University of Pennsylvania

Threads Cont. Locks & Concurrency Benefits

L12: Synchronizing Threads

Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez
Head TAs: Maya Huizar Akash Kaukuntla
Vedansh Goenka Joy Liu

TAs:
Eric Zou Joseph Dattilo Aniket Ghorpade
Zihao Zhou Eric Lee Shruti Agarwal
Connor Cummings Shreya Mukunthan Alexander Mehta
Bo Sun Steven Chang Rania Souissi

Sana Manesh

AT

Shriya Sane
YemisiJones
Raymond Feng
Rashi Agrawal

CIS 4480, 2025

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Administrivia

+ Penn-shell is due Monday, October 6th

" |f you have any questions, please stop by office hours! We are here to help.
= |atest time to turn it in is Friday, October 10t during fall break...don’t do this to yourself.

+» Midterm will be on Thursday, October 16 from 5:15PM — 6:45PM

® | ocations: Towne 100 & Wu and Chen in Levine
" Towne 100
« Last time starts with: A— M

= Wu and Chen
« Last time starts with: N-Z

" Practice exams and the official post will go out later today

University of Pennsylvania L12: Synchronizing Threads

Administrivia

+ PennQOS:

= Specifications and team sign-up to be posted Friday (day after exam)
" Donein groups of 4

® Partner signup due by end of day on Monday, 10/20
- Those left unassigned will be randomly assigned the next morning (Tuesday the 21st)
® |ecture dedicated to PennOS in class on Tuesday the 21%t. Highly recommend you go.

+ No Check-in 10/14!

= Study for the exam...come to the exam review that Tuesday! ©

CIS 4480, 2025

University of Pennsylvania

Lecture Outline

+~ Threads Refresher

% Synchronization Mechanisms

+ Data Race vs Race Condition

% |s a mutex needed? (Peterson’s)
+ It only gets worse

L12: Synchronizing Threads

CIS 4480, 2025

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Threads vs. Processes

« In most modern OS’s:

= A Process has a unique: address space, OS resources, & security attributes
= A Thread has a unique: stack, stack pointer, program counter, & registers

" Threads are the unit of scheduling and processes are their containers; every process has at
least one thread runningin it

University of Pennsylvania

StaCkpa rent

!

I

Shared Libraries

Threads vs. Processes

fork()

L12: Synchronizing Threads

Shared Libraries

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

I

I

Heap (malloc/free)

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Read-Only Segments
.text, .rodata

CIS 4480, 2025

CEX| . . .
% University of Pennsylvania

Threads vs. Processes

L12: Synchronizing Threads

pthread _create()

CIS 4480, 2025

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Single-Threaded Address Spaces

_ + Before creating a thread

SP et == Stadipare“t " One thread of execution running
in the address space
- One PC, stack, SP
1 ®" That main thread invokes a
reredl | 550 function to create a new thread
1 - Typically pthread create()

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

University of Pennsylvania

L12: Synchronizing Threads

Multi-threaded Address Spaces

_ + After creating a thread

Stack
_ parent
5@ ent 1
) Stack g
5@ 1
Shared Libraries
Heap (malloc/free)
Read/Write Segments
.data, .bss
Read-Only Segments

.text, .rodata

" Two threads of execution running
in the address space

« Original thread (parent) and new
thread (child)

« New stack created for child thread

« Child thread has its own values of
the PC and SP

= Both threads share the other
segments (code, heap, globals)

- They can cooperatively modify
shared data

CIS 4480, 2025

CIS 4480, 2025

University of Pennsylvania L12: Synchronizing Threads

POSIX Threads (pthreads)

The POSIX APIs for dealing with threads
= Declared in pthread.h

 Not part of the C/C++ language

" To enable support for multithreading, must include -pthread flag
when compiling and linking with clang-15 command

- clang-15 -g -Wall -pthread -o main main.c

" Implemented in C
- Must deal with C programming practices and style

10

University of Pennsylvania

L12: Synchronizing Threads

Creating and Terminating Threads

[int pthread create(
pthread t* thread,

void* arg);

~\

const pthread attr_t* attr,
void* (*start)(void*),

= Creates a new thread with attributes *attr

= Returns 0 on success and an error number on error (can check against error

constants)’

" The new thread runs start(arg)

@ Start routive

N\ .
b/' continues

pthread_create parent

CIS 4480, 2025

This uses our previous conception of child vs parent metaphor, but really,

they are not treated this way. There is no hierarchy of threads.

