
CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Deadlock & SP Threads
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla 
  Vedansh Goenka Joy Liu  
TAs:

Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane

Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones

Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng

Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Administrivia

v PennOS:
§ Groups have been assigned
§ TA’s have been assigned to groups
§ You have the first milestone, which needs to be done before end of day Tuesday the 8th.
§ Your group (or at least the majority of your group) needs to meet with your assigned TA 

and display the expectations laid out in the PennOS Specification

v Videos containing some demos of a functioning PennOS posted on the 
schedule.

v No Recitation this week (y’all seem to be going through it.)
v OH Today is Virtual.

2



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Lecture Outline

v Threads & Lock refresher
v Spthreads
v tsl
v Disable interrupts
v Deadlock & Preventing Deadlock

3



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Threads vs. Processes
v In most modern OS’s:

§ A Process has a unique:  address space, OS resources, & security attributes

§ A Thread has a unique:  stack, stack pointer, program counter, & registers

§ Threads are the unit of scheduling and processes are their containers; every process has at 
least one thread running in it

4



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Threads vs. Processes

5

OS kernel [protected]

Stackchild

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Threads vs. Processes

6

OS kernel [protected]

Stackparent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Single-Threaded Address Spaces

v Before creating a thread
§ One thread of execution running 

in the address space
• One PC, stack, SP

§ That main thread invokes a 
function to create a new thread
• Typically pthread_create()

7

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Multi-threaded Address Spaces

v After creating a thread
§ Two threads of execution running 

in the address space
• Original thread (parent) and new 

thread (child)
• New stack created for child thread
• Child thread has its own values of 

the PC and SP
§ Both threads share the other 

segments (code, heap, globals)
• They can cooperatively modify 

shared data

8

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

StackchildSPchild

PCchild



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

v What are all the values that 
could be printed by this 
program?

9

int global_counter = 5;

void* t_fn(void* arg) {
 int num = * (int*) arg;

 global_counter += num;

 printf("%d\n", global_counter);

 free(num);
 return NULL;
}

int main() {
 pthread_t thds[2];

 for (int i = 0; i < 2; i++) {
  pthread_t temp;
  int* arg = malloc(sizeof(int));
  *arg = i + 1;
  pthread_create(&temp, NULL, t_fn, arg);
  thds[i] = temp;
 }

 for (int i = 0; i < 2; i++) {
  pthread_join(thds[i], NULL);
 }

 return EXIT_SUCCESS;
}

pollev.com/5480



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

v What are all the values that 
could be printed by this 
program?

10

int global_counter = 5;

void* t_fn(void* arg) {
 int num = * (int*) arg;

 global_counter += num;

 printf("%d\n", global_counter);

 free(num);
 return NULL;
}

pollev.com/5480

This function could print 6, 7 or 8 depending on how 
these threads are pre-empted. 

1. 6 is if 5 + 1 happens first
2. 7 is if 5 + 2 happens first
3. 8 is if (2) and (1) happen in either order. 



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Lock Synchronization

v Use a “Lock” to grant access to a critical section so that only one thread can 
operate there at a time
§ Executed in an uninterruptible (i.e. atomic) manner

v Lock Acquire
§ Wait until the lock is free,

then take it

v Lock Release
§ Release the lock
§ If other threads are waiting, wake exactly one up to pass lock to

11

// non-critical code

lock.acquire();
// critical section
lock.release();

// non-critical code

block
if locked

v Pseudocode:



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Lock API

v Locks are constructs that are provided by the operating system to help ensure 
synchronization
§ There are many types of locks (e.g. Mutex Lock, Spin Lock…) 

v Only one thread can acquire a lock at a time,
No thread can acquire that lock until it has been released

12



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Milk Example – What is the Critical Section?

v What if we use a lock on the 
refrigerator?
§ Probably overkill – what if 

roommate wanted to get eggs?

v For performance reasons, only 
put what is necessary in the 
critical section
§ Lock all steps that must run

uninterrupted; only lock the milk.
§ (i.e. must run as an atomic unit)

13

fridge.lock()
if (!milk) {
  buy milk
}
fridge.unlock()

milk_lock.lock()
if (!milk) {
  buy milk
}
milk_lock.unlock()



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

§ If the mutex is currently unlocked, it becomes locked and owned by the calling thread.
§ If the mutex is already locked by another thread, pthread_mutex_lock() suspends the 

calling thread until the mutex is unlocked.

