CIS 5480
PennOS Lecture

Tuesday, October 21,2025

oY Enoineerin
NIVERgSITY of PENNSYLVAI\%

Logistics

- Mid-Semester Survey due EOD [0/31

- Group formation due

- Milestone 0O: In the week of |1 1/03 - | 1/07

- Milestone I:In the week of | I/17 - | 1/21]

- Last line of code: 12/05 @ | 1:59PM.

- Demo:Anytime after you have submitted your
final submission

= m] o .
& Penn Engmccrmg

Grading Breakdown

5% Documentation
45% Kernel/Scheduler
35% File System

5% Shell

= m] o .
& Penn Engineering
o O

Documentation

- Required to provide a Companion Document
- Consider this like APUE or K-and-R
- Describes how OS is built and how to use it
- Recommended to use Doxygen

- README

- Describes implementation and design choices

= m] o .
& Penn Engmccrmg

Agenda

- PennOS Overview

- PennFAT file system

- Scheduling & Process Life Cycle
- spthreads

- PennOS Shell
- Demo

= m] o .
& Penn Engmccrmg

PennOS Overview

oY Enoineerin
NIVERgSITY of PENNSYLVAI\%

Projects so Far

- Penn Shredder
- Mini Shell with Signal Handling
- Penn Shell
- Redirections and Pipelines
- Process Groups and Terminal Control
- Job Control

- You will be implementing major user-level calls in
PennOS

= m] o .
& Penn Engmccrmg

PennOS Diagram

-

PennFAT
Filesystem

_

<_>

Kernel

Scheduler -

~

Shell

$ sleep 2

U

_/

= m] o o
& Penn Engmccrmg
o

(=

PennOS as a Guest OS

Single Process]
<‘ Host Operating System \

f l’enn(); \
\ LINUX Kernel
\) 1/0

\& = 7

m o m] . .
N P(’I'l n Engmccrlng
(- O

/

User, System, and Kernel Abstractions
- User Land - What an actual user interacts with
- Kernel Land - What happens ‘under the hood’

- System Land - The API calls to connect user land

with kernel land

= m] o .
& Penn Engmccrmg

User and Kernel Land

Kernel

Scheduler

= m] o o
& Penn Engineering
O -

PennFAT File System

Engineerin
NIVERgSITY of PENNSYLVAI\%

What is a File System

- A File System is a collection of data structures and
methods an operating system uses to structure and

organize data and allow for consistent storage and
retrieval of information

- Basic unit: a file

- Afile (a sequence of data) is stored in a file system as a
sequence of data-containing blocks

= m] o .
& Penn Engmccrmg

What is FAT?

- FAT stands for file allocation table, which is an architecture for
organizing and referring to files and blocks in a file system.
- There exist many methods for organizing file systems, for
example:
- FAT (DOS,Windows)
- Mac OS X
- ext{l,2,3,4} (Linux)
- NTFS (Windows)

= m] o .
& Penn Engmccrmg

FAT Example

Each value 1n the
FAT table refers t0 a —=—p-
block number

How can we read file 11?
Find Block 11, 14, and 15?

m] . .
& Penn Engineering
<o

og

Physical Link
11 14
2 13
13 3
14 15 >
15 |

File System Layout

—
Physical Link - Offset 0
— FAT (Before Blocks) mmap() to memory
® i 14 Block 1
12 13
Block 2
13 -1
14 15 > Block 3
15 -1
Block 4
—_—
Block 5
I 1

= m] _ R
& Penn Engmccrmg
O O

File Alignment

- Files are distributed along blocks

|

|

Block 11

Block 14

Block 15

lseek (n, F_SEEK SET, 60)

lseek (n, F_SEEK SET, block size - 1)

lseek (n, F_SEEK SET, block _size * 2 + 100)

m] . .
& Penn Engineering
O <O

Adjusting File Size

Physical Link
11 14
12 13
13 -1
14 15
15 oy write(n, buffer, block size)
22 -1
Block 11 Block 14 Block 15 Blocl) 22

m o m] . .
N Pcn n Engmccrmg
(- O

PennFAT Spec

Engineerin
NIVERgSITY of PENNSYLVAI\%

File System

- Array of unsigned, little endian, | 6-bit entries

- mkfs NAME BLOCKS IN_FAT BLOCK SIZE
- FAT region and DATA region

= m] o .
& Penn Engmccrmg

20

Layout

FAT Region block size * number of blocks in FAT File Allocation Table
Data Region block size * (number of FAT entries — 1) directories and files

