
CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Deadlock & Dining with my Phils
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla
 Vedansh Goenka Joy Liu
TAs:

Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane

Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones

Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng

Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Poll: how are you?

v Any planned courses for Spring 2026? Any Questions about PennOS?

2

pollev.com/cis5480

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Administrivia

v PennOS
§ Groups have been assigned
§ TA’s have been assigned to groups
§ You have the first milestone, due by the end of Next Week!

• Shouldn’t be too bad, just a general guide line…
§ Your group (or at least most of your group) needs to meet with your assigned TA and

display the expectations laid out in the PennOS Specification

3

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Administrivia

v PennOS
§ Groups have been assigned
§ TA’s have been assigned to groups
§ You have the first milestone, due by the end of Next Week!

• Shouldn’t be too bad, just a general guide line…
§ Your group (or at least most of your group) needs to meet with your assigned TA and

display the expectations laid out in the PennOS Specification

v Github Gradescope Repo Creator is up!
§ Make sure to adhere to the spec with how to make it!

• groupnum
• Account1
• Account2
• ….etc 4

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Administrivia

v PennOS
§ Groups have been assigned
§ TA’s have been assigned to groups
§ You have the first milestone, due by the end of Next Week!

• Shouldn’t be too bad, just a general guide line…
§ Your group (or at least most of your group) needs to meet with your assigned TA and

display the expectations laid out in the PennOS Specification

v Github Gradescope Repo Creator is up!
§ Make sure to adhere to the spec with how to make it!

• groupnum
• Account1
• Account2
• ….etc

5

Once you make a REPO with your group, that
is your group. No switching after that. Just
come to terms with it…….

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Administrivia

v First Milestone
§ Make sure to reach out to your TAs with scheduling logistics by Monday.
§ Please, do not do it last minute as you will be penalized. Do not make this a habit.

6

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Administrivia

v PennOS Advice:
§ Will announce this on Ed as well
§ In your FAT code you may do something like this:

• Sometimes though, the write and lseek will return a success, but it won’t actually write to your
file system

• Most commonly happens with blocks near the end of the FAT
(as in blocks not in the allocation table but show up shortly after the end of the allocation table)

• Most likely related to an issue between mmap and write (And empty bytes....)
• Shows up inconsistently!
• What’s the fix?

Just do it twice, that usually
fixes it.

7

lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);

lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);
lseek(FAT_FD, offset, SEEK_SET);
write(FAT_FD, contents, size);

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Poll: how are you?

v Any planned courses for Fall 2025? Any Questions about PennOS?

8

pollev.com/cis5480

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Deadlock Prevention Summary

v Prevent deadlocks by removing any one of the four deadlock preconditions
v But eliminating even one of the preconditions is often hard/impossible

§ Mutual Exclusion is necessary in a lot of situations
§ Forcing a lower priority process to release resources early requires rollback of execution
§ Not always possible to know all resources that an operating system or process will use

upfront

9

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Lecture Outline

v Dining Philosophers
v Deadlock Handling

10

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Dining Philosophers

v Assume the following situation
§ There are N philosophers that are trying

to eat rice. (Computer Scientists here...)
§ They only have one chopstick each!

• Need two chopsticks to eat L
§ Alternate between two states:

• Thinking
• Eating

§ They are arranged in a circle with a
chopstick between each of them

§ 6 Chopsticks, 6 Philosphers in this
example.

11

🍚

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Dining Philosophers

v Philosophers have good table manners
§ Must acquire two chopsticks to eat
§ Only one philosopher can have

a chopstick at a time

v Useful abstraction / “standard problem”
try to achieve:
§ Deadlock Free

• No state where no one gets to eat
§ Starvation Free

• Solution guarantees that all philosophers
occasionally eat

• Ideally maximize parallel eating
• Most difficult to solve.

12

🍚

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Dining with my Philz

13

void *start(void *arg){
int id = *((int*)arg);
while(true){

think((int)id);
eat(id);

}
}

void think(int id){
printf("Phil %d, is about to think.\n", id);
printf("Phil %d, is done thinking, time to eat.\n", id);

}

start is the entry point for all N threads. They all share N
mutexes.

Each thread prints, then thinks, then prints that they’d like to eat.