§ unlocks the given mutex.  The mutex is assumed to be locked and owned by the calling 
thread on entrance to pthread_mutex_unlock(). Linux allows any thread to unlock a 
mutex, even if it isn’t its owner. But, this isn’t true across OS’s.

pthread mutex locks

§ initializes the mutex object pointed to by mutex according to the mutex attributes 
specified in mutexattr.
• You could even make locks shareable across processes...

14

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,
                const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex); Check the man page..



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

pthread Mutex Examples

v See total.c
§ Data race between threads

v See total_locking.c
§ Adding a mutex fixes our data race

v How does total_locking compare to sequential code and to total?
§ Likely slower than both– only 1 thread can increment at a time, and must deal with 

checking the lock and switching between threads
§ One possible fix:  each thread increments a local variable and then adds its value (once!) to 

the shared variable at the end
• See total_locking_better.c

v How about with optimizations? 
§ Let’s see total_locking_opt.c with compiler optimizations. 

15



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Threads & Mutex
v The code below has three functions that could be executed in separate threads. Note that these are 

not thread entry points, just functions used by threads:
§ Assume that "lock" has been initialized

v A) Thread-1 executes line 8 while
Thread-2 executes line 21.
Choose one:
1. Could lead to a race condition.
2. There is no possible race condition.
3. The situation cannot occur.

v B) Thread-1 executes line 15 while
Thread-2 executes line 15.
Choose one:
1. Could lead to a race condition.
2. There is no possible race condition.
3. The situation cannot occur.

16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

// global variables
pthread_mutex_t lock;
int g =  0;
int k = 0;

void fun1() {
pthread_mutex_lock(&lock);
g += 3;
pthread_mutex_unlock(&lock);
k++;

}

void fun2(int a, int b) {
g += a;
a += b;
k = a;

}

void fun3() {
pthread_mutex_lock(&lock);
g = k + 2;
pthread_mutex_unlock(&lock);

}

pollev.com/5480



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Threads & Mutex
v The code below has three functions that could be executed in separate threads. Note that these are 

not thread entry points, just functions used by threads:
§ Assume that "lock" has been initialized

v A) Thread-1 executes line 8 while
Thread-2 executes line 14
Choose one:
1. Could lead to a race condition.
2. There is no possible race condition.
3. The situation cannot occur.

v B) Thread-1 executes line 14 while
Thread-2 executes line 16.
Choose one:
1. Could lead to a race condition.
2. There is no possible race condition.
3. The situation cannot occur.

18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

// global variables
pthread_mutex_t lock;
int g =  0;
int k = 0;

void fun1() {
pthread_mutex_lock(&lock);
g += 3;
pthread_mutex_unlock(&lock);
k++;

}

void fun2(int a, int b) {
g += a;
a += b;
k = a;

}

void fun3() {
pthread_mutex_lock(&lock);
g = k + 2;
pthread_mutex_unlock(&lock);

}

pollev.com/5480



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Lecture Outline

v Threads & Lock refresher
v spthreads
v tsl
v Disable interrupts
v Deadlock & Preventing Deadlock

20



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Key Differences of spthread vs pthread

v spthread is something Travis (the goat) wrote about a year ago.
§ It does not exist anywhere else
§ you likely won’t find any documentation on it outside of this course

• Until y’all feed it into GPT so much that it becomes global memory of the model. 

v Main difference:
§ When you create a thread, it starts “suspended”
§ Threads can be explicitly continued and suspended 

• (functionality that you’d use for preempting threads for your schedular in PennOS)
• They were made to make PennOS easier to debug and write.

§ When there is a corresponding spthread function, call that instead of the pthread function

21



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

§ spthread_suspend function will signal to the specified thread to suspend execution

spthread functions

§ The created pthread will be suspended before it executes the specified routine. It must 
first be continued with `spthread_continue` before it will start executing.

22

int spthread_suspend(spthread_t thread);

int spthread_create(...);

There are many similar functions (one to one) with pthread library. Checkout the spthread .h and .c for more…

int spthread_suspend_self();

§ spthread_suspend function will cause calling thread to suspend itself

int spthread_continue(spthread_t thread);

§ Will signal to the specified thread to resume execution if suspended.



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Practice

v There are issues here.
What are they?

