
CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Midterm Review
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla

Vedansh Goenka Joy Liu

TAs:

Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane

Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones

Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng

Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Poll: how are you?

❖ Any questions?

2

pollev.com/cis5480

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Administrivia

❖ Midterm is Thursday, 5:15PM – 6:45PM

▪ Old exams and exam policies are posted on the course website

▪ Review session today from 7-8PM in Towne 100.

❖ PennOS:

▪ Specifications and team sign-up to be posted Friday (day after exam)

▪ Done in groups of 4

▪ Partner signup due by end of day on Monday, 10/20 (SIGN UP ON CANVAS!!)

• Those left unassigned will be randomly assigned the next morning (Tuesday the 21st)

▪ Lecture dedicated to PennOS in class on Tuesday the 21st. Highly recommend you go.

3

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Administrivia

❖ Midterm Review Session Tonight; 7PM – 8PM

▪ Towne 100!

▪ Go over an unreleased Midterm!

▪ Go to get preppppedddddd

4

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Poll: how are you?

❖ Which topic do you want to practice and then have us go over?

▪ Fork

▪ Signals

▪ Processes

▪ Processes vs threads

▪ File System

▪ Scheduling

▪ Threads Interleaving

5

pollev.com/cis5480

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

fork

❖ Consider the following C code that uses fork()

▪ Which of these outputs are
possible? Please justify your
answer

▪ 380380

▪ 338008

▪ 380803

6

int main() {

 pid_t pid = fork();

 pid = fork();

 if (pid == 0) {

 printf("3");

 } else {

 printf("8");

 int status;

 waitpid(pid, &status, 0);

 printf("0");

 }

}

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

fork

❖ Consider the following C code that uses fork()

▪ Which of these outputs are
possible? Please justify your
answer

▪ 380380

• Possible, we have four processes
from calling fork() twice. Pid is set
from the second call to fork which
is called from two different processes
resulting in two new children.

• To get 380380 we can imagine that there are two parent-child relationships created from the
second call to fork. We can run one of those children and then its parent in that order. We can
repeat this process for the second parent-child pair.

7

int main() {

 pid_t pid = fork();

 pid = fork();

 if (pid == 0) {

 printf("3");

 } else {

 printf("8");

 int status;

 waitpid(pid, &status, 0);

 printf("0");

 }

}

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

fork

❖ Consider the following C code that uses fork()

▪ Which of these outputs are
possible? Please justify your
answer

▪ 338008

• Impossible, we can’t have an 8 last.
Within a process it still executes in
a specific order, a process cannot
print 0 and then 8.

8

int main() {

 pid_t pid = fork();

 pid = fork();

 if (pid == 0) {

 printf("3");

 } else {

 printf("8");

 int status;

 waitpid(pid, &status, 0);

 printf("0");

 }

}

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

fork

❖ Consider the following C code that uses fork()

▪ Which of these outputs are
possible? Please justify your
answer

▪ 380803

• Impossible, we can’t have a 3 as last
the parent waits on the child before
it prints “0”. This means the child
waited on must finish before the
parent prints “0”, so “3” must come
before an “0”.

9

int main() {

 pid_t pid = fork();

 pid = fork();

 if (pid == 0) {

 printf("3");

 } else {

 printf("8");

 int status;

 waitpid(pid, &status, 0);

 printf("0");

 }

}

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Signals: Critical Sections

❖ A vector is data structure that represents a resizable array. For those used to
Java, think of it like an ArrayList.

❖ Consider the following C snippet that outlines what a vector of floats is and
how we would push a value to the end of it. Is there a critical section in the
vec_push function? If so, what line(s)?

10

typedef struct vec_st {

 size_t length, capacity;

 float* eles;

} Vector;

void vec_push(Vector* this, float to_push) {

 // assume that we don't have to resize for simplicity

 assert(this->length < this->capacity);

 this->length += 1; // increment length to include it

 this->eles[this->length - 1] = to_push; // add the ele to the end

}

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Signals: Critical Sections

❖ The last two lines could have an issue. Since they modify a piece of memory
that could be shared, there may be an issue with signal handlers pushing onto
the vector at the same time. Consider the case where we increment length and
then a signal handler runs to push something onto the end of the vector.

