University of Pennsylvania L16: Deadlock

Deadlock & Dining with my Phils
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez
Head TAs: Maya Huizar Akash Kaukuntla
Vedansh Goenka Joy Liu

TAs:
Eric Zou Joseph Dattilo Aniket Ghorpade
Zihao Zhou Eric Lee Shruti Agarwal
Connor Cummings Shreya Mukunthan Alexander Mehta
Bo Sun Steven Chang Rania Souissi

Sana Manesh

Shriya Sane
Yemisi Jones
Raymond Feng
Rashi Agrawal

CIS 4480 Fall 2025

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

% Any planned courses for Spring 2026? Any Questions about PennOS?

University of Pennsylvania

Administrivia

L16: Deadlock

CIS 4480 Fall 2025

PennOS

Groups have been assigned
TA’s have been assigned to groups

You have the first milestone, due by the end of Next Week!
- Shouldn’t be too bad, just a general guide line...

Your group (or at least most of your group) needs to meet with your assigned TA and
display the expectations laid out in the PennOS Specification

University of Pennsylvania

L16: Deadlock

Administrivia

+ PennOS

= Groups have been assigned

= TA’s have been assigned to groups

You have the first milestone, due by the end of Next Week!
- Shouldn’t be too bad, just a general guide line...

Your group (or at least most of your group) needs to meet with your assigned TA and
display the expectations laid out in the PennOS Specification

+» Github Gradescope Repo Creator is up!

= Make sure to adhere to the spec with how to make it!
. groupnum
« Accountl
« Account2
.etc

University of Pennsylvania

Administrivia

+ PennOS

L16: Deadlock

Groups have been assigned

TA’s have been assigned to groups

You have the first milestone, due by the end of Next Week!
- Shouldn’t be too bad, just a general guide line...

Your group (or at least most of your group) needs to meet with your assigned TA and
display the expectations laid out in the PennOS Specification

+» Github Gradescope Repo Creator is up!

= Make sure to adhere to the spec with how to make it!

groupnum

« Accountl

« Account2

....etc

Once you make a REPO with your group, that
is your group. No switching after that. Just

come to terms with it

CIS 4480 Fall 2025

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Administrivia

+ First Milestone
= Make sure to reach out to your TAs with scheduling logistics by Monday.
= Please, do not do it last minute as you will be penalized. Do not make this a habit.

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Administrivia

\/
0’0

PennOS Advice:
= Will announce this on Ed as well

In your FAT code you may do something like this:
lseek (FAT_FD, offset, SEEK SET);

write(FAT_FD, contents, size);

- Sometimes though, the write and Iseek will return a success, but it won’t actually write to your
file system

- Most commonly happens with blocks near the end of the FAT
(as in blocks not in the allocation table but show up shortly after the end of the allocation table)

- Most likely related to an issue between mmap and write (And empty bytes....)

* Shows up inconsistently! 1seek(FAT_FD, offset, SEEK_SET);

- What's the fix? write(FAT_FD, contents, size);
Just do it twice, that usually lseek (FAT _FD, offset, SEEK SET);
fixes it. write(FAT_FD, contents, size);

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ Any planned courses for Fall 2025? Any Questions about PennOS?

University of Pennsylvania

L16: Deadlock

CIS 4480 Fall 2025

Deadlock Prevention Summary

+» Prevent deadlocks by removing any one of the four deadlock preconditions
+» But eliminating even one of the preconditions is often hard/impossible
= Mutual Exclusion is necessary in a lot of situations

= Forcing a lower priority process to release resources early requires rollback of execution

= Not always possible to know all resources that an operating system or process will use
upfront

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Lecture Outline

+ Dining Philosophers
+» Deadlock Handling

10

University of Pennsylvania L16: Deadlock

Dining Philosophers

+ Assume the following situation

There are N philosophers that are trying
to eat rice. (Computer Scientists here...)