Let’s look at our preliminary eat() function.

pthread_mutex_t chopsticks[NUM_MUTEX];

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

First Solution Attempt

v If we number each philosopher 0 – N and then each chopstick is also 0 – N, we
can model the problem with mutexes, each chopstick is a mutex and each
philosopher is a thread
§ To eat, thread I must acquire lock id (Left) and id + 1 (Right)
§ This ensures that each chopstick is only in use by one philosopher at a time

14

void eat(int id){
pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

printf("Phil %d, is about to eat!!.\n", id);
pthread_mutex_unlock(&chopsticks[(id + 1) % NUM_MUTEX]);
pthread_mutex_unlock(&chopsticks[id]);

}

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Dining with my Philz, walk through.

v Let’s go ahead and go through an example…
§ Reminder: we number each philosopher 0 – N and then each chopstick is also 0 – N

15

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

🔓 🔓 🔓
0 1 2

(A)
(B)

T-id = 0 T-id = 1 T-id = 2

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

v Let’s go ahead and go through an example…
§ Reminder: we number each philosopher 0 – N and then each chopstick is also 0 – N

16

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

🔓 🔒 🔓
0 1 2

(A)
(B)

(A)
(A)

T-id = 0 T-id = 1 T-id = 2

Dining with my Philz, walk through.

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

v Let’s go ahead and go through an example…
§ Reminder: we number each philosopher 0 – N and then each chopstick is also 0 – N

17

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

🔓 🔒 🔒
0 1 2

(A)
(B)

(A)
(A)

T-id = 0 T-id = 1 T-id = 2

Dining with my Philz, walk through.

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

v Let’s go ahead and go through an example…
§ Reminder: we number each philosopher 0 – N and then each chopstick is also 0 – N

18

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

🔒 🔒 🔒
0 1 2

(A)
(B)

(A)
(A)
(B) This makes thread 2, lock mutex 0.

T-id = 0 T-id = 1 T-id = 2

Dining with my Philz, walk through.

*(B)
*(A)

* means blocked..

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Dining with my Philz, walk through.

v Now, Thread 1 and 0 is blocked!
§ Reminder: we number each philosopher 0 – N and then each chopstick is also 0 – N

19

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

🔒 🔒 🔒
0 1 2

T-id = 0 T-id = 1 T-id = 2

(A)
(B)

(A)
(A)
(B) This makes thread 2, lock mutex 0.

*(B)

* means blocked..

*(A)

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Producer Consumer Example

v To unblock unblock thread 1
§ What needs to happen?

20

discuss

pthread_mutex_unlock(&chopsticks[(id + 1) % NUM_MUTEX]);
pthread_mutex_unlock(&chopsticks[id]);

🔒 🔒 🔒
0 1 2

(C)
(D)

(A)
(A)
(B) This makes thread 2, lock mutex 0.

*(B)

* means blocked..

*(A)

T-id = 0 T-id = 1 T-id = 2

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Producer Consumer Example

23

pollev.com/cis5480

v What is the worse case scenario here?
§ Reminder: we number each philosopher 0 – N and then each chopstick is also 0 – N

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

🔓 🔓 🔓
0 1 2

(A)
(B)

T-id = 0 T-id = 1 T-id = 2

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Second Attempt: Round Robin

v Our first attempt deadlocks.

v What if we instead we tried doing this “round robin”, we pass around a token
that says “it is your turn to eat”

v Can this deadlock?

v What issues arise with this solution?

28

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Second Attempt: Round Robin

v Our first attempt deadlocks.

v What if we instead we tried doing this “round robin”, we pass around a token
that says “it is your turn to eat”

v Can this deadlock?

v What issues arise with this solution?

29

No

Not parallel, just sequential eating L
Everyone guaranteed gets to eat though J

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Third Attempt: Global Mutex

v What if instead, we add another “global” mutex that controls permission to
pick up chopsticks. Once a philosopher has chopsticks, they can release the
lock before they eat

v Can this deadlock?

v What issues arise with this solution?

30

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

31

v Can this deadlock? What issues arise with this solution?
v chopstick_gaurd is a global mutex

pollev.com/cis5480

void eat(int id){
pthread_mutex_lock(&chopstick_gaurd);

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

pthread_mutex_unlock(&chopstick_gaurd);

printf("Phil %d, is about to eat!!.\n", id);
pthread_mutex_unlock(&chopsticks[(id + 1) % NUM_MUTEX]);
pthread_mutex_unlock(&chopsticks[id]);

}

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Fourth Attempt: More Human Approach

v What if instead, if a philosopher fails to get a chopstick, it puts down any
chopsticks it has, waits for a little bit and then tries again?

v Can we do this in code?
§ pthread_mutex_trylock: if the lock can’t be acquired, return immediately
§ pthread_mutex_timedlock: timeout after trying to get a mutex for some specified

amount of time

v Can this deadlock?
v What issues arise with this solution?