11

typedef struct vec_st {

 size_t length, capacity;

 float* eles;

} Vector;

void vec_push(Vector* this, float to_push) {

 // assume that we don't have to resize for simplicity

 assert(this->length < this->capacity);

 this->length += 1; // increment length to include it

 this->eles[this->length - 1] = to_push; // add the ele to the end

}

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Signals Continued

❖ Signals can happen at any time and thus there are issues with making signal
handlers safe to avoid any critical sections. In general, it is advised to keep
signal handlers as short as possible or just avoid them at all costs.

❖ In each of these scenarios, tell us whether it is necessary to use signals and
register a signal handler. If it is necessary, how safe is it?

❖ We want to have our program acknowledge when a user presses CTRL + Z or
CTRL + C and print a message before exiting/stopping

12

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Signals Continued

❖ We want to have our program acknowledge when a user presses CTRL + Z or
CTRL + C and print a message before exiting/stopping

▪ Probably need this to be done with signals to catch CTRL + Z and CTRL + C. Can’t catch
them otherwise

▪ The printing may not be safe since we are modifying global state when we go through
the file system to print

13

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Signals Continued

❖ The user needs to type floating point numbers to stdin, but there are some
special floating point numbers like NaN, infinity, and –infinity. To avoid this, we
have the user hit CTRL + C for NaN, CTRL + Z for infinity and other key
combinations for other special values.

14

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Signals Continued

❖ The user needs to type floating point numbers to stdin, but there are some
special floating point numbers like NaN, infinity, and –infinity. To avoid this, we
have the user hit CTRL + C for NaN, CTRL + Z for infinity and other key
combinations for other special values.

▪ Do not do this. We can have the user input the floating point values in other ways
without us having to resort to using signals to communicate this.

15

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes

❖ We want to write a C program that will compile and evaluate some other
program. The program we are grading is similar to penn-shredder. For this
program we write, lets assume we are running penn-shredder once and
evaluating it. We need to be able to:

▪ Specify the input and get output of the shredder

▪ Set a time limit so that penn-shredder doesn’t go infinite

▪ Setup penn-shredder to receive signals from the keyboard (e.g. CTRL + C and CTRL + Z)

❖ Roughly how many times do we need to call each of these system calls? Briefly
explain any system call you specify non-zero for

16

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these system calls? Briefly
explain your answer for every system call.

17

System Call Number Justification

fork()

execvp()

pipe()

waitpid()

kill()

sigaction()

tcsetpgrp()

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these system calls? Briefly
explain your answer for every system call.

18

System Call Number Justification

fork() 2 Need to fork compiler and penn-shredder

execvp() 2 To exec compiler and penn-shredder

pipe()

waitpid()

kill()

sigaction()

tcsetpgrp()

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these system calls? Briefly
explain your answer for every system call.

19

System Call Number Justification

fork() 2 Need to fork compiler and penn-shredder

execvp() 2 To exec compiler and penn-shredder

pipe() 2 To send input and get output from penn-shredder

waitpid()

kill()

sigaction()

tcsetpgrp()

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these system calls? Briefly
explain your answer for every system call.

20

System Call Number Justification

fork() 2 Need to fork compiler and penn-shredder

execvp() 2 To exec compiler and penn-shredder

pipe() 2 To send input and get output from penn-shredder

waitpid() 2 To wait for compiler and penn-shredder to terminate

kill()

sigaction()

tcsetpgrp()

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these system calls? Briefly
explain your answer for every system call.

21

System Call Number Justification

fork() 2 Need to fork compiler and penn-shredder

execvp() 2 To exec compiler and penn-shredder

pipe() 2 To send input and get output from penn-shredder

waitpid() 2 To wait for compiler and penn-shredder to terminate

kill() 1 Debatable, can be justified if you used it.
I use it to kill the child after timeout has occurred.
Better than just using alarm in child since we can
handle the timeout more elegantly and print out an
error

sigaction()

tcsetpgrp()

Some of these can have varying answers. If this was an exam,
as long as they are reasonable and justified well, we will accept it

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these system calls? Briefly
explain your answer for every system call.