They only have one chopstick each!
- Need two chopsticks to eat &

Alternate between two states:

- Thinking

- Eating

They are arranged in a circle with a
chopstick between each of them

6 Chopsticks, 6 Philosphers in this
example.

CIS 4480 Fall 2025

11

University of Pennsylvania L16: Deadlock

Dining Philosophers

+ Philosophers have good table manners
= Must acquire two chopsticks to eat

®= Only one philosopher can have
a chopstick at a time

+ Useful abstraction / “standard problem” §£{

try to achieve:
= Deadlock Free

- No state where no one gets to eat
= Starvation Free

- Solution guarantees that all philosophers
occasionally eat

- ldeally maximize parallel eating
- Most difficult to solve.

CIS 4480 Fall 2025

12

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Dining with my Philz

pthread_mutex_t chopsticks[NUM MUTEX];

void xstart(void s) { : .
int id = s((intx))s start is the entry point for all N threads. They all share N

while(true){ mutexes.
think((int)id);
eat(id); Each thread prints, then thinks, then prints that they’d like to eat.

Let’s look at our preliminary eat () function.

void think(int id)A{
printf("Phil %d, is about to think.\n",);

printf("Phil %d, is done thinking, time to eat.\n",);

13

University of Pennsylvania L16: Deadlock

CIS 4480 Fall 2025

First Solution Attempt

+ If we number each philosopher 0 — N and then each chopstick is also 0 — N, we
can model the problem with mutexes, each chopstick is a mutex and each
philosopher is a thread
= To eat, thread | must acquire lock id (Left) andid + 1 (Right)

" This ensures that each chopstick is only in use by one philosopher at a time

void eat(int) {
pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]);

printf("Phil %d, is about to eat!!.\n",

)
pthread_mutex_unlock(&chopsticks[(id + 1) % NUM_MUTEX]);
pthread_mutex_unlock(&chopsticks[id]);

14

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Dining with my Philz, walk through.

+» Let’s go ahead and go through an example...
= Reminder: we number each philosopher 0 — N and then each chopstick is also 0 —N

pthread_mutex_lock(&chopsticks[id]); (A)
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]); KN

T-id=0 T-id=1 T-id =2

15

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Dining with my Philz, walk through.

+» Let’s go ahead and go through an example...
= Reminder: we number each philosopher 0 — N and then each chopstick is also 0 — N

pthread_mutex_lock(&chopsticks[id]); (A)
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]); KN

T-id=0 T-id=1 T-id =2

_ _ (A)
r MY Y (A)

16

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Dining with my Philz, walk through.

+» Let’s go ahead and go through an example...
= Reminder: we number each philosopher 0 — N and then each chopstick is also 0 — N

pthread_mutex_lock(&chopsticks[id]); (A)
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]); KN

T-id=0 T-id=1 T-id =2

, _ _ (R)
N N N (A)

17

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Dining with my Philz, walk through.

+» Let’s go ahead and go through an example...
= Reminder: we number each philosopher 0 — N and then each chopstick is also 0 — N

pthread_mutex_lock(&chopsticks[id]); (A)
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]); KN

T-id=0 Tid=1 T-id=2
. _ _ (A)
[ffa\g i/a\h (A)
—= — —3 (B) This makes thread 2, lock mutex O.
*(B)
*(A)
0 1 2
* means blocked.. 18

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Dining with my Philz, walk through.

+» Now, Thread 1 and O is blocked!
= Reminder: we number each philosopher 0 — N and then each chopstick is also 0 —N

pthread_mutex_lock(&chopsticks[id]); (A)
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]); KN

T-id=0 Tid=1 T-id=2
. _ _ (A)
[ffa\g i/a\h (A)
—= — —3 (B) This makes thread 2, lock mutex O.
*(B)
*(A)
0 1 2
* means blocked.. 19

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere discuss

%+ To unblock unblock thread 1
" What needs to happen?

pthread_mutex_unlock(&chopsticks[(

pthread_mutex_unlock(&chopsticks|

T-id=0 T-id=1 T-id=2
)) (@ (A)
_g _g _g (B) This makes thread 2, lock mutex O.
*(B)
*(A)

* means blocked.. 20

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ What is the worse case scenario here?
= Reminder: we number each philosopher 0 — N and then each chopstick is also 0 —N

pthread_mutex_lock(&chopsticks[id]); (A)
pthread _mutex_lock(&chopsticks[(id + 1) % DI (B)

T-id=0 T-id=1 T-id =2

23

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Second Attempt: Round Robin

% Our first attempt deadlocks.