2 bytes
/\ PennFAT FileSystem
FAT DATA

& Penn Engineering

FAT Region

- FAT entry size: 2 bytes

- First entry — special entry for FAT and block sizes

- LSB: size of each block
- MSB: number of blocks in FAT

& Penn Engineering

0
|
2
3
4

Block Size
256

512

1,024
2,048
4,096

22

FAT first-entry examples

fat|0] Block Size FAT Size FAT Entries

0x0100

0x0101 B 512 1 512 256
0x1003 16 3 2048 16 32768 16384
0x2004 32 4 4,096 32 131,072 65,536"

" fat[65535] is undefined.
Why?

& Penn Engineering 23

Other Entries of FAT

fat[i] (i>0) Data region block type

0 free block
OxFFFF last block of file
[2, number of FAT entries) next block of file

& Penn Engineering

FAT first-entry examples

fat|0] Block Size FAT Size FAT Entries

0x0100

0x0101 1 [512 1 512 256
0x1003 16 3 2048 16 32768 16384
0x2004 32 4 4,096 32 131,072 65,536"

" fat[65535] is undefined.
Why?
OxFFFF 1s reserved for last block of file

& Penn Engineering

Example FAT
____Index | Link | Notes

0 0x2004 32 blocks, 4KB block size

1 OxFFFF Root directory

2 4 File A starts, links to block 4
3 7 File B starts, links to block 7
4 5 File A continues to block 5
5 OxFFFF Last block of file A

6 18 File C starts, links to block 18
7 {75 File B continues to block 17
8 0x0000 Free block

& Penn Engincering

Data Region

- Each FAT entry represents a file block in data region -
Data Region size = block size * (# of FAT entries - |)
- b/c first FAT entry (fat[0]) is metadata - block
numbering begins at |:

- block numbering begins at |:
- block | —always the first block of the root directory
- other blocks — data for files, additional blocks of the
root directory, subdirectories (optional extension)

& Penn Enginccring 27

What is a Directory?

- A directory is a file consisting of entries that
describe the files in the directory.

- Each entry includes the file name and other
information about the file.

- The root directory is the top-level directory.

= m] o .
& Penn Engmccrmg

28

Directory entry

- Fixed size of 64 bytes each
- file name: 32 bytes (null terminated)
- legal characters: [A-Za-z0-9. -] (POSIX portable
filename character set)
- first byte special values:

name[0] | Description ______

0 end of directory
1 deleted entry; the file is also deleted
2 deleted entry; the file is still being used

& Penn Engineering

29

Directory entry (cont.)

- file size: 4 bytes
- first block number: 2 bytes (unsigned)
- file type: | byte

0 unknown
1 regular file
2 directory

& Penn Engineering

30

Directory entry (cont.)

- file permission: | byte | Value | Permission |
0 none

write only

read only

read and executable

read and write

~N N BN

read, write, and executable

- timestamp: 8 bytes returned by time(2)
- remaining |6 bytes: reserved for extensions

& Penn Engineering

31

[fat[0] 0x2002 2 bytes

Exa m P I e R::;irm 1024 | fat[1] OXFFFF 2 bytes

Byt 0x0000

- fat[0] = 0x2002 o ™
- 32 blocks of 1024 bytes in -
FAT
- First block of Data Region is first S]
block of root directory b s : .] sk ot “
- Correspondingly, fat[1] refers to |
that Block |, which ends there. yes | Block 2
16,383

So it has value of OxFFFF ‘“ _ = piocks

& Penn Engineering .

