
CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Threads Cont. Locks & Concurrency Benefits
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla

Vedansh Goenka Joy Liu

TAs:

Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane

Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones

Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng

Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Administrivia

❖ Penn-shell is due Monday, October 6th

▪ If you have any questions, please stop by office hours! We are here to help.

▪ Latest time to turn it in is Friday, October 10th during fall break…don’t do this to yourself.

❖ Midterm will be on Thursday, October 16 from 5:15PM – 6:45PM

▪ Locations: Towne 100 & Wu and Chen in Levine

▪ Towne 100

• Last time starts with: A – M

▪ Wu and Chen

• Last time starts with: N - Z

▪ Practice exams and the official post will go out later today

2

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Administrivia

❖ PennOS:

▪ Specifications and team sign-up to be posted Friday (day after exam)

▪ Done in groups of 4

▪ Partner signup due by end of day on Monday, 10/20

• Those left unassigned will be randomly assigned the next morning (Tuesday the 21st)

▪ Lecture dedicated to PennOS in class on Tuesday the 21st. Highly recommend you go.

❖ No Check-in 10/14!

▪ Study for the exam…come to the exam review that Tuesday! ☺

3

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Threads Refresher

❖ Synchronization Mechanisms

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ It only gets worse

4

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources, & security attributes

▪ A Thread has a unique: stack, stack pointer, program counter, & registers

▪ Threads are the unit of scheduling and processes are their containers; every process has at
least one thread running in it

5

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Threads vs. Processes

6

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Threads vs. Processes

7

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running
in the address space

• One PC, stack, SP

▪ That main thread invokes a
function to create a new thread

• Typically pthread_create()

8

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running
in the address space

• Original thread (parent) and new
thread (child)

• New stack created for child thread

• Child thread has its own values of
the PC and SP

▪ Both threads share the other
segments (code, heap, globals)

• They can cooperatively modify
shared data

9

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads

▪ Declared in pthread.h

• Not part of the C/C++ language

▪ To enable support for multithreading, must include -pthread flag
when compiling and linking with clang-15 command

• clang-15 –g –Wall –pthread –o main main.c

▪ Implemented in C

• Must deal with C programming practices and style

10

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

❖

▪ Creates a new thread with attributes *attr

▪ Returns 0 on success and an error number on error (can check against error
constants)`

▪ The new thread runs start(arg)

Creating and Terminating Threads

11

int pthread_create(
 pthread_t* thread,
 const pthread_attr_t* attr,
 void* (*start)(void*),
 void* arg);

start_routine

continues

parentpthread_create

This uses our previous conception of child vs parent metaphor, but really,
they are not treated this way. There is no hierarchy of threads.

They are more like siblings.

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

❖

▪ pthread_t* thread

• Output parameter: gives us a thread identifier

• Varies from OS to OS, in Linux it is an unsigned long in others, a struct.

▪ const pthread_attr_t* attr

• An struct detailing the attributes that the thread will take on. Null for default attributes.

▪ void* (*start)(void*)

• Function that the newly created thread will commence executing from.

– (i.e. void *start(void *arg))

▪ void* arg: the argument that will be passed into start (you can do a lot with a ptr)

pthread_create in reality

12

int pthread_create(
 pthread_t* thread,
 const pthread_attr_t* attr,
 void* (*start)(void*),
 void* arg);

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

❖

▪ The calling thread waits for the thread specified by thread to terminate, and as the name
says, joins the two executions stream into one (hence, “join”)

▪ You can think of it as the thread equivalent of waitpid(), although it really isn’t.

▪ The exit status of the terminated thread is placed in **retval

We Created a Thread, Now What?

13

int pthread_join(pthread_t thread, void** retval);

thread 1 waits for thread 2 to exit, it
obtains thread 2’s return value, and thread

2 is cleaned up
start

execution continues

thread 1
create join

thread 1

No more, parent and child. JUST THREADS!

Any thread within the same process can join with any other thread.