+» What if we instead we tried doing this “round robin”, we pass around a token
that says “it is your turn to eat”

«» Can this deadlock?

« What issues arise with this solution?

28

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Second Attempt: Round Robin

% Our first attempt deadlocks.

+» What if we instead we tried doing this “round robin”, we pass around a token
that says “it is your turn to eat”

«» Can this deadlock?
No

« What issues arise with this solution?

Not parallel, just sequential eating ®
Everyone guaranteed gets to eat though ©

29

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Third Attempt: Global Mutex

+ What if instead, we add another “global” mutex that controls permission to
pick up chopsticks. Once a philosopher has chopsticks, they can release the
lock before they eat

«» Can this deadlock?

« What issues arise with this solution?

30

-
University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

« Can this deadlock? What issues arise with this solution?

/

» chopstick gaurd is a global mutex

L)

void eat(int id){
pthread mutex_ lock(&chopstick gaurd);

pthread mutex lock(&chopsticks[id]);
pthread mutex_ lock(&chopsticks[(id + 1) % NUM MUTEX]);

pthread _mutex_unlock(&chopstick gaurd);

printf("Phil %d, is about to eat!!.\n", id);
pthread _mutex_unlock(&chopsticks][(+ 1) % NUM MUTEX]);
pthread_mutex_unlock(&chopsticks[id]);

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Fourth Attempt: More Human Approach

L)

*

What if instead, if a philosopher fails to get a chopstick, it puts down any
chopsticks it has, waits for a little bit and then tries again?

Can we do this in code?
" pthread mutex trylock:ifthelock can’t be acquired, return immediately

D)

0’0

" pthread mutex timedlock:timeout after trying to get a mutex for some specified
amount of time

«» Can this deadlock?

» What issues arise with this solution?

An example of a final question; Say we replace all 1ock with trylock making sure to unlock if we can’t

acquire both locks, is it possible for all Philosophers to never eat? If it is, show how. If not, explain.
44

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

How will try lock spin?

+ What is the worse case scenario here?
= Reminder: we number each philosopher 0 — N and then each chopstick is also 0 —N

pthread_mutex_trylock(&chopsticks[id]); (A)
pthread _mutex_trylock(&chopsticks[(id + 1) % NUM_MUTEX]); (B)
T-id=0 T-id=1 T-id=2
(A)
. . . (A)
N (N €N (A) R
3 32 B "
‘ ' ~(B)
(B) unlock2 Because each thread
0) 1 2 failed to grab their right
unlock 1 - hand chopstick, they
lock O releas.e their left hanpl
un chopstick and try again!
” indicates fail 45

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

How will try lock spin?

+ What is the worse case scenario here?
= Reminder: we number each philosopher 0 — N and then each chopstick is also 0 —N

pthread_mutex_trylock(&chopsticks[id]); (A)
pthread _mutex_trylock(&chopsticks[(id + 1) % NUM_MUTEX]); (B)
T-id=0 T-id=1 T-id=2
(A)
Y (A)
ry Y Y (A) A
A 1 = Y
~(B)
(B) unlock2 Because each thread
0) 1 2 failed to grab their right
unlock 1 ___ hand chopstick, they
lock O releas.e their left hanpl
un chopstick and try again!
” indicates fail 46

University of Pennsylvania

L16: Deadlock

How will try lock spin?

A

E

E

P

Lffﬁ

T-id=0 T-id=1
(A)
(A)
~(B)
~(B)
unlock 1
unlock O
(A)
(A)
~(B)
~(B)
unlock 1
unlock O

T-id = 2
(A)

~(B)

unlock 2

(A)

~(B)

unlock 2

CIS 4480 Fall 2025

This is a plausible scenario in
which each thread, although not
deadlocked because resources are
eventually released, continues to
run and later attempts to reacquire
the locks. i/

You sorta hope that the schedular
makes this really really really really

unlikely...