23

vector(int) vec;

void* s_fn(void* arg) {
 while(true) {
  int num = rand();
    // generate a random number
  vector_push(&vec, num);
 }
 return NULL;
}

pollev.com/5480

int main() {
 vec = vector_new(int, 10, NULL);
  // initialize a length 10 vector of ints

 spthread_t thds[2];
 spthread_create(&(thds[0]), NULL, s_fn, NULL);
 spthread_create(&(thds[1]), NULL, s_fn, NULL);

 int curr_thread = 0;
 while(vector_len(&vec) < 200) {
  spthread_continue(thds[curr_thread]);
  sleep(1); // sleep for 1 seconds
  spthread_suspend(thds[curr_thread]);

  curr_thread = 1 - curr_thread;
 }
 printf("%d\n", vector_len(&vec));
}



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Practice

v Adding a lock causes another
issue, what issue is it?

25

vector(int) vec;
pthread_mutex_t lock;

void* s_fn(void* arg) {
 while(true) {
  int num = rand();
  pthread_mutex_lock(&lock);
  vector_push(&vec, num);
  pthread_mutex_unlock(&lock);
 }
 return NULL;

}

pollev.com/5480

int main() {// all thread stuff up here
 pthread_mutex_init(&lock, NULL);
 int curr_thread = 0;
 while(true) {
  pthread_mutex_lock(&lock);
  if (vector_len(&vec) < 200) {
   pthread_mutex_unlock(&lock);
   break;
  }
  pthread_mutex_unlock(&lock);
  spthread_continue(thds[curr_thread]);
  sleep(1); // sleep for 1 seconds
  spthread_suspend(thds[curr_thread]);
  
  curr_thread = 1 - curr_thread;
 }
 printf("%d\n", vector_len(&vec));
}



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Shared Data & spthread

v The calls to spthread_suspend and spthread_continue will not return 
until that thread actually continues/suspends

v This can cause an issue when we use locks to maintain shared memory

v What do we do instead?

27

int spthread_disable_interrupts_self();

int spthread_enable_interrupts_self();

• Calling this function from an spthread prevents it from being suspended/prempeted 
until re-enabled by the sibling function right below this text.

• Calling this function from an spthread re-enables it to being suspendable. Should be 
called after it's sibling function "spthread_disable_interrupts_self".



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Lecture Outline

v Threads & Lock refresher
v Spthreads
v Test-Set-Lock
v Disable interrupts
v Deadlock & Preventing Deadlock

28



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

TSL

v TSL stands for Test and Set Lock, sometimes just called test-and-set.

v TSL is an atomic instruction that is guaranteed to be atomic at the hardware 
level

v TSL R, M
§ Pass in a register and a memory location
§ R gets the value of M
§ M is set to 1 AFTER setting R 
§ You then check the value of R to see if it changed…

29



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

TSL to implement Mutex

v A mutex is pretty much this:

30

mutex_lock(int lock) {
   int prev_value = TSL(&lock); // imagine R is returned.

   // if prev_value = 1, then it was already locked
   while (prev_value == 1) {
      block(); //block itself…another thread could pre-empt here.
      prev_value = TSL(lock); //atomic
   }
}

mutex_unlock(lock) {
  lock = 0; 
  wakeup_blocked_threads(lock); 
}

TSL R, M
Pass in a register and a memory location
R gets the value of M
M is set to 1 AFTER setting R 



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

TSL to implement Spin Lock…

v A spinlock is pretty much this:

v No blocking, no suspending, etc. (Why is that useful...?)
v Used to synchronize across multiple cores when you can not block or suspend 

yourself & when you know you will release the lock quickly. (i.e. in an interrupt)
§ You would first disable interrupts (on your cpu) and aquire the spin lock. That way, the 

thread that acquired the lock can finish, while other threads (on other CPUs) spin waiting 
for it to come back, since they can’t be pre-empted. 

§ Used in kernal land to synchronize things the user will never see.
31

spin_lock(lock) {
   while (TSL(&lock) == 1);
}
spin_unlock(lock) {
  lock = 0;
}

TSL R, M
Pass in a register and a memory location
R gets the value of M
M is set to 1 AFTER setting R 



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Lecture Outline

v Threads & Lock refresher
v Spthreads
v tsl
v Disable interrupts
v Deadlock & Preventing Deadlock

32



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Disabling Interrupts

v If data races occur when one thread is interrupted while it is accessing some 
shared code….