22

System Call Number Justification

fork() 2 Need to fork compiler and penn-shredder

execvp() 2 To exec compiler and penn-shredder

pipe() 2 To send input and get output from penn-shredder

waitpid() 2 To wait for compiler and penn-shredder to terminate

kill() 1 … (trimmed for space see previous slides)

sigaction() 1 Debatable again. Used to register SIGALRM for
timeout. Could be avoided if we register alarm in child

tcsetpgrp()

Some of these can have varying answers. If this was an exam,
as long as they are reasonable and justified well, we will accept it

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes Cont.

❖ Roughly how many times do we need to call each of these system calls? Briefly
explain your answer for every system call.

23

System Call Number Justification

fork() 2 Need to fork compiler and penn-shredder

execvp() 2 To exec compiler and penn-shredder

pipe() 2 To send input and get output from penn-shredder

waitpid() 2 To wait for compiler and penn-shredder to terminate

kill() 1 … (trimmed for space see previous slides)

sigaction() 1 … (trimmed for space see previous slides)

tcsetpgrp() 1 Debatable again. used so penn-shredder has control of
terminal and so it will get the keyboard signals and our
program won’t. Could instead register the signals in
our program and use kill in handler to send to child.

Some of these can have varying answers. If this was an exam,
as long as they are reasonable and justified well, we will accept it

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Let’s say we had a program that did an expensive computation we wanted to
parallelize, we could use either threads or processes. Which one would be
faster and why?

❖ Sometimes we want to call software that is written in another language. If it is
written as a library with the proper support (e.g. TensorFlow is in C++ but
callable from Python), we could use threads. If we want to invoke a program
that is already compiled (isn’t a library/doesn't have a callable interface) we
could not use threads. We would have to use fork & exec. Why?

24

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Let’s say we had a program that did an expensive computation we wanted to
parallelize, we could use either threads or processes. Which one would be
faster and why?

❖ Probably threads. Threads and processes are both parallelizable, but processes
have a larger overhead since they have separate address spaces that need to
be switched between.

25

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Sometimes we want to call software that is written in another language. If it is
written as a library with the proper support (e.g. TensorFlow is in C++ but
callable from Python), we could use threads. If we want to invoke a program
that is already compiled (isn’t a library/doesn't have a callable interface) we
could not use threads. We would have to use fork & exec. Why?

❖ Part of exec is that it replaces the entire address space with the program we
want to run. The address space initial state is (mostly) specified by the
program executable. If we tried to load in the program into just one thread, it
would affect the memory space that is being shared with other threads

26

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes vs Threads

❖ We have seen two concurrency models so far

▪ Forking processes (fork)

• Creates a new process, but each process will have 1 thread inside it

▪ Kernel Level Threads (pthread_create)

• User level library, but each thread we create is known by the kernel

• 1:1 threading model

27

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the concurrency models, state whether it is possible to do each of
the following.

❖ In a real exam, we would ask you to briefly explain why

28

Processes pthread

Can share files and concurrently access those files.

Can communicate through pipes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Modify and read the same data structure that is
stored in the heap

Switch to another concurrent task when one
makes a blocking system call.

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the concurrency models, state whether it is possible to do each of
the following.

❖ In a real exam, we would ask you to briefly explain why

29

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Modify and read the same data structure that is
stored in the heap

Switch to another concurrent task when one
makes a blocking system call.

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the concurrency models, state whether it is possible to do each of
the following.

❖ In a real exam, we would ask you to briefly explain why

30

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes (can’t redirect
w/o affecting other threads though)

Yes Yes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Modify and read the same data structure that is
stored in the heap

Switch to another concurrent task when one
makes a blocking system call.

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the concurrency models, state whether it is possible to do each of
the following.

❖ In a real exam, we would ask you to briefly explain why

31

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes Yes Yes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Yes Yes

Modify and read the same data structure that is
stored in the heap

Switch to another concurrent task when one
makes a blocking system call.