But still not impossible.

A indicates fail 47

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Fifth Attempt: Break the “Symmetry”

+ What if the even numbered philosophers and odd humbered philosophers do
things differently?
= Even Numbered: Grab chopstick on their left and then right (Left handed folks)
" Odd Numbered: Grab chopstick on their right and then left (Right handed folks)

«» Can this deadlock?

« What issues arise with this solution?

48

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ Is there any way the threads can deadlock now? Assume each thread unlocks in
any order.
= (Ask yourself, which lock will Thread 1 always try to lock first?

= Who does this compete directly with?)
Threads: 0 & 2

pthread_mutex_lock(&chopsticks[id]);
pthread_mutex_lock(&chopsticks[(id + 1) %

Thread: 1
pthread_mutex_lock(&chopsticks[(id + 1) %

pthread_mutex_lock(&chopsticks[id]);

0 1 2

49

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

+~ Assume for the sake of contradiction that there’s a deadlock
" |'m just kidding. Let’s walk through an example; we can enumerate them all.

Threads: 0 & 2

pthread_mutex_lock(&chopsticks[id]); (A)
pthread_mutex_lock(&chopsticks[(id + 1) % NUM_MUTEX]); [§§

Thread: 1

pthread_mutex_lock(&chopsticks[(id + 1) % NUM _MUTEX]); [
pthread_mutex_lock(&chopsticks[id]); (A)

50

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Changing it up.

pthread_mutex_lock(&chopsticks[id]);

pthread_mutex_lock(&chopsticks[(id + 1) % NUM MUTEX]); Threads; 0 & 2

pthread_mutex_lock(&chopsticks|(+ 1) % NUM MUTEX1); WEH Thread; 1

pthread_mutex_lock(&chopsticks[id]); (A)
T-id=0 T-id =1 T-id = 2
N N N A
B B I
0 1 2

In this state, Thread 2 can not continue. As thread 0 has ownership of lock O (it’s right chop)

In this state, Thread 1 can not continue. As thread 2 has ownership of lock 2 (it’s right chop)

In this state, Thread 0 can continue. As thread 1 cannot grab lock 1, because it can’t grab
lock 2! So no deadlock possible here.

51

University of Pennsylvania L16: Deadlock

Changing it up.

pthread_mutex_lock(&chopsticks[id]); (A)
pthread_mutex_lock(&chopsticks|(+ 1) % NUM_MUTEX]); [§§

pthread_mutex_lock(&chopsticks[(id + 1) S NUM _MUTEX]); =M
pthread_mutex_lock(&chopsticks[id]); (A)

T-id=0 T-id=1 T-id =2

_ A
N Y MY A

-

This is the same as the previous example.

Threads; 0 & 2

Thread; 1

CIS 4480 Fall 2025

52

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere

discuss

In this state, which thread(s) still have the opportunity to eat?

pthread_mutex_lock(&chopsticks[id]); (A) |
pthread_mutex_lock(&chopsticks[(id + 1) % ;e Threads; 0 & 2

pthread_mutex_lock(&chopsticks[(id + 1) % H(B) Thread: 1

pthread_mutex_lock(&chopsticks[id]); (A)
T-id=0 T-id=1 T-id =2
(A)

(B)

53

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere

discuss

In this state, which thread(s) still have the opportunity to eat?

pthread_mutex_lock(&chopsticks[id]); (A)

pthread_mutex_lock(&chopsticks[(id + 1) % 1)) Threads; 0 &2
pthread_mutex lock(&chopsticks[(id + 1) % DM (B) Thread: 1
pthread_mutex_lock(&chopsticks[id]); (A)
T-id=0 T-id=1 T-id =2
0 1 2

| Here, thread 2 can not continue because thread 1 grabbed lock 2 by executing (B) first! sa

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere

discuss

In this state, which thread(s) still have the opportunity to eat?