What is we don’t switch to other threads while executing that code?

v This can be done by disabling interrupts: no interrupts means that the clock 
interrupt won’t go off and interrupt the currently running thread

33
Note: This is said in the context of spthread. Don’t go in your OS interviews and say let’s disable interrupts as a go to answer
unless you know exactly why you’d want to do that.



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Disabling Interrupts

v Consider that sum_total starts at 0 and two threads try to execute 

v If one core, then once one is put on, then it will not relinquish its ownership 
until it re-enabled interrupts.

34

disable_interrupts();
++sum_total;
enable_interrupts();

++sum_total

Thread 0 Thread 1

sum_total = 1

disable_interrupts();
++sum_total;
enable_interrupts();

sum_total = 2



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Disabling Interrupts

v Advantages:
§ This is one way to fix this issue

v Disadvantages
§ This is usually overkill
§ This can stop threads that aren’t trying to access the shared resources in the critical 

section. May stop threads that are executing other processes entirely
§ If interrupts disabled for a long time, then other threads will starve
§ In a multi-core environment, this gets complicated as you’d need to use a spin lock in 

tandem.

35



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Lecture Outline

v Threads & Lock refresher
v Spthreads
v tsl
v Disable interrupts
v Deadlock & Preventing Deadlock

36



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Liveness

v Liveness: A set of properties that ensure that threads execute in a timely 
manner, despite any contention on shared resources.

v When       is called, the calling thread blocks (stops 
executing) until  it can acquire the lock.
§ What happens if the thread can never acquire the lock?

37

pthread_mutex_lock();



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Liveness Failure: Releasing locks

v If locks are not released by a thread, then other threads cannot acquire that 
lock

v See release_locks.c
§ Example where locks are not released once critical section is completed.

38



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Aside: Recursive Locks

v Mutex’s can be configured so that you it can be re-locked if the thread already 
has locked it. These locks are called recursive locks (sometimes called re-
entrant locks).
§ pthread_mutex_t recmutex = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP; //legit code.

v Acquiring a lock that is already held will succeed
v To release a lock, it must be released the same number of times it was 

acquired

v Has its uses, but generally discouraged.

39



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Deadlock Definition

v A computer has multiple threads, finite resources, and the threads want to 
acquire those resources
§ Some of these resources require exclusive access

v A thread can acquire resources:
§ All at once
§ Accumulate them over time
§ If it fails to acquire a resource, it will (by default) wait until it is available before doing 

anything 

v Deadlock: Cyclical dependency on resource acquisition so that none of them 
can proceed
§ Even if all unblocked threads release, deadlock will continue 40



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Preconditions for Deadlock

v Deadlock can only happen if these occur simultaneously:
§ Mutual Exclusion: at least one resource must be held exclusively by one thread
§ Hold and Wait: a thread must be holding a resource, requesting a resource that is held by 

a thread, and then waiting for it.
§ No preemption: A resource is held by a thread until it explicitly releases it. It cannot be 

preempted by the OS or something else to force it to release the resource 
§ Circular Wait: 

Can be a chain of more than 2 threads
Each thread must be waiting for a resource that is held by another thread. That other 
thread must waiting on a resource that forms a chain of dependency

41



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Circular Wait Example

v A cycle can exist of more than just two threads:

42

Has R1

Wants 
R2 Wants R3

Wants R1

Has R2

Has R3

Thread 1

Thread 2

Thread 3



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Poll:

v Can a thread deadlock if there is only one thread?

43

Discuss



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Deadlock Prevention

v If we can remove the conditions for deadlock, we could avoid prevent 
deadlock from every happening 

45



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Preconditions for Deadlock

v We are running some code that uses threads, locks, and sometimes deadlocks.
Which of these are most likely to be removed so that we can stop deadlocks.

v Deadlock can only happen if these occur simultaneously:
§ Mutual Exclusion: at least one resource must be held exclusively by one thread
§ Hold and Wait: a thread must be holding a resource, requesting a resource that is held by 

a thread, and then waiting for it.
§ No preemption: A resource is held by a thread until it explicitly releases it. It cannot be 

preempted by the OS or something else to force it to release the resource 
§ Circular Wait: 

Can be a chain of more than 2 threads
Each thread must be waiting for a resource that is held by another thread. That other 
thread must waiting on a resource that forms a chain of dependency