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the concurrency models, state whether it is possible to do each of
the following.

❖ In a real exam, we would ask you to briefly explain why

32

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes Yes Yes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Yes Yes

Modify and read the same data structure that is
stored in the heap

No Yes

Switch to another concurrent task when one
makes a blocking system call.

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Processes vs Threads

❖ For each of the concurrency models, state whether it is possible to do each of
the following.

❖ In a real exam, we would ask you to briefly explain why

33

Processes pthread

Can share files and concurrently access those files. Yes Yes

Can communicate through pipes Yes Yes

Run in parallel with one another (assuming
multiple CPUs/Cores)

Yes Yes

Modify and read the same data structure that is
stored in the heap

No Yes

Switch to another concurrent task when one
makes a blocking system call.

Yes Yes

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Scheduling
❖ You manage the back-end servers for an online puzzle game. Players

worldwide expect fast response times when navigating mazes in real time.

❖ Workload:

▪ A large number of short, interactive tasks: e.g., responding to player movements and chat
messages.

▪ Occasional long-running background tasks (e.g., map generation, analytics).

❖ Constraints/Goals:
▪ Fast response for interactive players to keep them engaged.

▪ No single player (or background job) should monopolize the CPU.

❖ Which single scheduling algorithm or hybrid approach would you use, and how
would it ensure both short interactive tasks and longer background processes
get fair treatment? Consider context-switch overhead, time quantum size, and
priority adjustments.

34

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Scheduling
❖ Which single scheduling algorithm or hybrid approach would you use, and how

would it ensure both short interactive tasks and longer background processes
get fair treatment? Consider context-switch overhead, time quantum size, and
priority adjustments.

▪ One possible answer, (we would probably accept others or give most credit to others
that are properly justified)

▪ CFS is pretty good. CFS would ensure that both short interactive tasks and longer
background tasks get fair treatment since CFS tries to balance it so that all tasks get
roughly equal utilization of the CPU by always running the task that is ready to run and
has run on the CPU the least.

▪ The short interactive tasks that interact with users get high priority since they will have
low total CPU usage, but when they are done background tasks will still get to run as
needed. Priority can be included via nice scores.

35

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Scheduling (cont.)

❖ Four processes are executing on one CPU following round robin scheduling:

❖ You can assume:

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

36

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Scheduling (cont.)

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

❖ What is the earliest time that process C could have arrived?

❖ Which processes are in the ready queue at time 9?

❖ If this algorithm used a quantum of 3 instead of 2, how many fewer context
switches would there be?

37

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Scheduling (cont.)

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

❖ What is the earliest time that process C could have arrived?

▪ If C arrived at time 0, 1, or 2, it would have run at time 4

▪ C could have shown up at time 3 and come after A in the queue

▪ C showed up at time 3 at earliest

38

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Scheduling (cont.)

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time slice finishes, the one
that just arrived goes into the ready queue before the one that just finished its time slice.

❖ Which processes are in the ready queue at time 9?

▪ D is running, so it is not in the queue

▪ A has finished

▪ B and C still have to finish, so they are in the queue.

39

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Scheduling (cont.)

❖ If this algorithm used a quantum of 3 instead of 2, how many fewer context
switches would there be?
▪ Currently there are 7 context switches

▪ If quantum was 3:

▪ Or:

40

Depends on if C shows

up at time 3 or 4

Either way, only 4

context switches, so 3

less than quantum = 2

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

File System Block Allocation

❖ Consider that we want to read the 5th block of the file
/home/me/script.txt, what is the worst-case number of physical blocks
that must be read (including the 5th block) given the following :
▪ Blocks are 4096 bytes

▪ Each directory we are looking for is within the first block of the directory.

▪ We are using a Linked List Allocation (Implicit) file system.

• Assume we know the physical block number for the root directory.

41

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

File System Block Allocation

❖ Consider that we want to read the 5th block of the file
/home/me/script.txt, what is the worst-case number of physical blocks
that must be read (including the 5th block) given the following :
▪ Blocks are 4096 bytes

▪ Each directory we are looking for is within the first block of the directory.