pthread_mutex_lock(&chopsticks[id]); (A)

pthread_mutex_lock(&chopsticks[(id + 1) % IDFN (B) Threads; 0 & 2
pthread_mutex_lock(&chopsticks[(id + 1) % DM (B) Thread: 1
pthread_mutex_lock(&chopsticks[id]); (A)
Thread 0! Thread 1 T-id=0 T-id=1 T-id=2
A Al » .
| | ‘ (B)
0 1 2

| Here, thread 2 can not continue because thread 1 grabbed lock 2 by executing (B) first! ss

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere

discuss

In this state, which thread(s) still have the opportunity to eat?

pthread_mutex_lock(&chopsticks[id]); (A) |
pthread_mutex_lock(&chopsticks[(id + 1) % ;e Threads; 0 & 2

pthread _mutex_lock(&chopsticks[(id + 1) % 1); G

Thread; 1
pthread_mutex_lock(&chopsticks[id]); (A)

Thread 0! Thread 1 T-id=0 T-id=1 T-id=2
lﬁ | [m) r‘ ﬁ\ (A)

3 . "

(A)

0 1 2

| Here, thread 2 can not continue because thread 1 grabbed lock 2 by executing (B) first! se

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Fifth Attempt: Break the Symmetry

+» What if the even numbered philosophers and odd numbered philosophers do
things differently?
= Even Numbered: Grab chopstick on their left and then right
" Odd Numbered: Grab chopstick on their right and then left

«» Can this deadlock?
No

« What issues arise with this solution?

threads may still possibly starve

57

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Lecture Outline

+ Dining Philosophers
+ Deadlock Handling

58

L16: Deadlock CIS 4480 Fall 2025

Deadlock Handling: Ostrich Algorithm

59

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Deadlock Handling: Ostrich Algorithm

Ostriches don’t actually do this, but it is an old myth 60

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Deadlock Handling: Ostrich Algorithm

+ lgnoring potential problems

= Usually under the assumption that it is either rare, too expensive to handle, and/or not a
fatal error

+» Used in real world contexts, there is a real cost to tracking down every possible
deadlock case and trying to fix it
= Cost on the developer side: more time to develop
= Cost on the software side: more computation for these things to do, slows things down

61

University of Pennsylvania L16: Deadlock

Deadlock Handling: Prevention

+~ Ad Hoc Approach

= Key insights into application logic allow you to write code that avoids cycles/deadlock
= Example: Dining Philosophers breaking symmetry with even/odd philosophers

» Exhaustive Search Approach
= Static analysis on source code to detect deadlocks
= Formal verification: model checking

= Unable to scale beyond small programs in practice
Impossible to prove for any arbitrary program (without restrictions)

CIS 4480 Fall 2025

62

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Detection

% If we can’t guarantee deadlocks won’t happen, we can instead try to detect a
deadlock just before it will happen and then intervene.

+~ Two big parts
= Detection algorithm. This is usually done with tracking metadata and graph theory

" The intervention/recovery. We typically want some sort of way to “recover” to a safe state
when we detect a deadlock is going to happen

63

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Detection Algorithms

+» The common idea is to think of the threads and resources as a graph.
= |f there is a cycle: deadlock
= |f there is no cycle: no deadlock

» Finding cycles in a graph is a common algorithm problem with many solutions.

64

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

+~ Consider the following example with 5 threads and 5 resources that require
mutual exclusion is this a deadlock?

" Thread 1 has R2 but wants R1

" Thread 2 has R1 but wants R3, R4 and R5
" Thread 3 has R4 but wants R5

" Thread 4 has R5 but wants R2

®= Thread 5 has R3

65

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Resource Allocation Graph

+ We can represent this deadlock with a graph:
= Each resource and thread is a node
= |f a thread has a resource, draw an arrow pointing at the thread form that resource

= |f a thread wants to acquire a resource but can’t, draw an arrow pointing at the resource
from the thread trying to acquire it

