University of Pennsylvania L17: Cond & Threads Wrap-up

CIS 4480 Fall 2025

Cond & Threads Wrap-up
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez
Head TAs: Maya Huizar Akash Kaukuntla
Vedansh Goenka Joy Liu
TAs: L
Rainy Penn by u/EllMo7
Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane Support Artists! ©
Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones
Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng
Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ Whatis love?

University of Pennsylvania

L17: Cond & Threads Wrap-up

Administrivia

+ PennOS

= Milestone 0!

= Need to meet with your TA next week before end of Friday
- Late tokens possible to use

= Covers general planning, understanding of sp-threads, and more!

+» Today’s Recitation 10/30 (Lead by yours truly & Eric Z perhaps)

= Will cover threading, locks (spin/mutex), spthread & a baby schedular implementation.
- Question focused! More practice for the Final! :D

= |f you come, you'll basically be ready to do Milestone 0 on the fly.

" You can totally do it. | know it’s rainy and the day before Halloweenie but pls...

CIS 4480 Fall 2025

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Administrivia

% Check-In will go out sometime tonight — I'll send an Ed Announcement.

+» Don’t forget about the Mid Semester Survey! Due Tomorrow @ midnight!

= Make sure to give us honest feedback. We’re not perfect. We are always looking to
improve, honestly.

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Lecture Outline

Multithreaded Cat
® Producer v Consumer

*

» Locks Only
+ Locks + Boolean Flag
» Posix Condition Variables

» Amdahl's Law
" How much can threads really help?
= Live Mandelbrot Example

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Lecture Outline

Multithreaded Cat
= Producer v Consumer

*

» Locks Only
+ Locks + Boolean Flag
» Posix Condition Variables

» Amdahl's Law
" How much can threads really help?
= Live Mandelbrot Example

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Data Race vs Race Condition

» Implementing a Double Threaded Cat 7 : Reader
= Thread 1: Responsible for reading from the Terminal H : Writer
" Thread 2: Responsible for writing to the Terminal

% - Reader ™ - Writer

gpt rots ur brain

stdout

: Shared buffer! [S]

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Data Race vs Race Condition

» Implementing a Double Threaded Cat
" Thread 1: Responsible for reading from the Terminal
= Thread 2: Responsible for writing to the Terminal

» Doesn’t seem that bad — at a first glance, it seems all we need to do is protect
the buffer/globals from simultaneous accesses!

» Let’s take a look at our first implementation.

University of Pennsylvania

@ Poll Everywhere

« |s there a data race here?

static bool done = false;
static ssize t n =
char buffer[BUF_SIZE] = {0};

void *cat_read(void *arg){
while (true){
pthread mutex_ lock(&buf lock);
n = read(STDIN_FILENO, buffer, BUF_SIZE);
if (n == 0){ // Ctrl-D
pthread mutex unlock(&buf lock);
break;

}
pthread mutex unlock(&buf lock);

}
pthread mutex lock(&done_ lock);

done = true;
pthread mutex_unlock(&done_lock);
return NULL;

L17: Cond & Threads Wrap-up

pollev.com/cis5480

void *cat_write(void *arg){
while(true){
pthread mutex lock(&done_lock);
if (done) break;
pthread mutex unlock(&done lock);
pthread mutex lock(&buf lock);
if (n > 0){
write(STDOUT FILENO, buffer, n);

}
pthread mutex unlock(&buf_ lock);

}
pthread mutex_unlock(&done_lock);

return NULL;

CIS 4480 Fall 2025

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Race Condition vs Data Race

+» Data-Race: when there are concurrent accesses to a shared resource, with at
least one write, that can cause the shared resource to enter an invalid or
“unexpected” state.

+» Race-Condition: Where the program has different behavior depending on the
ordering of concurrent threads. This can happen even if all accesses to shared
resources are “atomic” or “locked”

11

University of Pennsylvania

@ Poll Everywhere

L17: Cond & Threads Wrap-up

discuss

+ Is there a way for the writer to never write anything?

static bool done = false;

static ssize t n =
char buffer[BUF_SIZE] = {0};

void *cat_read(void *arg){
while (true){
pthread mutex lock(&buf lock);
n = read(STDIN_FILENO, buffer, BUF_SIZE);
if (n == 0){ // Ctrl-D
pthread mutex_unlock(&buf_lock);
break;

}

pthread mutex unlock(&buf_ lock);
}
pthread mutex lock(&done_ lock);
done = true;
pthread mutex unlock(&done lock);
return NULL;

void *cat write(void *arg){
while(true){
pthread mutex_lock(&done lock);
if (done) break;
pthread mutex_unlock(&done_lock);
pthread mutex_ lock(&buf lock);
if (n > 0){
write(STDOUT_FILENO, buffer, n);

}
pthread mutex_unlock(&buf_lock);

}
pthread mutex unlock(&done lock);

return NULL;

CIS 4480 Fall 2025

University of Pennsylvania

L17: Cond & Threads Wrap-up

CIS 4480 Fall 2025

Thread Communication

+ Threads may need to communicate with each other to know when they can
perform operations

= (almost like giving each other for permission to proceed)

+~ Example: Producer and consumer threads

" One thread creates tasks/data (Our reader)

" One thread consumes the produced tasks/data to perform some operation (Our writer)

" The consumer thread can only consume things once the producer has produced them

+ Need to make sure this communication has no data race or race condition.