▪ We are using a Linked List Allocation (Implicit) file system.

• Assume we know the physical block number for the root directory.

42

1. Need to read the block for the root directory. + 1
2. Need to then read the block for the ‘home’ directory. + 1
3. Need to then read the block for the ‘me’ directory. + 1

a) We know the physical block number, A, for the script.txt file now.
4. We follow the implicit linked list starting from the physical block number A

. This requires 5 reads to reach the 5th block of the file.

In total, 8 blocks!

You can assume directories are just
arrays of struct dirents in all
designs unless told other wise.

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

File System Block Allocation

❖ Consider that we want to read the 5th block of the file
/home/me/script.txt, what is the worst-case number of physical blocks
that must be read (including the 5th block) given the following :
▪ Each directory we are looking for is within the first block of the directory.

▪ We are using a Linked List Allocation via FAT

• Assume we know where the root directory starts in the FAT.

• The FAT is only one block.

• Assume we know the physical block number for the root directory.

43

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

File System Block Allocation

❖ Consider that we want to read the 5th block of the file
/home/me/script.txt, what is the worst-case number of physical blocks
that must be read (including the 5th block) given the following :
▪ Each directory we are looking for is within the first block of the directory.

▪ We are using a Linked List Allocation via FAT

• Assume we know where the root directory starts in the FAT.

• The FAT is only one block.

• Assume we know the physical block number for the root directory.

44

1. Need to read the block for the root directory. + 1
2. Need to then read the block for the ‘home’ directory. + 1
3. Need to then read the block for the ‘me’ directory. + 1

a) We know the physical block number, A, for the script.txt file now.
4. We can find the 5th block number by traversing the FAT; requires 1 read of the entire FAT

a) (Doesn’t count, already in memory (RAM) BIG PART OF FAT!!!! IMPERITIVE!!!!!
5. Finally, we access the 5th block.

4 blocks read!

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

File System Block Allocation

❖ Consider that we want to read the 5th block of the file
/home/me/script.txt, what is the worst-case number of physical blocks
that must be read (including the 5th block) given the following :
▪ assume that directory entries we are looking for are in the first block of each directory we

search

❖ I-nodes

▪ assume we know where the I Node for the root directory is

45

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

File System Block Allocation

❖ I-nodes

▪ assume we know where the I Node for the root directory is

▪ 1 read to read in the inode of the root directory (This is a portion of the inode table)

▪ 1 read for the directory entry of home/ inside of /

▪ 1 read for the inode for /home/

▪ 1 read for the directory entry of me/ inside of /home/

▪ 1 read for the inode for /home/me/

▪ 1 read for the directory entry of script.txt inside of /home/me/

▪ 1 read for the inode of script.txt

▪ 1 read to get and read the 5th block of the file

▪ 8 block reads

46

Worst case scenario: Each inode we need is in a separate block within the Inode table.

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

File System Block Allocation

❖ Consider that we want to read the 5th block of the file
/home/me/script.txt, what is the best-case number of physical blocks
that must be read (including the 5th block) given the following :
▪ assume that directory entries we are looking for are in the first block of each directory we

search

❖ I-nodes

▪ assume we know where the I Node for the root directory is

▪ Assume 32 inodes in a block

47

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

File System Block Allocation

❖ I-nodes

▪ assume we know where the I Node for the root directory is

▪ 1 read to read in the inode of the root directory (This is a portion of the inode table)

▪ 1 read for the directory entry of home/ inside of /

▪ 0 reads for the inode for /home/ (In same block as root inode)

▪ 1 read for the directory entry of me/ inside of /home/

▪ 0 read for the inode for /home/me/ (In same block as root inode)

▪ 1 read for the directory entry of script.txt inside of /home/me/

▪ 0 read for the inode of script.txt (In same block as root inode)

▪ 1 read to get and read the 5th block of the file

▪ 5 disk reads

48

Best case scenario: Each inode we need is in the same block as the root inode. (Totally possible with larger block sizes)

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

File System Block Allocation

49

Best case scenario: Each inode we need is in the same block as the root inode. (Totally possible with larger block sizes)

In a 4096 Block Size FS with Inodes from ext2 (128 bytes), you can fit 32 inodes in one block.

