University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Deadlock & SP Threads
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez
Head TAs: Maya Huizar Akash Kaukuntla
Vedansh Goenka Joy Liu

TAs:
Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane
Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones
Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng
Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Administrivia

» PennOS:
= Groups have been assigned
= TA’s have been assigned to groups
" You have the first milestone, which needs to be done before end of day Tuesday the 8t.

= Your group (or at least the majority of your group) needs to meet with your assigned TA
and display the expectations laid out in the PennOS Specification

» Videos containing some demos of a functioning PennOS posted on the
schedule.

» No Recitation this week (y’all seem to be going through it.)
» OH Today is Virtual.



University of Pennsylvania L15: Threads Cont. & Deadlock

Lecture Outline

+» Threads & Lock refresher

+ Spthreads

% tsl

» Disable interrupts

» Deadlock & Preventing Deadlock

CIS 4480, Fall 2025



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Threads vs. Processes

% In most modern OS’s:
= A Process has a unique: address space, OS resources, & security attributes

= A Thread has a unique: stack, stack pointer, program counter, & registers

" Threads are the unit of scheduling and processes are their containers; every process has at
least one thread running in it



L15: Threads Cont. & Deadlock

University of Pennsylvania

CIS 4480, Fall 2025

Threads vs. Processes

Sta C kpa rent

!

I

Shared Libraries

I

fork()

\ 4

StaCkparent

!

I

Shared Libraries

Shared Libraries

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

I

I

Heap (malloc/free)

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Read-Only Segments
.text, .rodata




University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Threads vs. Processes

pthread _create()

I@

ML 1




University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Single-Threaded Address Spaces

_ +~ Before creating a thread

e = Stac'Ipare”t " One thread of execution running

in the address space
« One PC, stack, SP

t ®= That main thread invokes a

ST T— function to create a new thread
t « Typically pthread create()
Heap (malloc/free)
Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodat
PG e = ext, .rodata




L15: Threads Cont. & Deadlock

CIS 4480, Fall 2025

University of Pennsylvania

Multi-threaded Address Spaces

_ + After creating a thread

StaCkpa rent

'

Stack g

!
I

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

PGy =
I:,cparent =

Read-Only Segments
.text, .rodata

= Two threads of execution running
in the address space

« Original thread (parent) and new
thread (child)

- New stack created for child thread
« Child thread has its own values of
the PC and SP
= Both threads share the other
segments (code, heap, globals)

- They can cooperatively modify
shared data



-
University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

@ Poll Eve rywhere pollev.com/5480

< What are all the values that int main() {
pthread t thds[2];

could be printed by this

program? for (int 1 = 0; i < 2; i++) {
pthread t temp;
int global counter = 5; int* arg = malloc(sizeof(int));
*arg = 1 + 1;
void* t_fn(void* arg) { pthread create(&temp, NULL, t_fn, arg);
int num = * (int*) arg; thds[i] = temp;

¥

global counter += num;
. ) ) for (int 1 = 0; 1 < 2; i++) {
printf("%d\n", global counter); pthread_join(thds[i], NULL);
}

free(num);
return NULL; return EXIT_SUCCESS;




University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

@ Poll Eve rywhere pollev.com/5480

+ What are all the values that
could be printed by this
program?

This function could print 6, 7 or 8 depending on how

int global_counter = 5; these threads are pre-empted.

VO::Ld* t_'Fn(VOidf arg) { 1. 6isif 5+ 1 happens first
int num = * (int*) arg; 2. 7isif 5+ 2 happens first
3. 8isif(2)and (1) happen in either order.

global counter += num;

printf("%d\n", global counter);

free(num);
return NULL;

10



University of Pennsylvania

Lock Synchronization

*

Lock Acquire

= Wait until the lock is free,
then take it

D)

*

Lock Release

= Release the lock

L15: Threads Cont. & Deadlock

Use a “Lock” to grant access to a critical section so that only one thread can
operate there at a time

= Executed in an uninterruptible (i.e. atomic) manner

+ Pseudocode:

e

L

// non-critical code
block

lock.acquire () ;_/ iflocked

// critical section
lock.release () ;

// non-critical code

= |f other threads are waiting, wake exactly one up to pass lock to

CIS 4480, Fall 2025




University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Lock API

+ Locks are constructs that are provided by the operating system to help ensure
synchronization
" There are many types of locks (e.g. Mutex Lock, Spin Lock...)