44

An example of a final question; Say we replace all lock with trylock making sure to unlock if we can’t
acquire both locks, is it possible for all Philosophers to never eat? If it is, show how. If not, explain.

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

45

v What is the worse case scenario here?
§ Reminder: we number each philosopher 0 – N and then each chopstick is also 0 – N

pthread_mutex_trylock(&chopsticks[id]);
pthread_mutex_trylock(&chopsticks[(id + 1) % NUM_MUTEX]);

🔒 🔒 🔒
0 1 2

(A)

T-id = 0 T-id = 1 T-id = 2

(A)
(A)

(A)

How will try lock spin?

^(B)
^(B)

^(B)

^ indicates fail

unlock 2

unlock 1

unlock 0

Because each thread
failed to grab their right

hand chopstick, they
release their left hand

chopstick and try again!

(B)

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

46

v What is the worse case scenario here?
§ Reminder: we number each philosopher 0 – N and then each chopstick is also 0 – N

pthread_mutex_trylock(&chopsticks[id]);
pthread_mutex_trylock(&chopsticks[(id + 1) % NUM_MUTEX]);

🔓 🔓 🔓
0 1 2

(A)

T-id = 0 T-id = 1 T-id = 2

(A)
(A)

(A)

How will try lock spin?

^(B)
^(B)

^(B)

^ indicates fail

unlock 2

unlock 1

unlock 0

Because each thread
failed to grab their right

hand chopstick, they
release their left hand

chopstick and try again!

(B)

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

47

🔒 🔒 🔒
0 1 2

T-id = 0 T-id = 1 T-id = 2

(A)
(A)

(A)

How will try lock spin?

^(B)
^(B)

^(B)

^ indicates fail

unlock 2

unlock 1
unlock 0

(A)
(A)

(A)
^(B)

^(B)
^(B) unlock 2

unlock 1

unlock 0

This is a plausible scenario in
which each thread, although not

deadlocked because resources are
eventually released, continues to

run and later attempts to reacquire
the locks. :/

You sorta hope that the schedular
makes this really really really really

unlikely…

But still not impossible.

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Fifth Attempt: Break the “Symmetry”

v What if the even numbered philosophers and odd numbered philosophers do
things differently?
§ Even Numbered: Grab chopstick on their left and then right (Left handed folks)
§ Odd Numbered: Grab chopstick on their right and then left (Right handed folks)

v Can this deadlock?

v What issues arise with this solution?

48

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Producer Consumer Example

v Is there any way the threads can deadlock now? Assume each thread unlocks in
any order.
§ (Ask yourself, which lock will Thread 1 always try to lock first?
§ Who does this compete directly with?)

49

pollev.com/cis5480

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);
pthread_mutex_lock(&chopsticks[id]);

(A)
(B)

(B)
(A)

Threads: 0 & 2

Thread: 1

🔒 🔒 🔒
0 1 2

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Producer Consumer Example

v Assume for the sake of contradiction that there’s a deadlock
§ I’m just kidding. Let’s walk through an example; we can enumerate them all.

50

pollev.com/cis5480

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);
pthread_mutex_lock(&chopsticks[id]);

(A)
(B)

(B)
(A)

Threads: 0 & 2

Thread: 1

🔒 🔒 🔒
0 1 2

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

51

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

🔒 🔓 🔒
0 1 2

T-id = 0 T-id = 1 T-id = 2

(A)
(A)

Changing it up.
Threads; 0 & 2

pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);
pthread_mutex_lock(&chopsticks[id]);

Thread; 1

(A)
(B)

(B)
(A)

In this state, Thread 2 can not continue. As thread 0 has ownership of lock 0 (it’s right chop)

In this state, Thread 1 can not continue. As thread 2 has ownership of lock 2 (it’s right chop).

In this state, Thread 0 can continue. As thread 1 cannot grab lock 1, because it can’t grab
lock 2! So no deadlock possible here.