They are more like siblings.

11

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

pthread_create in reality

[int pthread create(

pthread t* thread,

const pthread attr_t* attr,
void* (*start)(void*),
void* arg);)

pthread t* thread

- Output parameter: gives us a thread identifier
« Varies from OS to OS, in Linux it is an unsigned long in others, a struct.

const pthread_attr_t* attr
-« An struct detailing the attributes that the thread will take on. Null for default attributes.
void* (*start)(void*)
- Function that the newly created thread will commence executing from.
— (i.e.void *start(void *arg))
void* arg:the argument that will be passed into start (you can do a lot with a ptr)

12

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

We Created a Thread, Now What?

[int pthread join(pthread_t thread, void** retval);]

" The calling thread waits for the thread specified by thread to terminate, and as the name
says, joins the two executions stream into one (hence, “join”)

" You can think of it as the thread equivalent of waitpid(), although it really isn’t.
" The exit status of the terminated thread is placed in **retval

thread 1 waits for thread 2 to exit, it
obtains thread 2’s return value, and thread

2 is cleaned up
\ execution continues

thread 1 S > >
thread 1 join

start
6’1/ >

No more, parent and child. JUST THREADS!

Any thread within the same process can join with any other thread. 13

CIS 4480, 2025

University of Pennsylvania L12: Synchronizing Threads

The Pain Point: Shared Resources

% POSIX.1: Some resources are shared between threads and processes
+ All Threads Share the Following

= PID, Parent PID, PGID, Controlling Terminal, File Descriptors, Interval timers (sleep,
alarm...)

" nice value (niceness applies per process, not per thread according to POSIX)

= global memory (data and heap segments) . Our focus

+ The following attributes are distinct for each thread

= Stack
= thread ID (the pthread t data type)
" signal mask (pthread sigmask(3))

® the errno variable

14

https://man7.org/linux/man-pages/man3/pthread_sigmask.3.html
https://man7.org/linux/man-pages/man3/errno.3.html

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Data Races

+» Two memory accesses form a data race if different threads access the same
location, at least one is a write, and the accesses can co-occur.

" The state of a program can vary depending on scheduling...
- Which thread ran first?
- When did a thread get interrupted?

15

University of Pennsylvania

L12: Synchronizing Threads

CIS 4480, 2025

Data Race Example

+ |f your fridge has no milk, then go out and
buy some more

it ('milk) {
= What could go wrong? buy (milk);
}

» If you live alone:

;“@

» If you live with a roommate:

;("@

B]

@
o =
o =

1B |
.
22

16

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

@ Poll Everywhere pause and think!
+ |dea: leave a note! if (!note) {
: i
® Does this fix the problem if (Imilk) {
(with two threads, not tes) leave(note);
Wi WO threads, not roommates buy(mllk),
remove(note);
}
L} J

A.

B. No, could end up with no milk
C. No, could still buy multiple milk
D. We're lost...

17

University of Pennsylvania L12: Synchronizing Threads

@ Poll Everywhere

« |ldea: leave a note!

® Does this fix the problem
 (with two threads, not roommates)

A.

B. No, could end up with no milk
@ No, could still buy multiple milk

D. We're lost...

We can be interrupted "There are other
between checkivg note and possible scenarios
leaving vote ® that result in

multiple milks

CIS 4480, 2025

pause and think!