%+ Only one thread can acquire a lock at a time,
No thread can acquire that lock until it has been released

12



University of Pennsylvania

L15: Threads Cont. & Deadlock

Milk Example — What is the Critical Section?

< What if we use a lock on the
refrigerator?

= Probably overkill = what if
roommate wanted to get eggs?

» For performance reasons, only
put what is necessary in the
critical section

= |ock all steps that must run
uninterrupted; only lock the milk.

" (j.e. must run as an atomic unit)

fridge.lock()
if (Imilk) {
buy milk

}
Lfridge.unlock()

!

rmilk_lock.lock()
it (Imilk) {

buy milk
¥

milk lock.unlock()

CIS 4480, Fall 2025

13



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

pthread mutex locks

int pthread mutex init(pthread mutex_ t* mutex,
const pthread mutexattr_t* attr);

" jnitializes the mutex object pointed to by mutex according to the mutex attributes
specified in mutexattr.

« You could even make locks shareable across processes...

(int pthread mutex_lock(pthread_mutex_t* mutex); J

= |f the mutex is currently unlocked, it becomes locked and owned by the calling thread.

= |f the mutex is already locked by another thread, pthread_mutex_lock() suspends the
calling thread until the mutex is unlocked.

(int pthread _mutex_unlock(pthread_mutex_t* mutex); ]

= unlocks the given mutex. The mutex is assumed to be locked and owned by the calling
thread on entrance to pthread_mutex_unlock(). Linux allows any thread to unlock a
mutex, even if it isn’t its owner. But, this isn’t true across OS’s.

[int pthread mutex_destroy(pthread mutex_t* mutex); ] Check the man page.. y




University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

pthread Mutex Examples

See total.c
= Data race between threads

*

» See total locking.c

= Adding a mutex fixes our data race

*

How does total locking compare to sequential code and to total?

= Likely slower than both—only 1 thread can increment at a time, and must deal with
checking the lock and switching between threads

" One possible fix: each thread increments a local variable and then adds its value (once!) to
the shared variable at the end

- Seetotal locking better.c

>

How about with optimizations?

= Let'sseetotal locking opt.c with compiler optimizations.

15



University of Pennsylvania

@ Poll Everywhere

L15: Threads Cont. & Deadlock

CIS 4480, Fall 2025

pollev.com/5480

The code below has three functions that could be executed in separate threads. Note that these are

not thread entry points, just functions used by threads:

= Assume that "lock" has been initialized

A) Thread-1 executes line 8 while
Thread-2 executes line 21.

Choose one:

1. Could lead to a race condition.

2. There is no possible race condition.
3. The situation cannot occur.

B) Thread-1 executes line 15 while
Thread-2 executes line 15.

Choose one:

1. Could lead to a race condition.

2. There is no possible race condition.
3. The situation cannot occur.

OWooONOUTE WN -

// global variables
pthread_mutex_t lock;
int g = 9;

int k = 0;

void funl() {
pthread_mutex_lock(&lock);
g += 3;
pthread_mutex_unlock(&lock);
k++;

¥

void fun2(int a, int b) {
g += a;
a += b;
k = a;

¥

void fun3() {
pthread_mutex_lock(&lock);
g =k + 2;
pthread_mutex_unlock(&lock);
}

16



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/5480

+ The code below has three functions that could be executed in separate threads. Note that these are
not thread entry points, just functions used by threads:

= Assume that "lock" has been initialized . /7 global variables
2 | pthread mutex t lock;
. . ' = 0;
A) Thread-1 executes line 8 while A
Thread-2 executes line 14 5
. o void funl () {
ChOOse one. o 7 pthread mutex lock(&lock);
1. Could lead to a race condition. 8 g += 3; -
2. There is no possible race condition. 9 pthread mutex unlock (&lock) ;
3. The situation cannot occur. 10 Kt++;
11|}
12
i i 1 id fun2 (i ,
B) Thread-1 executes line 14 while |l e e
Thread-2 executes line 16. 15| a += b;
Choose one: o
1. Could lead to a race condition. 18
2. There is no possible race condition. 19 [void fun3() {
3. The situation cannot occur. 20 pthread mutex_ lock(&lock) ;
21 g =k + 2;
22 pthread mutex unlock (&lock);
23 |}

18



University of Pennsylvania L15: Threads Cont. & Deadlock

Lecture Outline

» Threads & Lock refresher

» spthreads

» tsl

+» Disable interrupts

» Deadlock & Preventing Deadlock

CIS 4480, Fall 2025

20



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Key Differences of spthread vs pthread

+» spthread is something Travis (the goat) wrote about a year ago.
= |t does not exist anywhere else
= you likely won’t find any documentation on it outside of this course
- Until y’all feed it into GPT so much that it becomes global memory of the model.
+ Main difference:

= When you create a thread, it starts “suspended”

" Threads can be explicitly continued and suspended
« (functionality that you’d use for preempting threads for your schedular in PennQOS)
- They were made to make PennOS easier to debug and write.

= When there is a corresponding spthread function, call that instead of the pthread function

21



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

spthread functions

int spthread_create(...);

" The created pthread will be suspended before it executes the specified routine. It must
first be continued with ‘spthread_continue™ before it will start executing.

[int spthread_suspend(spthread_t thread); J

= spthread_suspend function will signal to the specified thread to suspend execution

(int spthread _suspend _self(); ]

= spthread_suspend function will cause calling thread to suspend itself

(int spthread_continue(spthread_t thread); ]

= Will signal to the specified thread to resume execution if suspended.

There are many similar functions (one to one) with pthread library. Checkout the spthread .h and .c for more...

22



- _______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

@ Poll Eve rywhere pollev.com/5480

int main() {
« There are issues here. vec = vector new(int, 10, NULL);

What are they? // initialize a length 10 vector of ints

spthread t thds[2];
vector(int) vec; spthread create(&(thds[0]), NULL, s fn, NULL);
spthread create(&(thds[1]), NULL, s fn, NULL);
void* s fn(void* arg) {
while(true) { int curr_thread = 0;
int num = rand(); while(vector_len(&vec) < 200) {
// generate a random number spthread continue(thds[curr thread]);
vector_push(&vec, num); sleep(1); // sleep for 1 seconds
} spthread suspend(thds[curr_thread]);
return NULL;
curr_thread = 1 - curr_thread;

}
printf("%d\n", vector len(&vec));




-
University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

@ Poll Eve rywhere pollev.com/5480

int main() {// all thread stuff up here
+» Adding a lock causes another pthread mutex_init(&lock, NULL);
issue, what issue is it? Int curr_thread = @;
while(true) {
pthread mutex lock(&lock);
if (vector len(&vec) < 200) {
pthread mutex unlock(&lock);
break;
}
pthread mutex unlock(&lock);
spthread continue(thds[curr_ thread]);
sleep(1l); // sleep for 1 seconds
spthread suspend(thds[curr_thread]);

vector(int) vec;
pthread mutex t lock;

void* s fn(void* arg) {
while(true) {
int num = rand();
pthread_mutex_lock(&lock);
vector_push(&vec, num);
pthread_mutex_unlock(&lock);

}
return NULL;

curr_thread = 1 - curr_thread;

}

} printf("%d\n", vector_ len(&vec));

¥




University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Shared Data & spthread

+ The calls to spthread suspend and spthread continue will not return
until that thread actually continues/suspends

% This can cause an issue when we use locks to maintain shared memory

«» What do we do instead?

(int spthread disable interrupts_self(); J

* Calling this function from an spthread prevents it from being suspended/prempeted
until re-enabled by the sibling function right below this text.