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

The Pain Point: Shared Resources

❖ POSIX.1: Some resources are shared between threads and processes

❖ All Threads Share the Following

▪ PID, Parent PID, PGID, Controlling Terminal, File Descriptors, Interval timers (sleep,
alarm…)

▪ nice value (niceness applies per process, not per thread according to POSIX)

▪ global memory (data and heap segments)

❖ The following attributes are distinct for each thread

▪ Stack

▪ thread ID (the pthread_t data type)

▪ signal mask (pthread_sigmask(3))

▪ the errno variable

14

Our focus

https://man7.org/linux/man-pages/man3/pthread_sigmask.3.html
https://man7.org/linux/man-pages/man3/errno.3.html

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Data Races

❖ Two memory accesses form a data race if different threads access the same
location, at least one is a write, and the accesses can co-occur.

▪ The state of a program can vary depending on scheduling…

• Which thread ran first?

• When did a thread get interrupted?

15

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Data Race Example

❖ If your fridge has no milk, then go out and
buy some more

▪ What could go wrong?

❖ If you live alone:

❖ If you live with a roommate:

16

if (!milk) {
 buy(milk);
}

! !

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem

• (with two threads, not roommates)

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

17

if (!note) {
 if (!milk) {
 leave(note);
 buy(milk);
 remove(note);
 }
}

pause and think!

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem

• (with two threads, not roommates)

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

18

if (!note) {
 if (!milk) {
 leave(note);
 buy(milk);
 remove(note);
 }
}

time

you roommate

Check note

Check milk

Leave note

Buy milk

Check note

Check milk

Leave note

Buy milk

*There are other

possible scenarios

that result in

multiple milks

We can be interrupted

between checking note and

leaving note 

pause and think!

Nothing has changed!

We are still reading and modifying a value; note.

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Threads and Data Races

❖ Data races might interfere in painful, non-obvious ways, depending on the
specifics of the data structure

❖ Example: two threads try to read from and write to the same shared memory
location

▪ Could get “correct” answer

▪ Could accidentally read old value

▪ One thread’s work could get “lost”

❖ Example: two threads try to push an item onto the head of the linked list at the
same time

▪ Could get “correct” answer

▪ Could get different ordering of items

▪ Could break the data structure! 
19

This should remind you of the signal interruption!

We were essentially interrupting one stream of
 execution with another!

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Remember this?

❖ What does this print?

20

Always prints 0, the global

counter is not shared across

processes, so the parent’s

global never changes

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Remember this?

❖ What does this print?

21

Usually 5000

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Previous Demos:

❖ See total.c and total_processes.c
▪ Threads share an address space, if one thread increments a global, it is seen by other

threads

▪ Processes have separate address spaces, incrementing a global in one process does not
increment it for other processes

❖ NOTE: sharing data between threads is unsafe if done wrong (we are doing it
wrong in this example); let’s expand on that now ☺

22

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Increment Data Race

❖ What can be written in one line in c
is multiple assembly instructions in one. The increment
looks something like this in assembly:

❖ What happens if we context switch to a different thread while executing these three
instructions?

❖ Reminder: Each thread has its own registers to work with. Each thread would have
its own a0 & t0

▪ But, they would share the memory location stored within t0
23

lw a0, 0(t0)
addi a0, a0, 1
sw a0, 0(t0)

sum_total++

a0 = *t0
a0 = a0 + 1
*t0 = a0

Equivalent pseudo

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

24

lw a0, 0(t0)

++sum_total

Thread 0

Thread 1

a0 = 0

sum_total = 0

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

25

lw a0, 0(t0)

++sum_total

lw a0, 0(t0)

Thread 0

Thread 1

a0 = 0

sum_total = 0

a0 = 0

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

26

lw a0, 0(t0)

++sum_total

lw a0, 0(t0)
addi a0, a0, 1

Thread 0

Thread 1

a0 = 0

sum_total = 0

a0 = 1

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

27

lw a0, 0(t0)

++sum_total

lw a0, 0(t0)
addi a0, a0, 1
sw a0, 0(t0)

Thread 0

Thread 1

a0 = 0

sum_total = 1

a0 = 1

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

28

lw a0, 0(t0)

addi a0, a0, 1

++sum_total

lw a0, 0(t0)
addi a0, a0, 1
sw a0, 0(t0)

Thread 0

Thread 1

a0 = 1

sum_total = 1

a0 = 1

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

❖ With this example, we could get 1 as an output instead of 2, even though we
executed addi twice.