If we’re following the ext2 design, the first 10 inodes are in reserve;
leaves 22 inodes for /home, /home/me, & /home/me/script.txt (totally feasible)

All one block.

}

In reserve Left over inodes!

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

File System Block Allocation

❖ How does the numbers change if we instead wanted to write to the 5th block of
the file?

❖ Despite not having the best numbers, I nodes are still chosen over FAT. Why is
this the case?

50

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

File System Block Allocation

❖ How does the numbers change if we instead wanted to write to the 5th block of
the file?

▪ Nothing changes, we would just write to the 5th block of the file instead of reading it.

❖ Despite not having the best numbers, I nodes are still chosen over FAT. Why
might this the case?
▪ FAT takes up a lot of memory because we are storing the state of the entire filesystem in

memory when we load the FAT into RAM.

▪ Inodes allow us to instead cache the information for relevant files in memory, so much
lower memory consumption and similar performance for the most case.

• Additionally, they not only store data about the data blocks of a file but also other metadata.

51

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

I-Node Design

❖ Assume that blocks are 4,096 bytes and an inode is 128 bytes large.

❖ Inode numbers are uint32_t (that is, unsigned integers).

❖ How many blocks do we need in this file system configuration to create an
inode table for each possible inode number? Feel free to write an expression,
not a definite value. (It’s a somewhat big value)

52

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

I-Node Design

❖ Assume that blocks are 4,096 bytes and an inode is 128 bytes large.

❖ Inode numbers are uint32_t (that is, unsigned integers).

❖ How many blocks do we need in this file system configuration to create an
inode table for each possible inode number? Feel free to write an expression,
not a definite value. (It’s a somewhat big value)

53

Number of possible inodes: 2^32 (this is number of distinct values UINT32_T can take on)
Each inode is 128 bytes, so total storage required for all inodes is: 2^32 * 128 = 2^39 bytes
Since each block is 4,096 (2^12) bytes, the total number of blocks needed is: (2^39) / (2^12) = 2^27 blocks…

This is only about 550 gigabytes! (Totally feasible on most large file systems like the 1TB on my machine)
However, you usually don’t just create the table to have the maximum number of inodes as a computer usually
will not need 4294967296 different files at a time.

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Wait, where do we know how large the Inode Table is?

❖ The previous question alluded to the fact the number of inodes in the table is
capped. Where would we need to look for to know how many total inodes
there are?

54

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Wait, where do we know how large the Inode Table is?

❖ The previous question alluded to the fact the number of inodes in the table is
capped. Where would we need to look for to know how many total inodes
there are?

55

The Superblock – The superblock contains critical metadata, including the total number of inodes, total
number of data blocks, inodes in usage, and etc. Every filesystem has a superblock, and it is usually the block
right before the inode table (in Linux and UNIX).

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Fat Design

❖ Assume that blocks are 4,096 bytes.

❖ FAT numbers are 16 bits.

❖ How many blocks do we need in this file system configuration to create an fat
table for each possible fat number? Feel free to write an expression, not a
definite value.

56

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Fat Design

❖ Assume that blocks are 4,096 bytes.

❖ FAT numbers are 16 bits.

❖ How many blocks do we need in this file system configuration to create an fat
table for each possible fat number? Feel free to write an expression, not a
definite value.

57

32 blocks….

Number of FAT entries possible: 2^16
Number of bytes for all FAT entires: 2^16 * 2 = 2^17
Since each block is 4096 (2^12) the total number of blocks required is: 2^17/2^12 = 2^5 = 32…

so small!

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Has your friend been misled?

❖ You missed a super important lecture on filesystems and you think your friend
has gone mad. They say that on a single disk (Hard Drive), you can have
multiple different file systems! Is your friend correct? Why or why not?

58

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Has your friend been misled?

❖ You missed a super important lecture on filesystems and you think your friend
has gone mad. They say that on a single disk (Hard Drive), you can have
multiple different file systems! Is your friend correct? Why or why not?