(int spthread_enable_interrupts_self(); J

e (Calling this function from an spthread re-enables it to being suspendable. Should be
called after it's sibling function "spthread_disable_interrupts_self".

27



University of Pennsylvania L15: Threads Cont. & Deadlock

CIS 4480, Fall 2025

Lecture Outline

+» Threads & Lock refresher

+ Spthreads

+ Test-Set-Lock

» Disable interrupts

» Deadlock & Preventing Deadlock

28



University of Pennsylvania L15: Threads Cont. & Deadlock

TSL

+» TSL stands for Test and Set Lock, sometimes just called test-and-set.

CIS 4480, Fall 2025

% TSLis an atomic instruction that is guaranteed to be atomic at the hardware
level

+ TSL R, M

Pass in a register and a memory location
R gets the value of M
M is set to 1 AFTER setting R

You then check the value of R to see if it changed...

29



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

TSL to implement Mutex TSL R, M

Pass in a register and a memory location
R gets the value of M

+ A mutex is pretty much this: M is set to 1 AFTER setting R

(mutex_lock(int lock) { )

int prev_value = TSL(&lock); // imagine R is returned.

// 1f prev_value = 1, then 1t was already Llocked

while (prev_value == 1) {
block(); //block itself..another thread could pre-empt here.
prev_value = TSL(lock); //atomic

}

mutex_unlock(lock) {
lock = 0;
wakeup_blocked_threads(lock);
}

. J

30



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

TSL to implement Spin Lock...

+ A spinlock is pretty much this:

o

(spin_lock (lock) {

while (TSL(&lock) == 1); TSL R, M , ,
} Pass in a register and a memory location

R gets the value of M

spin unlock (lock
pin_ ( ) M is set to 1 AFTER setting R

lock = 0;
}

\ J

+ No blocking, no suspending, etc. (Why is that useful...?)

+» Used to synchronize across multiple cores when you can not block or suspend
yourself & when you know you will release the lock quickly. (i.e. in an interrupt)

= You would first disable interrupts (on your cpu) and aquire the spin lock. That way, the
thread that acquired the lock can finish, while other threads (on other CPUs) spin waiting
for it to come back, since they can’t be pre-empted.

= Used in kernal land to synchronize things the user will never see.
31



University of Pennsylvania L15: Threads Cont. & Deadlock

Lecture Outline

» Threads & Lock refresher

» Spthreads

% tsl

» Disable interrupts

» Deadlock & Preventing Deadlock

CIS 4480, Fall 2025

32



CIS 4480, Fall 2025

University of Pennsylvania L15: Threads Cont. & Deadlock

Disabling Interrupts

+ If data races occur when one thread is interrupted while it is accessing some
shared code....

What is we don’t switch to other threads while executing that code?

+~ This can be done by disabling interrupts: no interrupts means that the clock
interrupt won’t go off and interrupt the currently running thread

Note: This is said in the context of spthread. Don’t go in your OS interviews and say let’s disable interrupts as a go to answer
unless you know exactly why you’d want to do that. 33



CIS 4480, Fall 2025

University of Pennsylvania L15: Threads Cont. & Deadlock

Disabling Interrupts

+» Consider that sum_total starts at 0 and two threads try to execute

(++sum total )

Thread 0

Thread 1

++sum_ total;
enable interrupts();

.

(disable_interrupts();\

J

sum_to tal =1

(disable_interrupts();\

++sum_ total;
enable interrupts();

\

J

sum_total = 2

» |If one core, then once one is put on, then it will not relinquish its ownership

until it re-enabled interrupts.

34



University of Pennsylvania L15: Threads Cont. & Deadlock

Disabling Interrupts

+» Advantages:

0

= This is one way to fix this issue

Disadvantages

This is usually overkill

This can stop threads that aren’t trying to access the shared resources in the critical
section. May stop threads that are executing other processes entirely

If interrupts disabled for a long time, then other threads will starve

In a multi-core environment, this gets complicated as you’d need to use a spin lock in
tandem.