46

Discuss



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Deadlock Prevention: Mutual Exclusion

v Mutual Exclusion: at least one resource must be held exclusively by one thread

v You usually need mutual exclusion or you don’t, so  it is hard to avoid.
v Some resources require exclusive access

v A lot of work done related to this
§ called: Lock-free programming, Lock-less programming, or Non-blocking algorithms
§ General idea is to take advantage of operations that are atomic at the hardware level 

when sharing is needed

47



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Deadlock Prevention: Hold and Wait

v Hold and Wait: a thread must be holding a resource, requesting a resource 
that is held by a thread, and then waiting for it.

v What if we had each thread acquire all resources it needs in the beginning “at 
once”
§ Not always practical, a thread may not know ahead of time all the resources it will need

48



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Deadlock Prevention: No Preemption

v No preemption: A resource is held by a thread until it explicitly releases it. It 
cannot be preempted by the OS or something else to force it to release the 
resource

v If we force a thread to release a resource, how do we ensure it is in a valid 
state?
§ Undoing actions and recovering valid state is complex

49



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Deadlock Prevention: Circular Wait

v Circular Wait: Each thread must be waiting for a resource that is held by 
another thread. That other thread must waiting on a resource that forms a 
chain of dependency

v Break cycles in resource acquisition. 
v We could enforce an ordering to resource acquisition.

v Challenge: Still we may not know all resources we need ahead of time

50



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Deadlock Prevention Summary

v Prevent deadlocks by removing any one of the four deadlock preconditions
v But eliminating even one of the preconditions is often hard/impossible

§ Mutual Exclusion is necessary in a lot of situations
§ Forcing a lower priority process to release resources early requires rollback of execution
§ Not always possible to know all resources that an operating system or process will use 

upfront

51



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

That’s all!

v See you next time!

52



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Threads & Mutex
v The code below has three functions that could be executed in separate threads. Note that these are 

not thread entry points, just functions used by threads:
§ Assume that "lock" has been initialized

v A) Thread-1 executes line 8 while
Thread-2 executes line 21.
Choose one:
1. Could lead to a race condition.
2. There is no possible race condition.
3. The situation cannot occur.

v B) Thread-1 executes line 15 while
Thread-2 executes line 15.
Choose one:
1. Could lead to a race condition.
2. There is no possible race condition.
3. The situation cannot occur.

53

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

// global variables
pthread_mutex_t lock;
int g =  0;
int k = 0;

void fun1() {
pthread_mutex_lock(&lock);
g += 3;
pthread_mutex_unlock(&lock);
k++;

}

void fun2(int a, int b) {
g += a;
a += b;
k = a;

}

void fun3() {
pthread_mutex_lock(&lock);
g = k + 2;
pthread_mutex_unlock(&lock);

}

pollev.com/5480



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Threads & Mutex
v The code below has three functions that could be executed in separate threads. Note that these are 

not thread entry points, just functions used by threads:
§ Assume that "lock" has been initialized

v A) Thread-1 executes line 8 while
Thread-2 executes line 14
Choose one:
1. Could lead to a race condition.
2. There is no possible race condition.
3. The situation cannot occur.

v B) Thread-1 executes line 14 while
Thread-2 executes line 16.
Choose one:
1. Could lead to a race condition.
2. There is no possible race condition.
3. The situation cannot occur.

54

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

// global variables
pthread_mutex_t lock;
int g =  0;
int k = 0;

void fun1() {
pthread_mutex_lock(&lock);
g += 3;
pthread_mutex_unlock(&lock);
k++;

}

void fun2(int a, int b) {
g += a;
a += b;
k = a;

}

void fun3() {
pthread_mutex_lock(&lock);
g = k + 2;
pthread_mutex_unlock(&lock);

}

pollev.com/5480



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Practice

v There are issues here.
What are they?

55

vector(int) vec;

void* s_fn(void* arg) {
 while(true) {
  int num = rand();
    // generate a random number
  vector_push(&vec, num);
 }
 return NULL;
}

pollev.com/5480

Could have a data race. A thread is suspended mid 
pushing onto the vector and another thread tries to 
push onto the same vector.



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Practice

v Adding a lock causes another
issue, what issue is it?

v Possible deadlock occurs. If we suspend a thread that has a lock, then main 
tries to acquire the lock, main will get stuck. Since main gets stuck the 
suspended thread holding the locking will not resume.

56

pollev.com/5480



CIS 4480, Fall 2025L15: Threads Cont. & DeadlockUniversity of Pennsylvania

Poll:

v Can a thread deadlock if there is only one thread?

v Yes, if it tries to acquire a lock that it already has.

57

Discuss