. von | roommate
it (!'note) { :
. I milk Check note |
it (Bl) { I Check vote
leave(note); Check il !
i . Leave note |
buy (milk); I Check milk
remove(note); ' Leave vote
} : Buy milk
J By milk
A\
time

Nothing has changed!

We are still reading and modifying a value; note.

18

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Threads and Data Races

+» Data races might interfere in painful, non-obvious ways, depending on the

specifics of the data structure

+» Example: two threads try to read from and write to the same shared memory

location

" Could get “correct” answer

" Could accidentally read old value

" One thread’s work could get “lost”

+» Example: two threads try to push an item onto the head of the linked list at the

same time

" Could get “correct” answer

" Could get different ordering of items
" Could break the data structure! 2

—

S—

This should remind you of the signal interruption!

We were essentially interrupting one stream of

execution with another!
19

University of Pennsylvania

Remember this?

+» What does this print?

Always prints 0, the global
counter is vot shared across
processes, so the parent’s
global vever changes

L12: Synchronizing Threads

#define NUM_PROCESSES 50
#define LOOP_NUM 100

int sum_total = @;

void loop_incr() {
for (int i = @; i < LOOP_NUM; i++) {
sum_total++;
}
printf("Process ID: %d with sum total of %d.\n", getpid(), sum_total);
}

int main(int argc, charxx argv) H

pid_t pids [NUM_PROCESSES] ;

for (int i = @; i < NUM_PROCESSES; i++) {
pids[i]l = fork();
if (pids[i] == @
loop_incr();
exit (EXIT_SUCCESS);

}
for (int i = @; i < NUM_PROCESSES; i++) {

waitpid(pids[i], NULL, @);
}

printf("The ultimate sum total is %d\n", sum_total)ﬂ
return EXIT_SUCCESS;

CIS 4480, 2025

20

University of Pennsylvania

Remember this?
+» What does this print?

Usually 5000

L12: Synchronizing Threads

#define NUM_THREADS 50
#define LOOP_NUM 100

int sum_total = 0;

void xloop_incr(void xarg) {
for (int 1 = @; i < LOOP_NUM; i++) {
sum_total++;
+
printf("Thread ID: %d with sum total of %d.\n", gettid(), sum_total);
return NULL;
}

int main(int argc, charkx argv) {
pthread_t thds [NUM_THREADS] ;

for (int i = @; i < NUM_THREADS; i++) {
if (pthread_create(&thds[i], NULL, &loop_incr, NULL) != @
fprintf(stderr, "pthread_create failed\n");

for (int i = @; i < NUM_THREADS; i++) {
if (pthread_join(thds[i], NULL) != @
fprintf(stderr, "pthread_join failed\n");

printf("The ultimate sum total is %d\n'", sum_total);
return EXIT_SUCCESS;

CIS 4480, 2025

21

University of Pennsylvania

L12: Synchronizing Threads

CIS 4480, 2025

Previous Demos:

+ See total.c and total processes.c

" Threads share an address space, if one thread increments a global, it is seen by other
threads

" Processes have separate address spaces, incrementing a global in one process does not
increment it for other processes

%+ NOTE: sharing data between threads is unsafe if done wrong (we are doing it
wrong in this example); let’s expand on that now ©

22

University of Pennsylvania

Increment Data Race

» What can be written in one linein c
is multiple assembly instructions in one. The increment

L12: Synchronizing Threads

(sum_total++

looks something like this in assembly:

1w a0, 0(to)
addi a0, ao, 1

Equivalent pseudo

sw af, 0(to)

J

\.

*

+

1

J

CIS 4480, 2025

» What happens if we context switch to a different thread while executing these three

instructions?