29

lw a0, 0(t0)

addi a0, a0, 1
sw a0, 0(t0)

++sum_total

lw a0, 0(t0)
addi a0, a0, 1
sw a0, 0(t0)

Thread 0

Thread 1

a0 = 1

sum_total = 1

a0 = 1

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Remember this?

❖ What is the minimum value that
could be printed by main thread?

▪ Single Core

▪ Concurrent Threading Only

❖ Important: all three exec on each loop

❖ Joel said 100 in lecture on Thursday, but
this only applies in one specific scenario.

30

pause and think

lw a0, 0(t0)
addi a0, a0, 1
sw a0, 0(t0)

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Remember this?

❖ Most common mistake: 100.

❖ One of the scenarios:

31

pause and think

lw a0, 0(t0) //loads 0

addi a0, a0, 1
sw a0, 0(t0) //stores 1
// 99 more times

lw a0, 0(t0)
addi a0, a0, 1
sw a0, 0(t0)

Threads 2 - 50

all finish before thread 1
stores for first time

Thread 1

100!

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Remember this?

❖ What is the minimum value that could be printed?
▪ Single Core

▪ Concurrent Threading Only

32

pause and think

lw a0, 0(t0) //loads 0

addi a0, a0, 1
sw a0, 0(t0) //stores 1

//finishes executing

lw a0, 0(t0)
addi a0, a0, 1
sw a0, 0(t0)

Threads 3 - 50

finish before thread 1
stores for first time

//does loop 99 X

lw a0, 0(t0)

addi a0, a0, 1
sw a0, 0(t0)

Thread 2

finish….

Thread 1

loads 1!

stores 2!

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Remember this?

❖ True Minimum Value: True for any multithreaded program with any # of
increments.

33

pause and think

lw a0, 0(t0) //loads 0

addi a0, a0, 1
sw a0, 0(t0) //stores 1

//finishes executing

lw a0, 0(t0)
addi a0, a0, 1
sw a0, 0(t0)

Threads 3 - 50

finish before thread 1
stores for first time

//does loop 99 X

lw a0, 0(t0)

addi a0, a0, 1
sw a0, 0(t0)

Thread 2

finish….

Thread 1

loads 1!

stores 2!If we need to repeatedly load and store to a global:
The minimum is 2.

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Remember this?

❖Things to consider:
▪ When are values loaded? Every time? Before the loop? What if there

are optimizations?

▪ With optimizations, the minimum is no longer 2. It is 100.

34

pause and think

for 100 times:
lw a0, 0(t0) //loads 0
addi a0, a0, 1
sw a0, 0(t0) //stores 1

lw a0, 0(t0) //loads global
addi a0, a0, 100
sw a0, 0(t0) //stores global + 100

-O1

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Threads Refresher

❖ Synchronization Mechanisms

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ It only gets worse

35

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Synchronization

❖ Synchronization is the act of preventing two (or more) concurrently
running threads from interfering with each other when operating on
shared data
▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented

❖ Goals of synchronization:

▪ Liveness – ability to execute in a timely manner
(informally, “something good eventually happens”)

▪ Safety – avoid unintended interactions with shared data structures (informally,
“nothing bad happens”)

36

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that only one thread can
operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ “Wait” until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to
37

// non-critical code

lock.acquire();
// critical section
lock.release();

// non-critical code

block
if locked

❖ Pseudocode:

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Lock API

❖ Locks are constructs that are provided by the operating system to help ensure
synchronization

▪ There are many types of locks (e.g. Mutex Lock, Spin Lock…)

❖ Only one thread can acquire a lock at a time,
No thread can acquire that lock until it has been released

38

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Milk Example – What is the Critical Section?