CIS 4480, Fall 2025

35



University of Pennsylvania L15: Threads Cont. & Deadlock

Lecture Outline

» Threads & Lock refresher

+ Spthreads

» tsl

» Disable interrupts

+» Deadlock & Preventing Deadlock

CIS 4480, Fall 2025

36



CIS 4480, Fall 2025

University of Pennsylvania L15: Threads Cont. & Deadlock

Liveness

+ Liveness: A set of properties that ensure that threads execute in a timely
manner, despite any contention on shared resources.

» When (pthread mutex lock(); ]is called, the calling thread blocks (stops

executing) until it can acquire the lock.
= What happens if the thread can never acquire the lock?

37



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Liveness Failure: Releasing locks

+ If locks are not released by a thread, then other threads cannot acquire that
lock

+ Seerelease locks.c

= Example where locks are not released once critical section is completed.

38



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Aside: Recursive Locks

0

0

*

0

0

Mutex’s can be configured so that you it can be re-locked if the thread already
has locked it. These locks are called recursive locks (sometimes called re-

entrant locks).
= pthread_mutex_t recmutex = PTHREAD_RECURSIVE_MUTEX_INITIALIZER NP; //legit code.

Acquiring a lock that is already held will succeed

To release a lock, it must be released the same number of times it was
acquired

Has its uses, but generally discouraged.

39



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Deadlock Definition

+ A computer has multiple threads, finite resources, and the threads want to
acquire those resources
= Some of these resources require exclusive access

+» Athread can acquire resources:

= All at once
" Accumulate them over time

= |f it fails to acquire a resource, it will (by default) wait until it is available before doing
anything

+» Deadlock: Cyclical dependency on resource acquisition so that none of them
can proceed
= Even if all unblocked threads release, deadlock will continue 20



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Preconditions for Deadlock

+» Deadlock can only happen if these occur simultaneously:
= Mutual Exclusion: at least one resource must be held exclusively by one thread

" Hold and Wait: a thread must be holding a resource, requesting a resource that is held by
a thread, and then waiting for it.

= No preemption: A resource is held by a thread until it explicitly releases it. It cannot be
preempted by the OS or something else to force it to release the resource

= Circular Wait:
Can be a chain of more than 2 threads
Each thread must be waiting for a resource that is held by another thread. That other
thread must waiting on a resource that forms a chain of dependency

41



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Circular Wait Example

+ A cycle can exist of more than just two threads:

%
© “,
& Thread 3
Thread 1 \\9

Wants R1

42



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Discuss

%+ Can a thread deadlock if there is only one thread?

43



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Deadlock Prevention

+ If we can remove the conditions for deadlock, we could avoid prevent
deadlock from every happening

45



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Discuss

+ We are running some code that uses threads, locks, and sometimes deadlocks.
Which of these are most likely to be removed so that we can stop deadlocks.

+» Deadlock can only happen if these occur simultaneously:
= Mutual Exclusion: at least one resource must be held exclusively by one thread

" Hold and Wait: a thread must be holding a resource, requesting a resource that is held by
a thread, and then waiting for it.

= No preemption: A resource is held by a thread until it explicitly releases it. It cannot be
preempted by the OS or something else to force it to release the resource

= Circular Wait:
Can be a chain of more than 2 threads
Each thread must be waiting for a resource that is held by another thread. That other
thread must waiting on a resource that forms a chain of dependency

46



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Deadlock Prevention: Mutual Exclusion

*

Mutual Exclusion: at least one resource must be held exclusively by one thread

» You usually need mutual exclusion or you don’t, so it is hard to avoid.
» Some resources require exclusive access

« A lot of work done related to this

*

= called: Lock-free programming, Lock-less programming, or Non-blocking algorithms

" General idea is to take advantage of operations that are atomic at the hardware level
when sharing is needed

47



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Deadlock Prevention: Hold and Wait

» Hold and Wait: a thread must be holding a resource, requesting a resource
that is held by a thread, and then waiting for it.

