
CIS 5480
PennOS Lecture

Tuesday, October 21, 2025

2

Logistics

- Mid-Semester Survey due EOD 10/31
- Group formation due
- Milestone 0: In the week of 11/03 - 11/07
- Milestone 1: In the week of 11/17 - 11/21
- Last line of code: 12/05 @ 11:59PM.
- Demo: Anytime after you have submitted your

final submission

3

Grading Breakdown

- 5% Documentation
- 45% Kernel/Scheduler
- 35% File System
- 15% Shell

4

Documentation

- Required to provide a Companion Document
- Consider this like APUE or K-and-R
- Describes how OS is built and how to use it
- Recommended to use Doxygen

- README
- Describes implementation and design choices

5

Agenda

- PennOS Overview
- PennFAT file system
- Scheduling & Process Life Cycle
- spthreads
- PennOS Shell
- Demo

PennOS Overview

7

Projects so Far
- Penn Shredder

- Mini Shell with Signal Handling
- Penn Shell

- Redirections and Pipelines
- Process Groups and Terminal Control
- Job Control

- You will be implementing major user-level calls in
PennOS

8

PennOS Diagram

PennOS as a Guest OS

10

User, System, and Kernel Abstractions

- User Land - What an actual user interacts with

- Kernel Land - What happens ‘under the hood’

- System Land - The API calls to connect user land
with kernel land

User and Kernel Land

PennFAT File System

13

What is a File System
- A File System is a collection of data structures and

methods an operating system uses to structure and
organize data and allow for consistent storage and
retrieval of information
- Basic unit: a file

- A file (a sequence of data) is stored in a file system as a
sequence of data-containing blocks

14

What is FAT?
- FAT stands for file allocation table, which is an architecture for

organizing and referring to files and blocks in a file system.
- There exist many methods for organizing file systems, for

example:
- FAT (DOS, Windows)
- Mac OS X
- ext{1,2,3,4} (Linux)
- NTFS (Windows)

15

FAT Example

File System Layout

17

File Alignment

- Files are distributed along blocks

Adjusting File Size

22

PennFAT Spec

20

File System

- Array of unsigned, little endian, 16-bit entries
- mkfs NAME BLOCKS_IN_FAT BLOCK_SIZE
- FAT region and DATA region

Layout

22

FAT Region

- FAT entry size: 2 bytes
- First entry – special entry for FAT and block sizes

- LSB: size of each block
- MSB: number of blocks in FAT

23

FAT first-entry examples

Other Entries of FAT

FAT first-entry examples

Example FAT

27

Data Region
- Each FAT entry represents a file block in data region -

Data Region size = block size * (# of FAT entries - 1)
- b/c first FAT entry (fat[0]) is metadata - block

numbering begins at 1:

- block numbering begins at 1:
- block 1 – always the first block of the root directory
- other blocks – data for files, additional blocks of the

root directory, subdirectories (optional extension)

28

What is a Directory?

- A directory is a file consisting of entries that
describe the files in the directory.

- Each entry includes the file name and other
information about the file.

- The root directory is the top-level directory.

29

Directory entry
- Fixed size of 64 bytes each
- file name: 32 bytes (null terminated)

- legal characters: [A-Za-z0-9._-] (POSIX portable
filename character set)

- first byte special values:

30

Directory entry (cont.)

- file size: 4 bytes
- first block number: 2 bytes (unsigned)
- file type: 1 byte

31

Directory entry (cont.)

- file permission: 1 byte

- timestamp: 8 bytes returned by time(2)
- remaining 16 bytes: reserved for extensions

Example
- fat[0] = 0x2002

- 32 blocks of 1024 bytes in
FAT

- First block of Data Region is first
block of root directory

- Correspondingly, fat[1] refers to
that Block 1, which ends there.
So it has value of 0xFFFF

Creating a File

2025-03-16 14:30:00

Writing to a File

2025-03-16 14:30:00

Removing the File

36

Standalone PennFAT

- Milestone 1
- Implementation of kernel-level functions

(k_functions)
- Simple shell for reading, parsing, and executing File

system modification routines
- System-wide Global File Descriptor Table

37

Kernel-Level Functions

- Interacting directly with the filesystem you created
- Also interacts directly with the system-wide Global FD Table
- k_write(int fd, const char* str, int n)

- Access the file associated with file descriptor fd
- Access through the FD table

- Write up to n bytes of str
- literally modify the binary filesystem you created. This should be loaded in

memory, so you can modify the in-memory array

38

Standalone Routines
- Special Commands

- mfks, mount, unmount
- These can be implemented using C System Calls

- Standard Routines
- touch, mv, rm, cat, cp, chmod, ls

- These should ONLY use k_functions unless interacting with the

HOST filesystem
- Your filesystem: PennFAT binary file you created HOST

filesystem: Your docker filesystem

39

Standalone Routines

- cat FILE … [-w OUTPUT_FILE] - get input from
multiple FILE(s), output to stdout or
OUTPUT_FILE if specified

- The following would be logical flow of cat
- k_open(FILEs)
- k_read(FILEs)
- k_write(stdout / OUTPUT_FILE)

40

Standalone Routines
- cp [-h] SOURCE DEST - copy contents from SOURCE

to DEST. If -h flag exists, copy from HOST filesystem

- The following would be logical flow of cp

- If no -h flag specified:
- k_read(SOURCE)
- k_write(DEST)

- If -h flag specified:
- read(SOURCE) ← Note this is C sys-call
- k_write(DEST)

PennOS Kernel

42

Scheduling in PennOS
Algorithm: round-robin with 3
different queues

-

Exponential Relationship:
● Queue 0 scheduled 1.5 times

more frequently than Queue 1
● Queue 1 scheduled 1.5 times

more frequent than Queue 2
● Deterministic - Not Random

43

Process Life Cycle

Init process

In our model, “running” and “ready” states are the same state.If a thread is
running or is ready to run, we just call it “running”.