❖ What if we use a lock on the
refrigerator?

▪ Probably overkill – what if
roommate wanted to get eggs?

❖ For performance reasons, only
put what is necessary in the
critical section

▪ Lock all steps that must run
uninterrupted; only lock the milk.

▪ (i.e. must run as an atomic unit)

39

fridge.lock()
if (!milk) {
 buy milk
}
fridge.unlock()

milk_lock.lock()
if (!milk) {
 buy milk
}
milk_lock.unlock()

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

▪ If the mutex is currently unlocked, it becomes locked and owned by the calling thread.

▪ If the mutex is already locked by another thread, pthread_mutex_lock() suspends the
calling thread until the mutex is unlocked.

▪ unlocks the given mutex. The mutex is assumed to be locked and owned by the calling
thread on entrance to pthread_mutex_unlock(). Linux allows any thread to unlock a
mutex, even if it isn’t its owner. But, this isn’t true across OS’s.

pthread mutex locks

▪ initializes the mutex object pointed to by mutex according to the mutex attributes
specified in mutexattr.

• You could even make locks shareable across processes...

40

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,
 const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex); Check the man page..

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

pthread Mutex Examples

❖ See total.c
▪ Data race between threads

❖ See total_locking.c
▪ Adding a mutex fixes our data race

❖ How does total_locking compare to sequential code and to total?

▪ Likely slower than both– only 1 thread can increment at a time, and must deal with
checking the lock and switching between threads

▪ One possible fix: each thread increments a local variable and then adds its value (once!) to
the shared variable at the end

• See total_locking_better.c

❖ How about with optimizations?
▪ Let’s see total_locking_opt.c with compiler optimizations.

41

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Threads Refresher

❖ Synchronization Mechanisms

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ It only gets worse

42

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Is there a data race here?

❖ Does this code have a data race?

▪ Can this program enter an “invalid”
(unexpected or error) state from having
concurrent memory accesses?

❖ Follow up: Does this code feel good?

43

Pause and think

pthread_mutex_t lock;
bool print_ok = false;

void* thrd_fn1(void* arg) {
 pthread_mutex_lock(&lock);
 print_ok = true;
 pthread_mutex_unlock(&lock);
 return NULL;
}

void* thrd_fn2(void* arg) {
 pthread_mutex_lock(&lock);
 if (print_ok) {
 printf("print ok is true\n");
 } else {
 printf("print ok is false\n");
 }
 pthread_mutex_unlock(&lock);
 return NULL;
}

int main() {
 // assume main sets ups the threads & locks, etc.

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Race Condition vs Data Race

❖ Data-Race: when there are concurrent accesses to a shared resource, with at
least one write, that can cause the shared resource to enter an invalid or
“unexpected” state.

❖ Race-Condition: Where the program has different behavior depending on the
ordering of concurrent threads. This can happen even if all accesses to shared
resources are “atomic” or “locked”
▪ THINK SCHEDULER! SCHEDULER SCHEDULER SCHEDULER!

❖ The previous example has no data-race, but it does have a race condition

❖ Data-races are a subset of race-conditions

44

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Thread Communication

❖ Sometimes threads may need to communicate with each other to know when
they can perform operations

❖ Example: Producer and consumer threads

▪ One thread creates tasks/data

▪ One thread consumes the produced tasks/data to perform some operation

▪ The consumer thread can only produce things once the creator has created them

❖ Need to make sure this communication has no data race or race condition

45

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Threads Refresher

❖ Synchronization Mechanisms

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ It only gets worse

46

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Software Synchronization

❖ Lets try a more complicated software approach..

❖ We create two threads running thread_code, one with me = 0, other thread
has me = 1

❖ Each thread tries to increment sum_total. Does this work?