66

University of Pennsylvania L16: Deadlock

Resource Allocation Graph Example

" Thread 1 has R2
but wants R1

" Thread 2 has R1
but wants R3, R4 and R5

* Thread 3 has R4
but wants R5

" Thread 4 has R5
but wants R2

" Thread 5 has R3 @

Resource Allocation Graph

CIS 4480 Fall 2025

67

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Resource Allocation Graph Example

" Thread 1 has R2
but wants R1

" Thread 2 has R1
but wants R3, R4 and R5

" Thread 3 has R4
but wants R5

" Thread 4 has R5
but wants R2

" Thread 5 has R3

R1

R2

Resource Allocation Graph
68

University of Pennsylvania

L16: Deadlock CIS 4480 Fall 2025

Resource Allocation Graph Example

" Thread 1 has R2
but wants R1

" Thread 2 has R1
but wants R3, R4 and R5

" Thread 3 has R4
but wants R5

" Thread 4 has R5
but wants R2

" Thread 5 has R3

AN

5

!

H

Resource Allocation Graph
69

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Resource Allocation Graph Example

Thread 1 has R2
but wants R1

Thread 2 has R1
but wants R3, R4 and R5

Thread 3 has R4
but wants R5

Thread 4 has R5
but wants R2

Thread 5 has R3

AN

Z@

R5

Resource Allocation Graph
70

University of Pennsylvania L16: Deadlock

Resource Allocation Graph Example

" Thread 1 has R2
but wants R1

" Thread 2 has R1
but wants R3, R4 and R5

" Thread 3 has R4
but wants R5

" Thread 4 has R5

R1

R2 m

but wants R2 ‘
" Thread 5 has R3 e

Resource Allocation Graph

R5

CIS 4480 Fall 2025

71

University of Pennsylvania L16: Deadlock

Resource Allocation Graph Example

" Thread 1 has R2
but wants R1

" Thread 2 has R1
but wants R3, R4 and R5

" Thread 3 has R4
but wants R5

" Thread 4 has R5

R1

R2

but wants R2 ‘
" Thread 5 has R3 e

Resource Allocation Graph

R5

CIS 4480 Fall 2025

72

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Alternate graph

» Instead of also representing resources as nodes, we can have a “wait for”
graph, showing how threads are waiting on each other

T is walting for a e

resource held by T2
ond T4 is waiting on T4

o
>

Wait For Graph 73

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Recovery after Detection

+» Preemption:
" Force a thread to give up a resource
= Often is not safe to do or impossible

« Rollback:

= QOccasionally checkpoint the state of the system, if a deadlock is detected then go back to
the checkpointed “Saved state”

= Used commonly in database systems

= Maintaining enough information to rollback and doing the rollback can be expensive
+» Manual Killing:

= Kill a process/thread, check for deadlock, repeat till there is no deadlock

= Not safe, but it is simple

74

L16: Deadlock CIS 4480 Fall 2025

University of Pennsylvania

Overall Costs

» Doing Deadlock Detection & Recovery solves deadlock issues, but there is a
cost to memory and CPU to store the necessary information and check for

deadlock

» This is why sometimes the ostrich algorithm is preferred

75

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Avoidance

+ Instead of detecting a deadlock when it happens and having expensive
rollbacks, we may want to instead avoid deadlock cases earlier

*

- |ldea:

D)

D)

= Before it does work, it submits a request for all the resources it will need.
= A deadlock detection algorithm is run

- If acquiring those resources would lead to a deadlock, deny the request. The calling thread can
try again later

- If there is no deadlock, then the thread can acquire the resources and complete its task

" The calling thread later releases resources as they are done with them

76

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Avoidance

+ Pros:
= Avoids expensive rollbacks or recovery algorithms

+» Cons:
= Can’t always know ahead of time all resources that are required

= Resources may spend more time being locked if all resources need to be acquired before
an action is taken by a thread, could hurt parallelizability

- Consider a thread that does a very expensive computation with many shared resources.
- Has one resources that is only updated at the end of the computation.
- That resources is locked for a long time and other threads that may need it cannot access it

77

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Aside: Bankers Algorithm

+ This gets more complicated when there are multiple copies of resources, or a
finite number of people can access a resources.