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

52

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

🔒 🔓 🔒
0 1 2

T-id = 0 T-id = 1 T-id = 2

(A)
(A)

Changing it up.
Threads; 0 & 2

pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);
pthread_mutex_lock(&chopsticks[id]);

Thread; 1

(A)
(B)

(B)
(A)

This is the same as the previous example.

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

53

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

T-id = 0 T-id = 1 T-id = 2

(A)

In this state, which thread(s) still have the opportunity to eat?

Threads; 0 & 2

pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);
pthread_mutex_lock(&chopsticks[id]);

Thread; 1

(A)
(B)

(B)
(A)

(B)

discuss

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

54

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

T-id = 0 T-id = 1 T-id = 2

(A)

In this state, which thread(s) still have the opportunity to eat?

Threads; 0 & 2

pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);
pthread_mutex_lock(&chopsticks[id]);

Thread; 1

(A)
(B)

(B)
(A)

(B)

discuss

🔒 🔓 🔒
0 1 2

Here, thread 2 can not continue because thread 1 grabbed lock 2 by executing (B) first!

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

55

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

T-id = 0 T-id = 1 T-id = 2

(A)

In this state, which thread(s) still have the opportunity to eat?

Threads; 0 & 2

pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);
pthread_mutex_lock(&chopsticks[id]);

Thread; 1

(A)
(B)

(B)
(A)

(B)

discuss

🔒 🔒 🔒
0 1 2

Here, thread 2 can not continue because thread 1 grabbed lock 2 by executing (B) first!

(B)

Thread 0! Thread 1

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

56

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

T-id = 0 T-id = 1 T-id = 2

(A)

In this state, which thread(s) still have the opportunity to eat?

Threads; 0 & 2

pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);
pthread_mutex_lock(&chopsticks[id]);

Thread; 1

(A)
(B)

(B)
(A)

(B)

discuss

🔒 🔒 🔒
0 1 2

Here, thread 2 can not continue because thread 1 grabbed lock 2 by executing (B) first!

Thread 0! Thread 1

(A)

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Fifth Attempt: Break the Symmetry

v What if the even numbered philosophers and odd numbered philosophers do
things differently?
§ Even Numbered: Grab chopstick on their left and then right
§ Odd Numbered: Grab chopstick on their right and then left

v Can this deadlock?

v What issues arise with this solution?

57

No

threads may still possibly starve

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Lecture Outline

v Dining Philosophers
v Deadlock Handling

58

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Deadlock Handling: Ostrich Algorithm

59

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Deadlock Handling: Ostrich Algorithm

60Ostriches don’t actually do this, but it is an old myth

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Deadlock Handling: Ostrich Algorithm

v Ignoring potential problems
§ Usually under the assumption that it is either rare, too expensive to handle, and/or not a

fatal error

v Used in real world contexts, there is a real cost to tracking down every possible
deadlock case and trying to fix it
§ Cost on the developer side: more time to develop
§ Cost on the software side: more computation for these things to do, slows things down

61

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Deadlock Handling: Prevention

v Ad Hoc Approach
§ Key insights into application logic allow you to write code that avoids cycles/deadlock
§ Example: Dining Philosophers breaking symmetry with even/odd philosophers

v Exhaustive Search Approach
§ Static analysis on source code to detect deadlocks
§ Formal verification: model checking
§ Unable to scale beyond small programs in practice

Impossible to prove for any arbitrary program (without restrictions)

62

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Detection

v If we can’t guarantee deadlocks won’t happen, we can instead try to detect a
deadlock just before it will happen and then intervene.

v Two big parts
§ Detection algorithm. This is usually done with tracking metadata and graph theory
§ The intervention/recovery. We typically want some sort of way to “recover” to a safe state

when we detect a deadlock is going to happen

63

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Detection Algorithms

v The common idea is to think of the threads and resources as a graph.
§ If there is a cycle: deadlock
§ If there is no cycle: no deadlock

v Finding cycles in a graph is a common algorithm problem with many solutions.