Creating a File

FAT (fat[0] | 0x2002 T2 bytes
Region 1024 | fat[1] OxFFFF 2 bytes
byies ™} 0x0000
1024
bytes]| L. 32
blocks
0x0000 g
Data i
Region 1024 | first block of
bytes | Block 1 root directory
1024
bytes 1 Block 2
5 16,383
blocks

& Penn Enginccring

directory <
entries

PennFAT after
creating an
empty file

Block 1

bar\0

0x00000000

64 |
bytes

2025-03-16 14:30:00

64 |
bytes

32 bytes
4 bytes

8 bytes

Writing to a File

FAT " fat[0] 0x2002 2bytes |
Region 1024 | fat{1] OXFFFF 2 bytes
bytes 7 fat[2] OxFFFF 2 bytes
1024
bytes]| L 32
blocks
0x0000]
s | first block of |
Region 1024 it rst block o
bytes -] Block 1 root directory
B hello\n
1024
bytes Block 2
L 16,383
™ blocks

& Penn Enginccring

16
directory 4
entries

PennFAT after
writing to the file

Block 1
[bar\0 32 bytes
0x00000006 4 bytes
0x0002 2 bytes
b64 4 0x01 1 byte
yee 0x06 1byte
2025-03-16 14:30:00 | 8 bytes
d |
64 |
bytes

Removing the File

EAT | fat[o] | 0x2002 2bytes |
Region 1024 | fat[1] OxXFFFF 2 bytes
byies 7 fat[2] 0x0000 2 bytes
1024
bytes] -
blocks
0x0000
Data [
Regi 1024 first block of
egion byt { Block 1 root directory
‘" hello\n
1024
bytes Block 2
L 16,383
™ blocks

& Penn Enginccring

16
directory 4
entries

PennFAT after
removing the file

Block 1
[1far\0 32 bytes
0x00000006 4 bytes
0x0002 2 bytes
b614 . 0x01 1 byte
- 0x06 1byte
8 bytes
|o
64 |
bytes

Standalone PennFAT

- Milestone |

- Implementation of kernel-level functions
(k_functions)

- Simple shell for reading, parsing, and executing File
system modification routines

- System-wide Global File Descriptor Table

& Penn Enginccring 36

Kernel-Level Functions

- Interacting directly with the filesystem you created

- Also interacts directly with the system-wide Global FD Table
- k_write(int fd, const char* str; int n)

- Access the file associated with file descriptor fd
- Access through the FD table
- Write up to n bytes of str

- literally modify the binary filesystem you created.This should be loaded in
memory, so you can modify the in-memory array

= m] o .
& Penn Engmccrmg

37

Standalone Routines

- Special Commands

- mfks, mount, unmount
- These can be implemented using C System Calls

- Standard Routines

- touch, my, rm, cat, cp, chmod, Is
- These should ONLY use k_functions unless interacting with the
HOST filesystem
- Your filesystem: PennFAT binary file you created HOST
filesystem:Your docker filesystem

= m] o .
& Penn Engmccrmg

38

Standalone Routines

- cat FILE ... [-w OUTPUT _FILE] - get input from
multiple FILE(s), output to stdout or
OUTPUT _FILE if specified

- The following would be logical flow of cat
- k_open(FILEs)
- k_read(FILEs)
- k_write(stdout / OUTPUT _FILE)

= m] o .
& Penn Engmccrmg

39

Standalone Routines

- ¢cp [-h] SOURCE DEST - copy contents from SOURCE
to DEST. If -h flag exists, copy from HOST filesystem

- The following would be logical flow of cp

- If no -h flag specified:
- k_read(SOURCE)
- k_write(DEST)
- If -h flag specified:
- read(SOURCE) « Note this is C sys-call
- k_write(DEST)

= m] o .
& Penn Engmccrmg

40

PennOS Kernel

oY Enoineerin
NIVERgSITY of PENNSYLVAI\%

Scheduling in PennOS
Algorithm: round-robin with 3 | spitreads
different queues / eheduler

Queue 0 Queue 1 Queue 2
Exponential Relationship:
e Queue 0 scheduled 1.5 times e oy -
more frequently than Queue | busy
® Queue | scheduled |.5 times
more frequent than Queue 2 e

e Deterministic - Not Random '\ " " /'

[mm] o .
& Penn Engineering 42
(- (=

Process Life Cycle

CREATE

S_spawn

s _kill()
Ctrl-2
citte

f Running \
l

Blocked

!
Stopped

!