+~ The Banker’s Algorithm handles these cases
= But | won’t go into detail about this

" There is a video linked on the website under this lecture you can watch if you want to
know more

78

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

Aside: Bankers Algorithm

+ This gets more complicated when there are multiple copies of resources, or a
finite number of people can access a resources.

+~ The Banker’s Algorithm handles these cases
= But | won’t go into detail about this

" There is a video linked on the website under this lecture you can watch if you want to
know more

79

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

That’s all!

+» Make sure to try out these examples in the dining.c linked in the schedule to
solidify you’re understanding!
= As practice, try implementing the try lock solution!

80

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

%+ To unblock unblock thread 1
" What needs to happen?

pthread_mutex_unlock(&chopsticks[(

pthread_mutex_unlock(&chopsticks|

T-id=0 T-id=1 T-id=2
P . - (A)
tf*X] ([([(A)
g : g g (B) This makes thread 2, lock mutex 0.
| *(B)
. , *(A)
0
(C)
* means blocked.. 81

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

%+ To unblock unblock thread 1
" What needs to happen?

pthread_mutex_unlock(&chopsticks[(

pthread_mutex_unlock(&chopsticks|

T-id=0 T-id=1 T-id =2
. (A)
r MY Y (A)
B 3 = (B)
*(B)
0 1 2 TA)
(C)
(B) Now thread 1, can lock mutex 2 .
* means blocked.. 82

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ What is the worse case scenario here?
= Reminder: we number each philosopher 0 — N and then each chopstick is also 0 —N

pthread_mutex_lock(&chopsticks[id]); (A)

pthread _mutex_lock(&chopsticks[(id + 1) % DI (B)
T-id=0 T-id=1 T-id =2
(A)

[[

A 3 =

N N N

83

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ What is the worse case scenario here?
= Reminder: we number each philosopher 0 — N and then each chopstick is also 0 —N

pthread_mutex_lock(&chopsticks[id]); (A)

pthread _mutex_lock(&chopsticks[(id + 1) % DI (B)
T-id=0 T-id=1 T-id =2
(A)

tfzi] N M) (R)

A 3 =

84

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ What is the worse case scenario here?
= Reminder: we number each philosopher 0 — N and then each chopstick is also 0 —N

pthread_mutex_lock(&chopsticks[id]); (A)

pthread _mutex_lock(&chopsticks[(id + 1) % DI (B)
T-id=0 T-id=1 T-id =2
(A)

m m m (A)

MW |«

85

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ What is the worse case scenario here?
= Reminder: we number each philosopher 0 — N and then each chopstick is also 0 —N

pthread_mutex_lock(&chopsticks[id]); (A)

pthread _mutex_lock(&chopsticks[(id + 1) % DI (B)
T-id=0 T-id=1 T-id =2

(A)

(ﬁ\ (f\ (m\ (A) Akin to saying all philz
g g g (A) picked up their left
*(B) chopstick at the same
time!
0 1 2 *(B)
*(B)

Pure deadlock! .

-
University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

«» Can this deadlock? What issues arise with this solution?
+ chopstick gaurd is a global mutex

void eat(int id){
pthread_mutex_lock(&chopstick_gaurd);
pthread mutex lock(&chopsticks[id]); Picking up the

pthread _mutex_lock(&chopsticks[(id + 1) % NUM MUTEX]); ChoPﬂk$5beaN“?San
“atomic” operation.

pthread _mutex_unlock(&chopstick gaurd);

printf("Phil %d, is about to eat!!.\n", id);
pthread _mutex_unlock(&chopsticks][(+ 1) % NUM MUTEX]);
pthread_mutex_unlock(&chopsticks[id]);

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

j i This will be our chopstick guard

m— o

N M N

88

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

* Thread 0 and 2 cannot proceed...

A i * Thread 1 Acquires Lock Guard First!
2
 Thread 1 then acquires lock 1 and 2.