- Reminder: Each thread has its own registers to work with. Each thread would have

itsown a@ & to

= But, they would share the memory location stored within t©

23

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute
(++sum total) sum_total = o

Thread O a0 = 0
flw ao, @(t@) A Thread 1

4 \

24

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute
(++sum total) sum_total = o
Thread 0 a0 = 0
flw aod, 0(to) ") Thread1l a6 - o
1w a0, 0(t0)

25

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute
(++sum total) sum_total = o
Thread 0 a0 = 0
[]_w aod, 0(to) "\ Thread1 a0 = 1

1w a0, 0(t0)
addi ao, a0, 1

26

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute
(++sum total) sum_total =1

Thread 0 a0 = 0
[]_w aod, 0(to) "\ Thread1 a0 = 1
1w a0, 0(t0)
addi ao, a0, 1
sw a0, 0(te)

27

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute
(++sum total) sum_total =1

Thread O a0 =1
[]_w aod, 0(to) "\ Thread1 a0 = 1
1w a0, 0(t0)
addi ao, a0, 1
sw a0, 0(te)

addi a@, a0, 1
g J

28

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Increment Data Race

+» Consider that sum_total starts at 0 and two threads try to execute
(++sum total) sum_total =1

Thread O a0 =1
[]_w aod, 0(to) "\ Thread1 a0 = 1
1w a0, 0(t0)
addi ao, a0, 1
sw a0, 0(te)

addi a@, a0, 1
\SW a0, 0(te) p

+» With this example, we could get 1 as an output instead of 2, even though we
executed addi twice.

29

University of Pennsylvania

@ Poll Everywhere

< What is the minimum value that
could be printed by main thread?
= Single Core
= Concurrent Threading Only

+ Important: all three exec on each loop

lw a0, 0(to)
addi ao, a0, 1
sw a0, 0(to)

+ Joel said 100 in lecture on Thursday, but
this only applies in one specific scenario.

L12: Synchronizing Threads

pause and think

#define NUM_THREADS 50
#define LOOP_NUM 100

int sum_total = 0;

void *loop_incr{void *arg) {
for (int i = @; i < LOOP_NUM; i++) {
sum_total++;
}
printf("Thread ID: %d with sum total of %d.\n", gettid(), sum_total);
return NULL;
}

int main(int argc, charxx argv) {
pthread_t thds [NUM_THREADS] ;

for (int i = @; i < NUM_THREADS; i++) {
if (pthread_create(&thds[i], NULL, &loop_incr, NULL) != @) {
fprintf(stderr, "pthread_create failed\n");
ks
}

for (int i = @; i < NUM_THREADS; i++) {
if (pthread_join(thds[il, NULL) !'= @) {
fprintf(stderr, "pthread_join failed\n");
}
}

printf("The ultimate sum total is %d\n", sum_total);
return EXIT_SUCCESS;

CIS 4480, 2025

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

@ Poll Everywhere pause and think

+ Most common mistake: 100.
» One of the scenarios:

Thread 1
(1w a0, 0(t@) //loads @ _ Threads2-50

lw a0, 0(to9)
addi a@, a0, 1
sw a0, 0(to)
all finish before thread 1

addi ao@, a0, 1 stores for first time

sw a0, 0(to) //stores 1

// 99 more times

o J

100!

31

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

@ Poll Everywhere pause and think

» What is the minimum value that could be printed?

= Single Core

= Concurrent Threading Only
Thread 1 Thread 2

Threads 3 - 50
flw aod, 0(to) //loads © A @ N . =
//does loop 99 X lw a0, 8(te)

P addi ao@, a0, 1
addi a0, a0, 1 \SW a0, 0(te))
sw a@, 0(te) //stores 1 finish before thread 1

1w af @(t@) stores for first time
//finishes executing ~ londs 11
_) addi ao, a0, 1

\SW a0, 0(to) - D stores 2!

finish.... 32

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

@ Poll Everywhere pause and think

» True Minimum Value: True for any multithreaded program with any # of
increments.

Thread 1 Thread 2

/iw aod, 0(to) //loads © A d
//does loop 99 X

\ Threads 3 - 50

(1w a0, 0(t0)
addi ao, a0, 1
sw a0, 0(to)

addi a0, a0, 1

sw a@, 0(te) //stores 1 L)
lw a0, 0(to) finish before thread 1
//finishes executing \ stores for first time
\ loads 1!
_ /) addi ao@, a0, 1
If we need to repeatedly load and store to a global: \SW ao, @(t@) - . stores 2!