Running

i
Stopped

!

Running

= m] o
& Penn Eng

og

nccrmg

In our model, “running” and “ready” states are the same state.|f a thread is
running or is ready to run, we just call it “running”.

Store in zombie queue
until reaped by parent

Termination s_waitpid ()
)
ZOMBIE
WAITED
ORPHAN
Init process
return;
s_exit()
s_kill()
CErl=C
e ¢

43

Process Control Block

typedef struct pcb {
pid_t pid;

int foo;
char *bar;

} pcb_t;

= m] o .
& Penn Engmccrmg

handle to the spthread

PID, parent PID, child PID(s)
open file descriptors
priority level

process state

Not limited to this!

Think about sleep

Think about waitpid and
parent - child relationship
handling

44

Scheduler Implementation Tips

Read, understand sched-demo.c (First TA Catchup!), use this design in scheduler
Think about where should kernel call the scheduler at?
What happens when the scheduler is idle?

DO NOT PUT THE SCHEDULER IN A SIGNAL HANDLER
Signal handler - as small as possible.The best signal handlers either do nothing or

only increment a counter.
e If you want to increment a counter or something, declare the counter of type:
volatile sig_atomic_t

This is the only data type that is guaranteed to be signal safe by the standard.

& Penn Enginccring 45

PennOS Signals

® You need to implement your own “signals” for PennOS.

e Use kill, or spthread_kill.

e Use sigaction to register handlers to catch signals (CTRL + C and CTRL + Z)
from the terminal but your PennOS should somewhere manually handle the
“stopping” and “terminating” of the thread.

0 What should happen when a process is killed/terminated?

e You will also likely make use of setitimer and sigsuspend for the scheduler

ticks.
© What should happen at each tick?
© When should init be scheduled?

& Penn Enginccring 46

More Tips

e With the description of setitimer(), it just says that sigalarm is delivered to the
process, not necessarily the calling thread. To make sure sigalarm goes to the
scheduler, you may want to make it so that all threads (spthread or otherwise) that

aren’t the scheduler call something like: pthread_sigmask(SIG_BLOCK,
SIGALARM)

o Which will block SIGALARM in that thread.
o If you want code to always be executed by a thread, a nice way to do it is via a
wrapper around the start routine. See spthread.c if you want some inspiration

= m] ° o
& Penn Engineering 47

More Tips

e If you are having issues with the scheduler not running you can try running
o strace —e 'trace=!all’' ./bin/pennos
o You may have to install strace: sudo apt install strace
o This will print out every time a signal is sent to your pennos
©)

(Usual fix is the pthread sigmask thing above)

m]) . .
& Penn Engineering

48

POSIX threads

User-level thread management API
Isolate code execution with distinct threads
Resource sharing (within same process space)

Concurrent execution

Pros: efficient, lightweight, simple
What are the cons!?

= m] o .
& Penn Engmccrmg

49

pthread cancel

® Provides us a way to “terminate” a thread.

® Notably, it does not terminate the thread immediately, it sends a “cancellation
REQUEST". The thread is not cancelled until it hits a cancellation point.

® Read the comments in spthread.h for spthread_cancel to see more.

= m] o .
& Penn Engmccrmg

50

How does pthread work!?

t=0

main thread

pthread join(...)

thread 3]

| . 1 pthread cancel(...

'thread 2 !

'thread 1 1

pthread created. ..)