89

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

* Thread 0 and 2 cannot proceed...
 Thread 1 then acquires lock 1 and 2.
* Thread 1 then releases our Lock Guard

A i * Thread 1 Acquires Lock Guard First!
2

20

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

* Thread 0 and 2 cannot proceed...
 Thread 1 then acquires lock 1 and 2.
* Thread 1 then releases our Lock Guard

_g _g gﬁ' 7 * While Thread 1 is eating, Thread 0 acquires the lock guard!
* Thread 2 still doesn’t progress.

~ i * Thread 1 Acquires Lock Guard First!

91

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

* Thread 0 and 2 cannot proceed...
 Thread 1 then acquires lock 1 and 2.
* Thread 1 then releases our Lock Guard

_g _g gﬁ' 7 * While Thread 1 is eating, Thread 0 acquires the lock guard!
* Thread 2 still doesn’t progress.

* Thread 0 acquires lock 0!

A i * Thread 1 Acquires Lock Guard First!
2

92

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

* Thread 0 and 2 cannot proceed...
 Thread 1 then acquires lock 1 and 2.
* Thread 1 then releases our Lock Guard

_g _g gﬁ' : * While Thread 1 is eating, Thread 0 acquires the lock guard!
* Thread 2 still doesn’t progress.

* Thread 0 acquires lock 0!
* Thread O is stuck acquiring lock 1 as Thread 1 is eating!

A i * Thread 1 Acquires Lock Guard First!
2

93

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

* Thread 0 and 2 cannot proceed...
 Thread 1 then acquires lock 1 and 2.
* Thread 1 then releases our Lock Guard

_g _g g 3 e While Thread 1 is eating, Thread 0 acquires the lock guard!
* Thread 2 still doesn’t progress.

* Thread 0 acquires lock 0!
* Thread O is stuck acquiring lock 1 as Thread 1 is eating!

A i * Thread 1 Acquires Lock Guard First!
2

* Thread 1 finishes eating! It releases Lock 2 first and then lock 1!

94

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

* Thread 0 and 2 cannot proceed...
 Thread 1 then acquires lock 1 and 2.
* Thread 1 then releases our Lock Guard

_g _gl g 3 * While Thread 1 is eating, Thread 0 acquires the lock guard!
* Thread 2 still doesn’t progress.

* Thread 0 acquires lock 0!
* Thread O is stuck acquiring lock 1 as Thread 1 is eating!

A i * Thread 1 Acquires Lock Guard First!
2

* Thread 1 finishes eating! It releases Lock 2 first and then lock 1!
* The moment it releases lock 1, Thread 0 acquires it!

95

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

* Thread 0 and 2 cannot proceed...
 Thread 1 then acquires lock 1 and 2.
* Thread 1 then releases our Lock Guard

_g _g g 3 e While Thread 1 is eating, Thread 0 acquires the lock guard!
* Thread 2 still doesn’t progress.

* Thread 0 acquires lock 0!
* Thread O is stuck acquiring lock 1 as Thread 1 is eating!

A i * Thread 1 Acquires Lock Guard First!
2

* Thread 1 finishes eating! It releases Lock 2 first and then lock 1!
* The moment it releases lock 1, Thread 0 acquires it!

* Now Thread O releases the lock guard as it has both chopsticks!

96

University of Pennsylvania L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

* Thread 0 and 2 cannot proceed...
 Thread 1 then acquires lock 1 and 2.
* Thread 1 then releases our Lock Guard

_g _g g 3 e While Thread 1 is eating, Thread 0 acquires the lock guard!
* Thread 2 still doesn’t progress.

* Thread 0 acquires lock 0!
* Thread O is stuck acquiring lock 1 as Thread 1 is eating!

~ i * Thread 1 Acquires Lock Guard First!

* Thread 1 finishes eating! It releases Lock 2 first and then lock 1!
* The moment it releases lock 1, Thread 0 acquires it!

* Now Thread O releases the lock guard as it has both chopsticks!

 And now Thread 1 and 2 compete for who acquires the lock guard!
* The cycle continues... 97

University of Pennsylvania

L16: Deadlock CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

g‘,‘ = Starvation is still possible here as Thread 1 and Thread 0

could always acquired the lock guard before Thread 2.

98