= This is the hardest thing to reason about. Lots of sketching and tracing.

14

CIS 4480 Fall 2025

University of Pennsylvania L17: Cond & Threads Wrap-up

Lecture Outline

Multithreaded Cat
= Producer v Consumer

*

» Locks Only

+ Locks + Boolean Flag

» Posix Condition Variables
» Amdahl's Law

" How much can threads really help?
= Live Mandelbrot Example

15

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Producer & Consumer Problem

+» Common design pattern in concurrent programming.
" There are at least two threads, at least one producer and at least one consumer.
®= The producer threads create some data that is then added to a shared data structure
= Consumers will process and remove data from the shared data structure

+~ Let’s try to go ahead and fix our example doubly threaded cat as best we can.

16

CIS 4480 Fall 2025

University of Pennsylvania L17: Cond & Threads Wrap-up

Producer Consumer Example

<+ Which needs to proceed first, the reader
or the writer in our example?

«» We have to ensure that our reader reads
before the other thread writes.

% Currently, we don’t have anything to
change here. So let’s check out our
writer.

void *cat_read(void *arg){
while (true){

pthread mutex lock(&buf lock);
n = read(STDIN _FILENO, buffer, BUF_SIZE);
if (n == 0){ // Ctrl-D
pthread mutex unlock(&buf_ lock);
break;

}

}
pthread mutex_ lock(&done_ lock);

done = true;
pthread mutex_unlock(&done_lock);
return NULL;

pthread mutex unlock(&buf_ lock);

17

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Producer Consumer Example

void *cat_write(void *arg){

while(true){ +» Would be great to not attempt to write
pthread mutex_lock(&done lock); ’
£ (done) break before we’re sure the reader has read so
pthread mutex_unlock(&done lock); lets g0 ahead and do this.

pthread mutex_lock(&buf lock);
if (n > 0){

write(STDOUT_FILENO, buffer, n);

}
pthread mutex_unlock(&buf_lock);

}
pthread mutex unlock(&done lock);

return NULL;

18

University of Pennsylvania

Producer Consumer Example

4

®,

D)

void *cat write(void *arg){
while(true){
pthread mutex lock(&done_ lock);
if (done) break;
pthread mutex_unlock(&done_lock);

pthread mutex_ lock(&has_read);
while(!done_reading){
pthread mutex unlock(&has_read);
pthread mutex lock(&has read);

®,

D)

done reading = false;
pthread mutex_unlock(&has_read);

pthread mutex_lock(&buf lock);
if (n > 0){
write(STDOUT_FILENO, buffer,

}
pthread mutex_unlock(&buf_lock);

} 7/

pthread mutex unlock(&done lock);)
return NULL;

D)

L17: Cond & Threads Wrap-up

CIS 4480 Fall 2025

Would be great to not attempt to write
before we’re sure the reader has read
so lets go ahead and do this.

We’'ll use a done_reading bool to
indicate if reader is done reading and
use a mutex for that variable.

= Writer will reset the variable.
(Consume the permission)

We pass this red square once the
reader has read into the buffer. So let’s
go back to the reader to ensure we set
this flag.

19

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Producer Consumer Example

void *cat_read(void *arg){

+ Where should we indicate that we are while (true)f
. 3 pthread_mutex_lock(&buf_lock);
done reading: n = read(STDIN_FILENO, buffer, BUF_SIZE);

if (n ==0){ // Ctrl-D
pthread mutex unlock(&buf lock);
break;

®= Once we are actually done reading!

}

+» But what else do we need to do? pthread_mutex_unlock(&buf_lock);

pthread mutex_ lock(&has read);

done reading = true;
pthread mutex unlock(&has_read);

}
pthread mutex lock(&done_lock);

done = true;
pthread mutex_unlock(&done_lock);
return NULL;

20

University of Pennsylvania

@ Poll Everywhere

void *cat_read(void *arg){
while (true){
pthread mutex lock(&buf lock);
n = read(STDIN_FILENO, buffer, BUF_SIZE);
if (n == 0){ // Ctrl-D
pthread mutex unlock(&buf lock);
break;

}
pthread mutex_unlock(&buf_lock);

pthread mutex lock(&has read);
done reading = true;
pthread mutex_unlock(&has_read);

}
pthread mutex lock(&done_lock);

done = true;
pthread mutex unlock(&done lock);
return NULL;

What is missing here?