64

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Deadlock Detection Example

v Consider the following example with 5 threads and 5 resources that require
mutual exclusion is this a deadlock?
§ Thread 1 has R2 but wants R1
§ Thread 2 has R1 but wants R3, R4 and R5
§ Thread 3 has R4 but wants R5
§ Thread 4 has R5 but wants R2
§ Thread 5 has R3

65

pollev.com/cis5480

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Resource Allocation Graph

v We can represent this deadlock with a graph:
§ Each resource and thread is a node
§ If a thread has a resource, draw an arrow pointing at the thread form that resource
§ If a thread wants to acquire a resource but can’t, draw an arrow pointing at the resource

from the thread trying to acquire it

66

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Resource Allocation Graph Example
§ Thread 1 has R2

but wants R1
§ Thread 2 has R1

but wants R3, R4 and R5
§ Thread 3 has R4

but wants R5
§ Thread 4 has R5

but wants R2
§ Thread 5 has R3

67

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Resource Allocation Graph Example
§ Thread 1 has R2

but wants R1
§ Thread 2 has R1

but wants R3, R4 and R5
§ Thread 3 has R4

but wants R5
§ Thread 4 has R5

but wants R2
§ Thread 5 has R3

68

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Resource Allocation Graph Example
§ Thread 1 has R2

but wants R1
§ Thread 2 has R1

but wants R3, R4 and R5
§ Thread 3 has R4

but wants R5
§ Thread 4 has R5

but wants R2
§ Thread 5 has R3

69

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Resource Allocation Graph Example
§ Thread 1 has R2

but wants R1
§ Thread 2 has R1

but wants R3, R4 and R5
§ Thread 3 has R4

but wants R5
§ Thread 4 has R5

but wants R2
§ Thread 5 has R3

70

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Resource Allocation Graph Example
§ Thread 1 has R2

but wants R1
§ Thread 2 has R1

but wants R3, R4 and R5
§ Thread 3 has R4

but wants R5
§ Thread 4 has R5

but wants R2
§ Thread 5 has R3

71

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Resource Allocation Graph Example
§ Thread 1 has R2

but wants R1
§ Thread 2 has R1

but wants R3, R4 and R5
§ Thread 3 has R4

but wants R5
§ Thread 4 has R5

but wants R2
§ Thread 5 has R3

72

R1 R3 R4

R2 R5

T1

T5

T2

T4

T3

Resource Allocation Graph

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Alternate graph

v Instead of also representing resources as nodes, we can have a “wait for”
graph, showing how threads are waiting on each other

73

T1

T5

T2

T4

T3

Wait For Graph

T1 is waiting for a
resource held by T2
and T4 is waiting on T1

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Recovery after Detection

v Preemption:
§ Force a thread to give up a resource
§ Often is not safe to do or impossible

v Rollback:
§ Occasionally checkpoint the state of the system, if a deadlock is detected then go back to

the checkpointed “Saved state”
§ Used commonly in database systems
§ Maintaining enough information to rollback and doing the rollback can be expensive

v Manual Killing:
§ Kill a process/thread, check for deadlock, repeat till there is no deadlock
§ Not safe, but it is simple

74

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Overall Costs

v Doing Deadlock Detection & Recovery solves deadlock issues, but there is a
cost to memory and CPU to store the necessary information and check for
deadlock

v This is why sometimes the ostrich algorithm is preferred

75

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Avoidance

v Instead of detecting a deadlock when it happens and having expensive
rollbacks, we may want to instead avoid deadlock cases earlier

v Idea:
§ Before it does work, it submits a request for all the resources it will need.
§ A deadlock detection algorithm is run

• If acquiring those resources would lead to a deadlock, deny the request. The calling thread can
try again later

• If there is no deadlock, then the thread can acquire the resources and complete its task
§ The calling thread later releases resources as they are done with them

76

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Avoidance

v Pros:
§ Avoids expensive rollbacks or recovery algorithms

v Cons:
§ Can’t always know ahead of time all resources that are required
§ Resources may spend more time being locked if all resources need to be acquired before

an action is taken by a thread, could hurt parallelizability
• Consider a thread that does a very expensive computation with many shared resources.
• Has one resources that is only updated at the end of the computation.
• That resources is locked for a long time and other threads that may need it cannot access it

77

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Aside: Bankers Algorithm

v This gets more complicated when there are multiple copies of resources, or a
finite number of people can access a resources.

v The Banker’s Algorithm handles these cases
§ But I won’t go into detail about this
§ There is a video linked on the website under this lecture you can watch if you want to

know more

78

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Aside: Bankers Algorithm

v This gets more complicated when there are multiple copies of resources, or a
finite number of people can access a resources.

v The Banker’s Algorithm handles these cases
§ But I won’t go into detail about this
§ There is a video linked on the website under this lecture you can watch if you want to

know more

79

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

That’s all!

v Make sure to try out these examples in the dining.c linked in the schedule to
solidify you’re understanding!
§ As practice, try implementing the try_lock solution!