The minimum is 2. finish 33

University of Pennsylvania

@ Poll Everywhere

L12: Synchronizing Threads CIS 4480, 2025

pause and think

+» Things to consider:

" When are values loaded? Every time? Before the loop? What if there

are optimizations?

= With optimizations, the minimum is no longer 2. It is 100.

~

for 100 times:
lw a@, 0(te) //loads ©
addi ao@, a0, 1
sw af, 0(te) //stores 1

-01

(

J/

.

lw a0, 0(t0) //loads global

| addi a0, a0, 100

sw a@, 0(te) //stores global + 100

34

University of Pennsylvania

Lecture Outline

+ Threads Refresher

% Synchronization Mechanisms

+ Data Race vs Race Condition

% |s a mutex needed? (Peterson’s)
+ It only gets worse

L12: Synchronizing Threads

CIS 4480, 2025

35

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Synchronization

+ Synchronization is the act of preventing two (or more) concurrently
running threads from interfering with each other when operating on
shared data

" Need some mechanism to coordinate the threads

L)

- “Let me go first, then you can go”

" Many different coordination mechanisms have been invented

+ Goals of synchronization:

" Liveness — ability to execute in a timely manner
(informally, “something good eventually happens”)

= Safety — avoid unintended interactions with shared data structures (informally,
“nothing bad happens”)

36

University of Pennsylvania

Lock Synchronization

+» Use a “Lock” to grant access to a critical section so that only one thread can

operate there at a time

L12: Synchronizing Threads

= Executed in an uninterruptible (i.e. atomic) manner

+» Lock Acquire

= “Wait” until the lock is free,
then take it

« Lock Release

= Release the lock

+ Pseudocode:

' // non-critical code

block
lock.acquire(); if locked

// critical section
lock.release();

' // non-critical code

= |f other threads are waiting, wake exactly one up to pass lock to

CIS 4480, 2025

37

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Lock API

+ Locks are constructs that are provided by the operating system to help ensure
synchronization
" There are many types of locks (e.g. Mutex Lock, Spin Lock...)

+» Only one thread can acquire a lock at a time,
No thread can acquire that lock until it has been released

38

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Milk Example — What is the Critical Section?

» What if we use a lock on the fridge.lock()
refrigerator? if (Imilk) {
® Probably overkill = what if buy milk
roommate wanted to get eggs? h
fridge.unlock()
» For performance reasons, only l
put what is necessary in the :
critical section milk_lock. lock()
: e
" Lock all steps that must run 1f .ml:!.k) {
buy milk

uninterrupted; only lock the milk.

}
milk lock.unlock()

" (j.e. must run as an atomic unit)

39

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

pthread mutex locks

int pthread mutex_init(pthread _mutex_t* mutex,
const pthread mutexattr_t* attr);

" jnitializes the mutex object pointed to by mutex according to the mutex attributes
specified in mutexattr.

 You could even make locks shareable across processes...

(int pthread mutex_lock(pthread mutex_t* mutex); J

= |f the mutex is currently unlocked, it becomes locked and owned by the calling thread.

= |f the mutex is already locked by another thread, pthread_mutex_lock() suspends the
calling thread until the mutex is unlocked.

(int pthread mutex_unlock(pthread_mutex_t* mutex); J

= unlocks the given mutex. The mutex is assumed to be locked and owned by the calling
thread on entrance to pthread_mutex_unlock(). Linux allows any thread to unlock a
mutex, even if it isn’t its owner. But, this isn’t true across OS’s.