+ What if we had each thread acquire all resources it needs in the beginning “at
once”
= Not always practical, a thread may not know ahead of time all the resources it will need

48



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Deadlock Prevention: No Preemption

» No preemption: A resource is held by a thread until it explicitly releases it. It
cannot be preempted by the OS or something else to force it to release the
resource

- |f we force a thread to release a resource, how do we ensure it is in a valid
state?

= Undoing actions and recovering valid state is complex

49



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Deadlock Prevention: Circular Wait

% Circular Wait: Each thread must be waiting for a resource that is held by
another thread. That other thread must waiting on a resource that forms a
chain of dependency

- Break cycles in resource acquisition.
» We could enforce an ordering to resource acquisition.

» Challenge: Still we may not know all resources we need ahead of time

50



University of Pennsylvania

L15: Threads Cont. & Deadlock

CIS 4480, Fall 2025

Deadlock Prevention Summary

+» Prevent deadlocks by removing any one of the four deadlock preconditions
+» But eliminating even one of the preconditions is often hard/impossible
= Mutual Exclusion is necessary in a lot of situations

= Forcing a lower priority process to release resources early requires rollback of execution

= Not always possible to know all resources that an operating system or process will use
upfront

51



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

That’s all!

+» See you next time!

52



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/5480

+ The code below has three functions that could be executed in separate threads. Note that these are
not thread entry points, just functions used by threads:

= Assume that "lock" has been initialized . /7 global variables
2 | pthread mutex t lock;
. . ' = 0;
A) Thread-1 executes line 8 while A
Thread-2 executes line 21. 5
. o void funl () {
ChOOse one. o 7 pthread mutex lock(&lock);
1. Could lead to a race condition. 8 g += 3; -
2. There is no possible race condition. 9 pthread mutex unlock (&lock) ;
The situation cannot occur. 10 Kt++;
11|}
12
- . 1 id fun2 (i , int b
B) Thread-1 executes line 15 while |l e e
Thread-2 executes line 15. 15| a += b;
Choose one: o
Could lead to a race condition. 18
There is no possible race condition. 19 [void fun3() {
3. The situation cannot occur. 20 pthread mutex_ lock(&lock) ;
21 g =k + 2;
22 pthread mutex unlock (&lock);
23 |}

53



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/5480

+ The code below has three functions that could be executed in separate threads. Note that these are
not thread entry points, just functions used by threads:

= Assume that "lock" has been initialized 1 |// global variables
2 | pthread_mutex_t lock;
A) Thread-1 executes line 8 while A B
Thread-2 executes line 14 5
_ 6 |void funl() {
Choose one: » 7 pthread_mutex_lock(&lock);
Could lead to a race condition. 8 g += 3;
There is no possible race condition. 9 pthread_mutex_unlock(&lock);
3. The situation cannot occur. 10 K++;
11|}
12
B) Thread-1 executes line 14 while 13| vold funalint a, int b) A
. g += a,;
Thread-2 executes line 16. 15| a += b;
Choose one: N K =a;
Could lead to a race condition. 18
There is no possible race condition. 19 [void fun3() {
3. The situation cannot occur. 20 pthread_mutex_lock(&lock);
21 g =k + 2;
22 pthread_mutex_unlock(&lock);
23 |}

54



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

@ Poll Eve rywhere pollev.com/5480

«» There are issues here.
What are they?

vector(int) vec;

void* s _fn(void* arg) {
while(true) { Could have a data race. A thread is suspended mid
int num = rand(); pushing onto the vector and another thread tries to
push onto the same vector.

vector_push(&vec, num);

}
return NULL;

¥

55



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

@ Poll Eve rywhere pollev.com/5480

+~ Adding a lock causes another
issue, what issue is it?

» Possible deadlock occurs. If we suspend a thread that has a lock, then main
tries to acquire the lock, main will get stuck. Since main gets stuck the
suspended thread holding the locking will not resume.

56



University of Pennsylvania L15: Threads Cont. & Deadlock CIS 4480, Fall 2025

Discuss

%+ Can a thread deadlock if there is only one thread?

+ Yes, if it tries to acquire a lock that it already has.

57