47

int sum_total = 0;
atomic bool flag[2] = {false, false};
atomic int turn = 0
void thread_code(void *arg) {
 int me = (int)arg;

 flag[me] = true;
 turn = 1 - me;
 while((flag[1-me] == true) && (turn != me)) { }
 ++sum_total;
 flag[me] = false;
}

Pause and think

Note: atomic <type> is a real thing just not as
I’ve written it here.

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Peterson’s Algorithm

❖ What we just did was Peterson's algorithm

❖ Why does it work? (using an analogy)

▪ Each thread first declares that they want to enter the critical section by setting their flag

▪ Each thread then states (once) that the other should “go first”.

• This is done by setting the turn variable to 1 – me

• One of these assignments to the turn variable will happen last, that is the one that decides who
goes first

▪ One of the thread goes first (decided by the value of turn) and accesses the critical section,
before saying it is done (by changing their flag to false)

48

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Peterson’s Algorithm

❖ What we just did was Peterson's algorithm

❖ Why does it work?

▪ Case1:
If P0 enters critical section, flag[0] = true, turn = 0. It enters the critical section successfully.

▪ Case2:
If P0 and P1 enter critical section, flag[0] and flag[1] = true

Race condition on turn. Suppose P0 sets turn = 0 first. Final value is turn = 1. P0 will get to
run first.

49

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Explanation

flag[0] = true

Thread 0 Thread 1

turn = 1

while(flag[1] == true
 && turn != 0)

flag[1] = true

turn = 0

++sum_total

flag[1] = false

++sum_total

RACE

TIME

// suppose turn = 1 came after turn = 0
// the turn variable is set to 1

turn = 1

while(flag[0] == true
 && turn != 1)

turn = ?

turn = 1

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Peterson’s Assumptions

❖ Some operations are atomic:

▪ Reading from the flag and turn variables cannot be interrupted

▪ Writing to the flag and turn variables cannot be interrupted

▪ E.g setting turn = 1 or 0 will set turn to 0 or 1, you can be interrupted before or after, but
not “during” when turn may have some intermediate value that is not 0 or 1

❖ That the instructions are executed in the specific order laid out in the code

51

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Atomicity

❖ Atomicity: An operation or set of operations on some data are atomic if the
operation(s) are indivisible, that no other operation(s) on that same data can
interrupt/interfere.

❖ Aside on terminology:

▪ Often interchangeable with the term “Linearizability”

▪ Atomic has a different (but similar-ish) meaning in the context of data bases and ACID.

52

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Threads Refresher

❖ Synchronization Mechanisms

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ It only gets worse

53

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Software Synchronization

❖ Can the assert fail here?

54

Pause and think

bool flag = false;
int x = 0;

void* thrd_fn1(void* arg) {
 x = 5;
 flag = true;
 return NULL;
}

void* thrd_fn2(void* arg) {
 if (flag) {
 assert(x == 5); // crashes if x does not equal 5
 }
 return NULL;
}

int main() {
 // assume main creates two threads, one to run thrd_fn1 and another for thrd_fn2

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Instruction & Memory Ordering

❖ Do we know that x is set before g is set?

55

bool g = false;
int x = 0

void some_func(int arg) {
 x = 5;
 g = true;
}

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Instruction & Memory Ordering

❖ Do we know that x is set before g is set?

56

bool g = false;
int x = 0

void some_func(int arg) {
 x = 5;
 g = true;
}

NO
The compiler may generate instructions that sets g first and then t
The Processor may execute these out of order or at the same time

Why? Optimizations on program performance

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Aside: Instruction & Memory Ordering

❖ The compiler may generate instructions with different ordering if it does not
appear that it will affect the semantics of the function

▪ Since is not affected by
then either one could execute first.

❖ The Processor may also execute these in a different order than what the
compiler says

❖ Why? Optimizations on program performance

▪ If you want to know more, look into “Out-of-Order Execution” and “Memory Order”

57

g = true; x = 5;

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Aside: Memory Barriers

❖ How do we fix this?