& Penn Ene

w—

nccrmg

o

51

Spthread

Wrapper around pthread, provided by us (READ THE FILE!)
Provides additional tooling to:

e Create, then immediately suspend the thread

e Suspend a thread

e Continue (unsuspend) a thread

spthread_t new_thread;

spthread_create(&new_thread, NULL, routine, argv);
spthread_continue(new_thread);
spthread_suspend(new_thread);

= m] o .
& Penn Engmccrmg

52

Spthread: Unit of Scheduling

Leverage suspend + continue to execute one spthread at a time

1 quantum (100 ms)

Priority
Level
0 shell shell shell shell shell
| cat cat ps
2 busy busy
@

= m] o .
& Penn Engineering
o O

Spthread, Shared Resources

e Unlike normal threads, we aren’t going to use a lock to protect resources.
e Instead, we will use a way to “block pre-emption” of a thread to make sure it is the
only one running.We will talk about this in the next lecture.

spthread_disable_interrupts_self();

spthread_enable_interrupts_self();

& Penn Enginccring 54

PennOS Shell

oY Enoineerin
NIVERgSITY of PENNSYLVAI\%

Shell Requirements

Synchronous child waiting
Redirection

Parsing

Terminal Signaling

Terminal Control

= m] o .
& Penn Engineering
o O

56

Shell Functions

® Basic interaction with PennOS

e Two types:
O Functions that run as separate processes
o Functions that run as shell subroutines

= m] o .
& Penn Engmccrmg

Built-ins Running as Processes

cat
sleep
busy
N

touch

= m] o .
& Penn Engineering
o S

mv

cp
rm

ps

Built-ins Running as Subroutines

® nice ® Quick aside:Why!?

® nice pid o Think about why it might be
® man problematic/difficult to run
® bg these commands from a

o fg separate process

® jobs e Consider the kernel structure &
® |ogout process lifecycle

= m] o .
& Penn Engmccrmg

Error Handling

errno.h

u_perror
Have global ERRNO macros
Call u_perror for PennOS system call errors like

S_open, s_spawn
e Call perror(3) for any host OS system call error like
malloc(3), open(2)

= m] o .
& Penn Engmccrmg

Shell Scripts

$ echo echo linel > script
$ echo echo line2 >> script
$ cat script

echo linel

echo line2

$ chmod +x script

$ script > out

$ cat out

linel

line2

[mm] . .
& Penn Engineering
(- O

Should | re-use Penn-Shell?

e Probably not, but you can take inspiration from it and
copy *parts* of it.

e Some of it will have to change to support PennOS.
Notably the system calls you make are different and
behave a little differently.

= m] o .
& Penn Engmccrmg

User, System and Kernel Abstractions

e User Land - What an actual user interacts with
o Functions that aren’t directly interacting with the OS.
E.g. if you made your own print function or string utility functions
m String utility doesn’t deal with the OS at all
m Print function uses your system_call “s_write” function to handle the OS.
e Kernel Land - What happens ‘under the hood’
o0 Deals with the nitty gritty details that the user doesn’t need to know about
e System Call Land - The API calls to connect user land with kernel land
o Similar to the system calls you see available to you in linux and in the past
homework assighments.

= m] o o
& Penn Engineering 63

How to differentiate?

e One way to think about whether something is user /system call / kernel is thinking
about who is invoking the function and what info they need to know.
e User level: minimal or no knowledge of the underlying operating system
e System call: some level of the operating system abstraction needs to be understood
and deals with the “public” aspects of it
O Process level file descriptors are “public” parts of the OS interface
e Kernel level functions: deeper knowledge of the OS is needed. Invoker of the
function either passes in or gets something “private” to the OS.
o System wide file descriptors and the PCB are “private”

= m] o o
& Penn Engineering 64

Maintaining the Abstraction

= m] o .
& Penn Engmccrmg

O

Shell User Land

__>
<

r

\

Kernel Land

No access PennOS Kernel-Level
Functions

C System Calls

o - No access

SS820e ON

Shell Abstraction

® Your PennOS shell should use the same layer of
abstraction as the penn-shell you made.
o0 Did your penn-shell access the OS scheduler
queues?
O In penn-shell did you have access to the PCB!?

= m] o .
& Penn Engmccrmg

Demo

Engmeermg

NNNNN SITY of PENNSYLVANIA

Questions?

oY Enoineerin
NIVERgSITY of PENNSYLVAI\%