(int pthread mutex destroy(pthread mutex t* mutex); J Check the man page.. 20

University of Pennsylvania L12: Synchronizing Threads

pthread Mutex Examples

+» See total.c
= Data race between threads

+ See total locking.c
= Adding a mutex fixes our data race

+ How does total locking compare to sequential code and to total?
= Likely slower than both— only 1 thread can increment at a time, and must deal with
checking the lock and switching between threads
® One possible fix: each thread increments a local variable and then adds its value (once!) to
the shared variable at the end
- Seetotal locking better.c

How about with optimizations?
= let'sseetotal locking opt.c with compiler optimizations.

CIS 4480, 2025

41

University of Pennsylvania

Lecture Outline

+ Threads Refresher

» Synchronization Mechanisms

+~ Data Race vs Race Condition

» |s a mutex needed? (Peterson’s)
+ It only gets worse

L12: Synchronizing Threads

CIS 4480, 2025

42

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

@ Poll Everywhere Pause and think

pthread mutex t lock;
bool print ok = false;

« Does this code have a data race?

Void* thrd fnl(void* arg) { = Can this program enter an “invalid”
pthread_mutex_lock(&lock); (unexpected or error) state from having
print_ok = true;
othread mutex_unlock (&lock): concurrent memory accesses?
return NULL;

}

Void* thrd fn2(void* arg) { + Follow up: Does this code feel good?

pthread mutex lock(&lock);
if (print_ok) {

printf("print ok is true\n");
} else {

printf("print ok is false\n");

}
pthread_mutex_unlock (&lock) ;

return NULL;

}

int main() {

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Race Condition vs Data Race

+» Data-Race: when there are concurrent accesses to a shared resource, with at
least one write, that can cause the shared resource to enter an invalid or
“unexpected” state.

+» Race-Condition: Where the program has different behavior depending on the
ordering of concurrent threads. This can happen even if all accesses to shared
resources are “atomic” or “locked”

= THINK SCHEDULER! SCHEDULER SCHEDULER SCHEDULER!

L)

+» The previous example has no data-race, but it does have a race condition
+» Data-races are a subset of race-conditions

44

University of Pennsylvania

L12: Synchronizing Threads

CIS 4480, 2025

Thread Communication

+» Sometimes threads may need to communicate with each other to know when
they can perform operations

+» Example: Producer and consumer threads
" One thread creates tasks/data

" One thread consumes the produced tasks/data to perform some operation

" The consumer thread can only produce things once the creator has created them

+ Need to make sure this communication has no data race or race condition

45

University of Pennsylvania

Lecture Outline

+ Threads Refresher

% Synchronization Mechanisms

+ Data Race vs Race Condition

+ Is a mutex needed? (Peterson’s)
+ It only gets worse

L12: Synchronizing Threads

CIS 4480, 2025

46

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

@ Poll Everywhere Pause and think

+ Lets try a more complicated software approach..

+» We create two threads running thread code, one withme = 0, other thread
hasme = 1

+» Each thread tries to increment sum_total. Does this work?
)

(int sum_total = 0;
atomic bool flag[2] = {false, false};
atomic int turn = ©
void thread code(void *arg) {
int me = (int)arg;

flag[me] = true;
turn = 1 - me; Note: atomic <type> is a real thing just not as
while((flag[1l-me] == true) && (turn !l=me)) { } I’'ve written it here.
++sum_total;
flag[me] = false;

47

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Peterson’s Algorithm

+» What we just did was Peterson's algorithm
+ Why does it work? (using an analogy)

= Each thread first declares that they want to enter the critical section by setting their flag

" Each thread then states (once) that the other should “go first”.
« This is done by setting the turn variable to 1— me

- One of these assignments to the turn variable will happen last, that is the one that decides who
goes first

" One of the thread goes first (decided by the value of turn) and accesses the critical section,
before saying it is done (by changing their flag to false)

48

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Peterson’s Algorithm

+» What we just did was Peterson's algorithm
+» Why does it work?

= Casel:
If PO enters critical section, flag[0] = true, turn = 0. It enters the critical section successfully.

= Case2:
If PO and P1 enter critical section, flag[0] and flag[1] = true

Race condition on turn. Suppose PO sets turn = 0 first. Final value is turn = 1. PO will get to
run first.