80

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Producer Consumer Example

v To unblock unblock thread 1
§ What needs to happen?

81

pollev.com/cis5480

pthread_mutex_unlock(&chopsticks[(id + 1) % NUM_MUTEX]);
pthread_mutex_unlock(&chopsticks[id]);

🔓 🔒 🔒
0 1 2

(C)
(D)

(A)
(A)
(B) This makes thread 2, lock mutex 0.

*(B)

* means blocked..

*(A)

T-id = 0 T-id = 1 T-id = 2

(C)

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Producer Consumer Example

v To unblock unblock thread 1
§ What needs to happen?

82

pollev.com/cis5480

pthread_mutex_unlock(&chopsticks[(id + 1) % NUM_MUTEX]);
pthread_mutex_unlock(&chopsticks[id]);

🔓 🔒 🔓
0 1 2

(C)
(D)

(A)
(A)
(B)

Now thread 1, can lock mutex 2 ✅.

*(B)

* means blocked..

*(A)

T-id = 0 T-id = 1 T-id = 2

(C)
(D)

(B)

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Producer Consumer Example

83

pollev.com/cis5480

v What is the worse case scenario here?
§ Reminder: we number each philosopher 0 – N and then each chopstick is also 0 – N

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

🔓 🔓 🔒
0 1 2

(A)
(B)

T-id = 0 T-id = 1 T-id = 2

(A)

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Producer Consumer Example

84

pollev.com/cis5480

v What is the worse case scenario here?
§ Reminder: we number each philosopher 0 – N and then each chopstick is also 0 – N

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

🔓 🔒 🔒
0 1 2

(A)
(B)

T-id = 0 T-id = 1 T-id = 2

(A)
(A)

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Producer Consumer Example

85

pollev.com/cis5480

v What is the worse case scenario here?
§ Reminder: we number each philosopher 0 – N and then each chopstick is also 0 – N

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

🔒 🔒 🔒
0 1 2

(A)
(B)

T-id = 0 T-id = 1 T-id = 2

(A)
(A)

(A)

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

Producer Consumer Example

86

pollev.com/cis5480

v What is the worse case scenario here?
§ Reminder: we number each philosopher 0 – N and then each chopstick is also 0 – N

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

🔒 🔒 🔒
0 1 2

(A)
(B)

T-id = 0 T-id = 1 T-id = 2

(A)
(A)

(A)

Pure deadlock!

*(B)

*(B)

*(B)

Akin to saying all philz
picked up their left

chopstick at the same
time!

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

87

v Can this deadlock? What issues arise with this solution?
v chopstick_gaurd is a global mutex

pollev.com/cis5480

void eat(int id){
pthread_mutex_lock(&chopstick_gaurd);

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

pthread_mutex_unlock(&chopstick_gaurd);

printf("Phil %d, is about to eat!!.\n", id);
pthread_mutex_unlock(&chopsticks[(id + 1) % NUM_MUTEX]);
pthread_mutex_unlock(&chopsticks[id]);

}

Picking up the
chopsticks becomes an

“atomic” operation.

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

88

pollev.com/cis5480

🔓 🔓 🔓
0 1

🔓 🧍

2

This will be our chopstick guard

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

89

pollev.com/cis5480

🔓 🔓 🔓
0 1

🔒 🧍

2

• Thread 1 Acquires Lock Guard First!
• Thread 0 and 2 cannot proceed…
• Thread 1 then acquires lock 1 and 2.

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

90

pollev.com/cis5480

🔓 🔒 🔒
0 1

🔒 🧍

2

• Thread 1 Acquires Lock Guard First!
• Thread 0 and 2 cannot proceed…
• Thread 1 then acquires lock 1 and 2.
• Thread 1 then releases our Lock Guard

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

91

pollev.com/cis5480

🔓 🔒 🔒
0 1

🔓 🧍

2

• Thread 1 Acquires Lock Guard First!
• Thread 0 and 2 cannot proceed…
• Thread 1 then acquires lock 1 and 2.
• Thread 1 then releases our Lock Guard

• While Thread 1 is eating, Thread 0 acquires the lock guard!
• Thread 2 still doesn’t progress.