44

Process Control Block

● handle to the spthread
● PID, parent PID, child PID(s)
● open file descriptors
● priority level
● process state
● Not limited to this!
● Think about sleep
● Think about waitpid and

parent - child relationship
handling

45

Scheduler Implementation Tips

● Read, understand sched-demo.c (First TA Catchup!), use this design in scheduler
● Think about where should kernel call the scheduler at?
● What happens when the scheduler is idle?
● DO NOT PUT THE SCHEDULER IN A SIGNAL HANDLER
● Signal handler - as small as possible. The best signal handlers either do nothing or

only increment a counter.
● If you want to increment a counter or something, declare the counter of type:

 volatile sig_atomic_t

This is the only data type that is guaranteed to be signal safe by the standard.

46

PennOS Signals
● You need to implement your own “signals” for PennOS.
● Use kill, or spthread_kill.
● Use sigaction to register handlers to catch signals (CTRL + C and CTRL + Z)

from the terminal but your PennOS should somewhere manually handle the
“stopping” and “terminating” of the thread.
○ What should happen when a process is killed/terminated?

● You will also likely make use of setitimer and sigsuspend for the scheduler
ticks.
○ What should happen at each tick?
○ When should init be scheduled?

47

More Tips
● With the description of setitimer(), it just says that sigalarm is delivered to the

process, not necessarily the calling thread. To make sure sigalarm goes to the
scheduler, you may want to make it so that all threads (spthread or otherwise) that
aren’t the scheduler call something like: pthread_sigmask(SIG_BLOCK,
SIGALARM)
○ Which will block SIGALARM in that thread.
○ If you want code to always be executed by a thread, a nice way to do it is via a

wrapper around the start routine. See spthread.c if you want some inspiration

48

More Tips
● If you are having issues with the scheduler not running you can try running

○ strace –e 'trace=!all' ./bin/pennos
○ You may have to install strace: sudo apt install strace
○ This will print out every time a signal is sent to your pennos
○ (Usual fix is the pthread_sigmask thing above)

49

POSIX threads

● User-level thread management API
● Isolate code execution with distinct threads
● Resource sharing (within same process space)
● Concurrent execution

Pros: efficient, lightweight, simple
What are the cons?

50

pthread_cancel
● Provides us a way to “terminate” a thread.
● Notably, it does not terminate the thread immediately, it sends a “cancellation

REQUEST”. The thread is not cancelled until it hits a cancellation point.
● Read the comments in spthread.h for spthread_cancel to see more.

51

How does pthread work?

52

Spthread
Wrapper around pthread, provided by us (READ THE FILE!)
Provides additional tooling to:
● Create, then immediately suspend the thread
● Suspend a thread
● Continue (unsuspend) a thread

53

Spthread: Unit of Scheduling
Leverage suspend + continue to execute one spthread at a time

54

Spthread, Shared Resources
● Unlike normal threads, we aren’t going to use a lock to protect resources.
● Instead, we will use a way to “block pre-emption” of a thread to make sure it is the

only one running. We will talk about this in the next lecture.

spthread_disable_interrupts_self();

spthread_enable_interrupts_self();

PennOS Shell

56

Shell Requirements

● Synchronous child waiting
● Redirection
● Parsing
● Terminal Signaling
● Terminal Control

Shell Functions

● Basic interaction with PennOS
● Two types:

○ Functions that run as separate processes
○ Functions that run as shell subroutines

Built-ins Running as Processes

● cat
● sleep
● busy
● ls
● touch

● mv
● cp
● rm
● ps

Built-ins Running as Subroutines

● nice
● nice_pid
● man
● bg
● fg
● jobs
● logout

● Quick aside: Why?
○ Think about why it might be

problematic/difficult to run
these commands from a
separate process

● Consider the kernel structure &
process lifecycle

Error Handling

● errno.h
● u_perror
● Have global ERRNO macros
● Call u_perror for PennOS system call errors like

s_open, s_spawn
● Call perror(3) for any host OS system call error like

malloc(3), open(2)

Shell Scripts

Should I re-use Penn-Shell?

● Probably not, but you can take inspiration from it and
copy *parts* of it.

● Some of it will have to change to support PennOS.
Notably the system calls you make are different and
behave a little differently.

63

User, System and Kernel Abstractions
● User Land - What an actual user interacts with

○ Functions that aren’t directly interacting with the OS.
 E.g. if you made your own print function or string utility functions
■ String utility doesn’t deal with the OS at all
■ Print function uses your system_call “s_write” function to handle the OS.

● Kernel Land - What happens ‘under the hood’
○ Deals with the nitty gritty details that the user doesn’t need to know about

● System Call Land - The API calls to connect user land with kernel land
○ Similar to the system calls you see available to you in linux and in the past

homework assignments.

64

How to differentiate?
● One way to think about whether something is user /system call / kernel is thinking

about who is invoking the function and what info they need to know.
● User level: minimal or no knowledge of the underlying operating system
● System call: some level of the operating system abstraction needs to be understood

and deals with the “public” aspects of it
○ Process level file descriptors are “public” parts of the OS interface

● Kernel level functions: deeper knowledge of the OS is needed. Invoker of the
function either passes in or gets something “private” to the OS.
○ System wide file descriptors and the PCB are “private”

Maintaining the Abstraction

Shell Abstraction

● Your PennOS shell should use the same layer of
abstraction as the penn-shell you made.
○ Did your penn-shell access the OS scheduler

queues?
○ In penn-shell did you have access to the PCB?

Demo

Questions?