49

CEX| . . .
=¥ University of Pennsylvania

Explanation

L12: Synchronizing Threads

Thread 0 Thread 1

flag[@] = true
flag[1l] = true

turn =
turn =

1
1
// suppose turn = 1 came after turn = @
// the turnvariable is set to 1

while(flag[1] == true while(flag[@] == true
&& turn != 0) && turn != 1)

flag[1l] = false

CIS 4480, 2025

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Peterson’s Assumptions

+» Some operations are atomic:

= Reading from the flag and turn variables cannot be interrupted
= Writing to the flag and turn variables cannot be interrupted

= E.gsettingturn=1 or O will set turnto 0 or 1, you can be interrupted before or after, but
not “during” when turn may have some intermediate value thatisnot 0 or 1

% That the instructions are executed in the specific order laid out in the code

51

University of Pennsylvania

L12: Synchronizing Threads

CIS 4480, 2025

Atomicity

% Atomicity: An operation or set of operations on some data are atomic if the

operation(s) are indivisible, that no other operation(s) on that same data can
interrupt/interfere.

+» Aside on terminology:
= Often interchangeable with the term “Linearizability”

= Atomic has a different (but similar-ish) meaning in the context of data bases and ACID.

52

University of Pennsylvania

Lecture Outline

+ Threads Refresher

% Synchronization Mechanisms

+ Data Race vs Race Condition

% |s a mutex needed? (Peterson’s)
» It only gets worse

L12: Synchronizing Threads

CIS 4480, 2025

53

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

@ Poll Everywhere Pause and think

« Can the assert fail here?

bool flag = false;
int x = 0;

void* thrd fnl(void* arg) {
X = 5;
flag = true;
return NULL;

}

void* thrd_fn2(void* arg) {
if (flag) {
assert(x == 5); // crashes if x does not equal 5

}
return NULL;

}

int main() {
// assume main creates two threads, one to run thrd fnl and another for thrd fn2 54

University of Pennsylvania

L12: Synchronizing Threads

Instruction & Memory Ordering

+ Do we know that X is set before g is set?

bool g = false;
int x = 0

void some func(int arg) {
X = 5;
g = true;

¥

.

CIS 4480, 2025

55

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Instruction & Memory Ordering

+ Do we know that X is set before g is set?

"bool g = false;)
int x = 0
void some func(int arg) {
X = 5;
g = true;
}

The compiler may generate instructions that sets g first and then t
The Processor may execute these out of order or at the same time

Why? Optimizations on program performance

56

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Aside: Instruction & Memory Ordering

+» The compiler may generate instructions with different ordering if it does not
appear that it will affect the semantics of the function

= Since |8 = 5 is not affected by [X = 5
then either one could execute first.

+ The Processor may also execute these in a different order than what the
compiler says

+» Why? Optimizations on program performance

" |f you want to know more, look into “Out-of-Order Execution” and “Memory Order”

57

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Aside: Memory Barriers

«» How do we fix this?

+» We can emit special instructions to the CPU and/or compiler to create a
“memory barrier”

" “all memory accesses before the barrier are guaranteed to happen before the memory
accesses that come after the barrier”

= A way to enforce an order in which memory accesses are ordered by the compiler and the
CPU

The further you go the discrepancy becomes more nuanced.

= Do we want to force mem access to occur in the order of the written program?

/
0.0

= Do we want to force that all memory access/modifications to complete before the next

instruction executes? s

University of Pennsylvania

Lecture Outline

+ Threads Refresher

% Synchronization Mechanisms

+ Data Race vs Race Condition

% |s a mutex needed? (Peterson’s)
+ It only gets worse

L12: Synchronizing Threads

CIS 4480, 2025

59

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Why Threads?

+» Advantages:

" You (mostly) write sequential-looking code
® Threads can run in parallel if you have multiple CPUs/cores

+» Disadvantages:

@ If threads share data, you need locks or other synchronization

- Very bug-prone and difficult to debug
® Threads can introduce overhead

- Lock contention, context switch overhead, and other issues

" Need language support for threads

60

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

That’s all!