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

92

pollev.com/cis5480

🔓 🔒 🔒
0 1

🔒 🧍

2

• Thread 1 Acquires Lock Guard First!
• Thread 0 and 2 cannot proceed…
• Thread 1 then acquires lock 1 and 2.
• Thread 1 then releases our Lock Guard

• While Thread 1 is eating, Thread 0 acquires the lock guard!
• Thread 2 still doesn’t progress.

• Thread 0 acquires lock 0!

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

93

pollev.com/cis5480

🔒 🔒 🔒
0 1

🔒 🧍

2

• Thread 1 Acquires Lock Guard First!
• Thread 0 and 2 cannot proceed…
• Thread 1 then acquires lock 1 and 2.
• Thread 1 then releases our Lock Guard

• While Thread 1 is eating, Thread 0 acquires the lock guard!
• Thread 2 still doesn’t progress.

• Thread 0 acquires lock 0!
• Thread 0 is stuck acquiring lock 1 as Thread 1 is eating!

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

94

pollev.com/cis5480

🔒 🔒 🔓
0 1

🔒 🧍

2

• Thread 1 Acquires Lock Guard First!
• Thread 0 and 2 cannot proceed…
• Thread 1 then acquires lock 1 and 2.
• Thread 1 then releases our Lock Guard

• While Thread 1 is eaang, Thread 0 acquires the lock guard!
• Thread 2 sall doesn’t progress.

• Thread 0 acquires lock 0!
• Thread 0 is stuck acquiring lock 1 as Thread 1 is eaang!

• Thread 1 finishes eaang! It releases Lock 2 first and then lock 1!

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

95

pollev.com/cis5480

🔒 🔓 🔓
0 1

🔒 🧍

2

• Thread 1 Acquires Lock Guard First!
• Thread 0 and 2 cannot proceed…
• Thread 1 then acquires lock 1 and 2.
• Thread 1 then releases our Lock Guard

• While Thread 1 is eaang, Thread 0 acquires the lock guard!
• Thread 2 sall doesn’t progress.

• Thread 0 acquires lock 0!
• Thread 0 is stuck acquiring lock 1 as Thread 1 is eaang!

• Thread 1 finishes eaang! It releases Lock 2 first and then lock 1!
• The moment it releases lock 1, Thread 0 acquires it!

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

96

pollev.com/cis5480

🔒 🔒 🔓
0 1

🔒 🧍

2

• Thread 1 Acquires Lock Guard First!
• Thread 0 and 2 cannot proceed…
• Thread 1 then acquires lock 1 and 2.
• Thread 1 then releases our Lock Guard

• While Thread 1 is eaang, Thread 0 acquires the lock guard!
• Thread 2 sall doesn’t progress.

• Thread 0 acquires lock 0!
• Thread 0 is stuck acquiring lock 1 as Thread 1 is eaang!

• Thread 1 finishes eaang! It releases Lock 2 first and then lock 1!
• The moment it releases lock 1, Thread 0 acquires it!

• Now Thread 0 releases the lock guard as it has both chopsacks!

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

97

pollev.com/cis5480

🔒 🔒 🔓
0 1

🔓 🧍

2

• Thread 1 Acquires Lock Guard First!
• Thread 0 and 2 cannot proceed…
• Thread 1 then acquires lock 1 and 2.
• Thread 1 then releases our Lock Guard

• While Thread 1 is eaang, Thread 0 acquires the lock guard!
• Thread 2 sall doesn’t progress.

• Thread 0 acquires lock 0!
• Thread 0 is stuck acquiring lock 1 as Thread 1 is eaang!

• Thread 1 finishes eaang! It releases Lock 2 first and then lock 1!
• The moment it releases lock 1, Thread 0 acquires it!

• Now Thread 0 releases the lock guard as it has both chopsacks!

• And now Thread 1 and 2 compete for who acquires the lock guard!
• The cycle conanues…

CIS 4480 Fall 2025L16: DeadlockUniversity of Pennsylvania

98

pollev.com/cis5480

🔒 🔒 🔓
0 1

🔓 🧍

2

Starvaaon is sall possible here as Thread 1 and Thread 0
could always acquired the lock guard before Thread 2.