❖ We can emit special instructions to the CPU and/or compiler to create a
“memory barrier”

▪ “all memory accesses before the barrier are guaranteed to happen before the memory
accesses that come after the barrier”

▪ A way to enforce an order in which memory accesses are ordered by the compiler and the
CPU

❖ The further you go the discrepancy becomes more nuanced.
▪ Do we want to force mem access to occur in the order of the written program?

▪ Do we want to force that all memory access/modifications to complete before the next
instruction executes?

58

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Threads Refresher

❖ Synchronization Mechanisms

❖ Data Race vs Race Condition

❖ Is a mutex needed? (Peterson’s)

❖ It only gets worse

59

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads

60

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

That’s all!

❖ See you next time!

61

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
 & security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
 & registers

▪ Threads are the unit of scheduling and processes are their containers;
every process has at least one thread running in it

62

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Threads vs. Processes

63

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Threads vs. Processes

64

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIS 4480, 2025L12: Synchronizing ThreadsUniversity of Pennsylvania

Alternative: Processes

❖ What if we forked processes instead of threads?

❖ Advantages:

▪ No shared memory between processes

▪ No need for language support; OS provides “fork”

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context switching (Context
switching == switching between threads/processes)

▪ Cannot easily share memory between processes – typically communicate
through the file system

65

	Default Section
	Slide 1: Threads Cont. Locks & Concurrency Benefits Computer Operating Systems, Fall 2025
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Threads vs. Processes
	Slide 6: Threads vs. Processes
	Slide 7: Threads vs. Processes
	Slide 8: Single-Threaded Address Spaces
	Slide 9: Multi-threaded Address Spaces
	Slide 10: POSIX Threads (pthreads)
	Slide 11: Creating and Terminating Threads
	Slide 12: pthread_create in reality
	Slide 13: We Created a Thread, Now What?
	Slide 14: The Pain Point: Shared Resources
	Slide 15: Data Races
	Slide 16: Data Race Example
	Slide 17: Data Race Example
	Slide 18: Data Race Example
	Slide 19: Threads and Data Races
	Slide 20: Remember this?
	Slide 21: Remember this?
	Slide 22: Previous Demos:
	Slide 23: Increment Data Race
	Slide 24: Increment Data Race
	Slide 25: Increment Data Race
	Slide 26: Increment Data Race
	Slide 27: Increment Data Race
	Slide 28: Increment Data Race
	Slide 29: Increment Data Race
	Slide 30: Remember this?
	Slide 31: Remember this?
	Slide 32: Remember this?
	Slide 33: Remember this?
	Slide 34: Remember this?
	Slide 35: Lecture Outline
	Slide 36: Synchronization
	Slide 37: Lock Synchronization
	Slide 38: Lock API
	Slide 39: Milk Example – What is the Critical Section?
	Slide 40: pthread mutex locks
	Slide 41: pthread Mutex Examples
	Slide 42: Lecture Outline
	Slide 43: Is there a data race here?
	Slide 44: Race Condition vs Data Race
	Slide 45: Thread Communication
	Slide 46: Lecture Outline
	Slide 47: Software Synchronization
	Slide 48: Peterson’s Algorithm
	Slide 49: Peterson’s Algorithm
	Slide 50: Explanation
	Slide 51: Peterson’s Assumptions
	Slide 52: Atomicity
	Slide 53: Lecture Outline
	Slide 54: Software Synchronization
	Slide 55: Instruction & Memory Ordering
	Slide 56: Instruction & Memory Ordering
	Slide 57: Aside: Instruction & Memory Ordering
	Slide 58: Aside: Memory Barriers
	Slide 59: Lecture Outline
	Slide 60: Why Threads?
	Slide 61: That’s all!
	Slide 62: Threads vs. Processes
	Slide 63: Threads vs. Processes
	Slide 64: Threads vs. Processes
	Slide 65: Alternative: Processes