+» See you next time!

61

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Threads vs. Processes

« In most modern OS’s:

= A Process has a unique: address space, OS resources,
& security attributes

= A Thread has a unique: stack, stack pointer, program counter,
& registers

" Threads are the unit of scheduling and processes are their containers;
every process has at least one thread running in it

62

University of Pennsylvania

StaCkpa rent

!

I

Shared Libraries

Threads vs. Processes

fork()

L12: Synchronizing Threads

Shared Libraries

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

I

I

Heap (malloc/free)

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Read-Only Segments
.text, .rodata

CIS 4480, 2025

63

CEX| . . .
% University of Pennsylvania

Threads vs. Processes

L12: Synchronizing Threads

pthread _create()

CIS 4480, 2025

64

University of Pennsylvania L12: Synchronizing Threads CIS 4480, 2025

Alternative: Processes

+» What if we forked processes instead of threads?

L)

+ Advantages:

L)

" No shared memory between processes
" No need for language support; OS provides “fork”
® Processes are isolated. If one crashes, other processes keep going

L)

+ Disadvantages:

" More overhead than threads during creation and context switching (Context
switching == switching between threads/processes)

= Cannot easily share memory between processes — typically communicate
through the file system

65

	Default Section
	Slide 1: Threads Cont. Locks & Concurrency Benefits Computer Operating Systems, Fall 2025
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Threads vs. Processes
	Slide 6: Threads vs. Processes
	Slide 7: Threads vs. Processes
	Slide 8: Single-Threaded Address Spaces
	Slide 9: Multi-threaded Address Spaces
	Slide 10: POSIX Threads (pthreads)
	Slide 11: Creating and Terminating Threads
	Slide 12: pthread_create in reality
	Slide 13: We Created a Thread, Now What?
	Slide 14: The Pain Point: Shared Resources
	Slide 15: Data Races
	Slide 16: Data Race Example
	Slide 17: Data Race Example
	Slide 18: Data Race Example
	Slide 19: Threads and Data Races
	Slide 20: Remember this?
	Slide 21: Remember this?
	Slide 22: Previous Demos:
	Slide 23: Increment Data Race
	Slide 24: Increment Data Race
	Slide 25: Increment Data Race
	Slide 26: Increment Data Race
	Slide 27: Increment Data Race
	Slide 28: Increment Data Race
	Slide 29: Increment Data Race
	Slide 30: Remember this?
	Slide 31: Remember this?
	Slide 32: Remember this?
	Slide 33: Remember this?
	Slide 34: Remember this?
	Slide 35: Lecture Outline
	Slide 36: Synchronization
	Slide 37: Lock Synchronization
	Slide 38: Lock API
	Slide 39: Milk Example – What is the Critical Section?
	Slide 40: pthread mutex locks
	Slide 41: pthread Mutex Examples
	Slide 42: Lecture Outline
	Slide 43: Is there a data race here?
	Slide 44: Race Condition vs Data Race
	Slide 45: Thread Communication
	Slide 46: Lecture Outline
	Slide 47: Software Synchronization
	Slide 48: Peterson’s Algorithm
	Slide 49: Peterson’s Algorithm
	Slide 50: Explanation
	Slide 51: Peterson’s Assumptions
	Slide 52: Atomicity
	Slide 53: Lecture Outline
	Slide 54: Software Synchronization
	Slide 55: Instruction & Memory Ordering
	Slide 56: Instruction & Memory Ordering
	Slide 57: Aside: Instruction & Memory Ordering
	Slide 58: Aside: Memory Barriers
	Slide 59: Lecture Outline
	Slide 60: Why Threads?
	Slide 61: That’s all!
	Slide 62: Threads vs. Processes
	Slide 63: Threads vs. Processes
	Slide 64: Threads vs. Processes
	Slide 65: Alternative: Processes

