterson’s Algorithm

❖ What we just did was Peterson's algorithm

❖ Why does it work? (using an analogy)

▪ Each thread first declares that they want to enter the critical section by setting their flag

▪ Each thread then states (once) that the other should “go first”.

• This is done by setting the turn variable to 1 – me

• One of these assignments to the turn variable will happen last, that is the one that decides who 
goes first

▪ One of the thread goes first (decided by the value of turn) and accesses the critical section, 
before saying it is done (by changing their flag to false)

48
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Peterson’s Algorithm

❖ What we just did was Peterson's algorithm

❖ Why does it work?

▪ Case1:
If P0 enters critical section, flag[0] = true, turn = 0. It enters the critical section successfully.

▪ Case2:
If P0 and P1 enter critical section, flag[0] and flag[1] = true

Race condition on turn. Suppose P0 sets turn = 0 first. Final value is turn = 1. P0 will get to 
run first. 

49
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Explanation

flag[0] = true

Thread 0 Thread 1

turn = 1

while(flag[1] == true 
        && turn != 0)

flag[1] = true

turn = 0

++sum_total

flag[1] = false

++sum_total

RACE

TIME

// suppose turn = 1 came after turn = 0
// the turn variable is set to 1

turn = 1

while(flag[0] == true 
        && turn != 1)

turn = ?

turn = 1
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Peterson’s Assumptions

❖ Some operations are atomic:

▪ Reading from the flag and turn variables cannot be interrupted

▪ Writing to the flag and turn variables cannot be interrupted

▪ E.g setting turn = 1 or 0 will set turn to 0 or 1, you can be interrupted before or after, but 
not “during” when turn may have some intermediate value that is not 0 or 1

❖ That the instructions are executed in the specific order laid out in the code

51
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Atomicity

❖ Atomicity: An operation or set of operations on some data are atomic if the 
operation(s) are indivisible, that no other operation(s) on that same data can 
interrupt/interfere.

❖ Aside on terminology:

▪ Often interchangeable with the term “Linearizability”

▪ Atomic has a different (but similar-ish) meaning in the context of data bases and ACID.
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Lecture Outline

❖ Threads Refresher

❖ Synchronization Mechanisms

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ It only gets worse
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Software Synchronization

❖ Can the assert fail here?

54

Pause and think

bool flag = false;
int x = 0;

void* thrd_fn1(void* arg) {
 x = 5;
 flag = true;
 return NULL;
}

void* thrd_fn2(void* arg) {
 if (flag) {
  assert(x == 5); // crashes if x does not equal 5
 }
 return NULL;
}

int main() {
 // assume main creates two threads, one to run thrd_fn1 and another for thrd_fn2
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Instruction & Memory Ordering

❖ Do we know that x is set before g is set?

55

bool g = false;
int x = 0

void some_func(int arg) {
  x = 5;
  g = true;
}
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Instruction & Memory Ordering

❖ Do we know that x is set before g is set?

56

bool g = false;
int x = 0

void some_func(int arg) {
  x = 5;
  g = true;
}

NO
The compiler may generate instructions that sets g first and then t
The Processor may execute these out of order or at the same time

Why? Optimizations on program performance
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Aside: Instruction & Memory Ordering

❖ The compiler may generate instructions with different ordering if it does not 
appear that it will affect the semantics of the function

▪ Since                                    is not affected by
then either one could execute first.

❖ The Processor may also execute these in a different order than what the 
compiler says

❖ Why? Optimizations on program performance

▪ If you want to know more, look into “Out-of-Order Execution” and “Memory Order”

57

g = true; x = 5;
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Aside: Memory Barriers

❖ How do we fix this?

❖ We can emit special instructions to the CPU and/or compiler to create a 
“memory barrier”

▪ “all memory accesses before the barrier are guaranteed to happen before the memory 
accesses that come after the barrier”

▪ A way to enforce an order in which memory accesses are ordered by the compiler and the 
CPU

❖ The further you go the discrepancy becomes more nuanced.
▪ Do we want to force mem access to occur in the order of the written program? 

▪ Do we want to force that all memory access/modifications to complete before the next 
instruction executes?
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Lecture Outline

❖ Threads Refresher

❖ Synchronization Mechanisms

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ It only gets worse
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Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads
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That’s all!

❖ See you next time!
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Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique:  address space, OS resources, 
    & security attributes

▪ A Thread has a unique:  stack, stack pointer, program counter,
    & registers

▪ Threads are the unit of scheduling and processes are their containers; 
every process has at least one thread running in it
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Threads vs. Processes

63

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()
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Threads vs. Processes
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OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild
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Alternative: Processes

❖ What if we forked processes instead of threads?

❖ Advantages:

▪ No shared memory between processes

▪ No need for language support; OS provides “fork”

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context switching (Context 
switching == switching between threads/processes)

▪ Cannot easily share memory between processes – typically communicate 
through the file system
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