59

Totally possible, the boot block (or sector) contains information about the different partitions on a disk.

Each partition can contain any file system. Of course, as long as it is configured correctly. On more antiquated
 boot blocks (Master Boot Records) you can have at most 4 partitions (or 3 partitions and an extended)

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Has your friend been misled again?

❖ You missed yet another super important lecture on filesystems and you think
your friend has gone mad (again!). They say that the operating system on your
machine exists on the CPU and RAM prior to the first time turning on the
machine. Have they been misled? Why or why not?

60

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Has your friend been misled again?

❖ You missed yet another super important lecture on filesystems and you think
your friend has gone mad (again!). They say that the operating system on your
machine exists on the CPU and RAM prior to the first time turning on the
machine. Have they been misled? Why or why not?

61

Your friend has misunderstood the lecture completely! (They must have slept through it)

Before you turn on your computer, the operating system (OS) isn’t hanging out in RAM or the CPU. It’s just
sitting there on your SSD, HDD, or whatever non-volatile storage you’ve got. The OS doesn’t actually do
anything until you power on the machine, at which point it gets bootstrapped into RAM and—boom! You’re
running DOOM.

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

62

Are we in the same directory?

❖ You’re given two inodes, A and B. And you’re tasked with writing a program
that tells us whether or not they share a common directory.

▪ (excluding the root directory).

• .e.g. /usr/bin/echo and /usr/huh share the /usr/ directory

• .e.g. /usr/bin/echo and /dev/tty06 do not share a directory.

• .e.g. /usr/local/lib/stdio.h and /usr/local/lib/stdlib.h share a directory, the /usr/local/lib/
directory.

▪ In other words, if somewhere up the path they share a directory, they have a common
directory!

▪ You are also given the Inode number for the directory that A and B are stored in.

▪ Describe at a high level, what you would need to do to accomplish this. And what critical
aspects of the file system structure would you need? Hint: What about the structure of the
directory blocks is imperative here?

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

63

Are we in the same directory? (A Hard Question)

❖ You’re given two inodes, A and B. And you’re tasked with writing a program
that tells us whether or not they share a common directory.

▪ (excluding the root directory).

▪ This is a common example of where a algorithms problem, Common Ancestor in a Tree,
applies to file systems!

▪ Starting from the two inodes, A and B, you would need to use the ‘..’ reference to the
parent directories to travel up the path. The ‘..’ entry of a directory will give us the inode
number for the parent directory and we can go and grab that directories data blocks by
going in reverse.

▪ For both Inodes A and B, we would need to keep track of the inode numbers as we travel
up the file system. If at any point we see that they share a common Inode Number, then
they must share a directory.

▪ The “..” entry within every directory block is what is absolutely necessary to make this
possible. If not, we wouldn’t be able to “backtrack” up the file system.

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ Consider the following pseudocode that uses threads. Assume that file.txt is
large file containing a multiple of 10 characters. Assume that there is a main()
that creates one thread running
first_thread() and one thread for
second_thread(). Assume that
accesses to the string data are done
safely by the threads.

❖ Do we have deterministic output?
If so how? If not, what are the min
and max number of characters printed

64

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ Do we have deterministic output?

▪ No, we could still
have a difference
in output depending
on when threads are
run. It is possible a the
first thread overwrites
the global before
second thread reads it

▪ Min: 0 characters are printed

▪ Max: everything works out fine
and all characters in the book
are printed

65

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ Consider the following pseudocode that uses threads. Assume that file.txt is
large file containing the contents of a book. Assume that
there is a main() that
creates one thread
running first_thread()
and one thread for
second_thread()

❖ There is a data race.
How do we fix it
using just a mutex?
(where do we add calls to
lock and unlock?)

66

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

67

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

68

string data = ""; // global

pthread_mutex_t mutex;

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 pthread_mutex_lock(&mutex);

 data = data_read;

 pthread_mutex_unlock(&mutex);

 }

}

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

69

string data = ""; // global

pthread_mutex_t mutex;

void* second_thread(void* arg) {

 while (true) {

 pthread_mutex_lock(&mutex);

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 pthread_mutex_unlock(&mutex);

 }

}

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ After we remove the data race on the global string, do we have deterministic
output? (Assuming the contents of the file stays the same).

70

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ After we remove the data race on the global string, do we have deterministic
output? (Assuming the contents of the file stays the same).

▪ No, we could still
have a difference
in output depending
on when threads are
run. It is possible a the
first thread overwrites
the global before
second thread reads it

This is the distinction
between a data race
and a race condition

71

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is an issue of inefficient CPU utilization going on in this code. What is it
and how can we fix it? (Not on exam)

❖ (You can describe the
fix at a high level, no
need to write code)

72

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is an issue of inefficient CPU utilization going on in this code. What is it
and how can we fix it?

❖ (You can describe the
fix at a high level, no
need to write code)
▪ Busy waiting possible

in second_thread.
We could have the
threads use a
condition variable to
wait for data to be
updated and thread1
to signal thread2 once ready

73

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIS 4480, Fall 2025L13: Midterm ReviewUniversity of Pennsylvania

That’s all!

❖ See you next time!

74

	Default Section
	Slide 1: Midterm Review Computer Operating Systems, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Administrivia
	Slide 5: Poll: how are you?
	Slide 6: fork
	Slide 7: fork
	Slide 8: fork
	Slide 9: fork
	Slide 10: Signals: Critical Sections
	Slide 11: Signals: Critical Sections
	Slide 12: Signals Continued
	Slide 13: Signals Continued
	Slide 14: Signals Continued
	Slide 15: Signals Continued
	Slide 16: Processes
	Slide 17: Processes Cont.
	Slide 18: Processes Cont.
	Slide 19: Processes Cont.
	Slide 20: Processes Cont.
	Slide 21: Processes Cont.
	Slide 22: Processes Cont.
	Slide 23: Processes Cont.
	Slide 24: Processes vs Threads
	Slide 25: Processes vs Threads
	Slide 26: Processes vs Threads
	Slide 27: Processes vs Threads
	Slide 28: Processes vs Threads
	Slide 29: Processes vs Threads
	Slide 30: Processes vs Threads
	Slide 31: Processes vs Threads
	Slide 32: Processes vs Threads
	Slide 33: Processes vs Threads
	Slide 34: Scheduling
	Slide 35: Scheduling
	Slide 36: Scheduling (cont.)
	Slide 37: Scheduling (cont.)
	Slide 38: Scheduling (cont.)
	Slide 39: Scheduling (cont.)
	Slide 40: Scheduling (cont.)
	Slide 41: File System Block Allocation
	Slide 42: File System Block Allocation
	Slide 43: File System Block Allocation
	Slide 44: File System Block Allocation
	Slide 45: File System Block Allocation
	Slide 46: File System Block Allocation
	Slide 47: File System Block Allocation
	Slide 48: File System Block Allocation
	Slide 49: File System Block Allocation
	Slide 50: File System Block Allocation
	Slide 51: File System Block Allocation
	Slide 52: I-Node Design
	Slide 53: I-Node Design
	Slide 54: Wait, where do we know how large the Inode Table is?
	Slide 55: Wait, where do we know how large the Inode Table is?
	Slide 56: Fat Design
	Slide 57: Fat Design
	Slide 58: Has your friend been misled?
	Slide 59: Has your friend been misled?
	Slide 60: Has your friend been misled again?
	Slide 61: Has your friend been misled again?
	Slide 62: Are we in the same directory?
	Slide 63: Are we in the same directory? (A Hard Question)
	Slide 64: Threads & Data Races
	Slide 65: Threads & Data Races
	Slide 66: Threads & Data Races
	Slide 67: Threads & Data Races
	Slide 68: Threads & Data Races
	Slide 69: Threads & Data Races
	Slide 70: Threads & Data Races
	Slide 71: Threads & Data Races
	Slide 72: Threads & Data Races
	Slide 73: Threads & Data Races
	Slide 74: That’s all!