L17: Cond & Threads Wrap-up

discuss

void *cat_write(void *arg){
while(true){
pthread mutex_ lock(&done lock);
if (done) break;
pthread mutex unlock(&done lock);

pthread mutex_ lock(&has read);
while(!done_reading){
pthread mutex_unlock(&has_read);
pthread mutex lock(&has read);

done reading = false;
pthread mutex unlock(&has_read);

pthread_mutex_lock(&buf_lock);
if (n > 0){
write(STDOUT_FILENO, buffer, n);

}
pthread mutex unlock(&buf lock);

}
pthread_mutex_unlock(&done_lock);

return NULL;

CIS 4480 Fall 2025

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

void *cat _read(void *arg){ void *cat_write(void *arg){
while (true){ while(true){
pthread mutex_lock(&buf lock); pthread mutex_ lock(&done lock);
n = read(STDIN_FILENO, buffer, BUF_SIZE); if (done) break;
if (n == 0){ // Ctrl-D pthread mutex_unlock(&done_lock);

pthread_mutex_unlock(&buf_lock);
break; pthread mutex_ lock(&has read);
y while(!done_reading){

. pthread mutex_unlock(&has_read);
pthread mutex_unlock(&buf_lock); pthread mutex_lock(&has_read);

pthread mutex_lock(&has _read); done_reading = false;
done reading = true; pthread mutex_unlock(&has_read);

pthread mutex_unlock(&has_read);
pthread mutex_ lock(&buf lock);

pthread mutex lock(&has written); if (n > 0){
while(!done_writing){ write(STDOUT_FILENO, buffer, n);
pthread mutex unlock(&has_written); }
pthread mutex lock(&has written); pthread_mutex_unlock(&buf_lock);
}
3one_writing = false; pthread_mutex_unlock(&done_lock);
pthread_mutex_unlock(&has_written); return NULL;

What is missing here? One more piece left. ,,

University of Pennsylvania

Let’s Simplify and demo!

void *cat_read(void *arg){
while (true){
pthread mutex_lock(&buf lock);
n = read(STDIN_FILENO, buffer, BUF_SIZE);
if (n == 0){ // Ctrl-D
pthread mutex_unlock(&buf_lock);
break;

}
pthread mutex unlock(&buf_ lock);

pthread mutex lock(&has read);
done_reading = true;
pthread mutex unlock(&has_read);

pthread mutex lock(&has written);
while(!done writing){
pthread mutex unlock(&has_written);
pthread mutex lock(&has written);
}
done_writing = false;
pthread mutex_unlock(&has_written);

}
return NULL;

L17: Cond & Threads Wrap-up

void *cat_write(void *arg){
while(true){

}

pthread mutex lock(&has read);
while(!done_reading){
pthread mutex_unlock(&has_read);
pthread mutex_ lock(&has_read);

}

done_reading = false;
pthread mutex unlock(&has_read);

pthread mutex lock(&buf lock);
if (n > 0){
write(STDOUT_FILENO, buffer, n);
} else {
pthread mutex_unlock(&buf_lock);
break;

}
pthread mutex unlock(&buf lock);

pthread mutex lock(&has written);
done_writing = true;
pthread mutex_unlock(&has_written);

return NULL;

CIS 4480 Fall 2025

CIS 4480 Fall 2025

University of Pennsylvania L17: Cond & Threads Wrap-up

Can we do better?

%+ The code is correct, but do we notice anything wrong with this code?

» Maybe a common inefficiency that | have told you about several times before
(just in other contexts?)

+» The consumer code “busy waits” when there is nothing for it to consume and
the producer “busy waits” for the consumer to consume

» For us, the Writer busy waits until there is something to write and the Reader
busy waits until the Writer is done writing.

28

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Do we need buf lock here?

void *cat_read(void *arg){ void *cat _write(void *arg){
while (true){ while(true){
pthread mutex lock(&buf lock);

n = read(STDIN_FILENO, buffer, BUF_SIZE); pthread_mutex_lock(&has_read);
¥ = 0 1-D while(!done_reading){
if (n==10){ // Ctrl- pthread mutex_unlock(&has_read);

pthread mutex unlock(&buf lock); pthread_mutex_lock(&has_read);
break; }
Y done_reading = false;

pthread mutex unlock(&buf lock); pthread_mutex_unlock(&has_read);

pthread mutex lock(&buf lock);
if (n > 0){
write(STDOUT_FILENO, buffer, n);
} else {
pthread mutex_unlock(&buf_lock);
break;

pthread mutex lock(&has read);
done_reading = true;
pthread mutex unlock(&has_read);

pthread mutex lock(&has written);
while(!done writing){
pthread mutex unlock(&has_written);
pthread mutex lock(&has written);

1
pthread mutex unlock(&buf lock);

) . . pthread mutex_ lock(&has written);
done_writing = false; done_writing = true;

pthread_mutex_unlock(&has_written); pthread_mutex_unlock(&has_written);

}

} //checkout code for edge case.. return NULL;
return NULL;

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Thread Communication: Naive Solution

+» Consider the previous example where a thread must wait to be notified before
It can continue...

+ Possible solution: “Spinning”
= |nfinitely loop until the producer thread notifies that the consumer thread can print

. See cat _spin.c
" The thread in the loop uses A LOT of cpu just checking until the value is safe
= Use htop to see CPU util

. Alternative: Condition variables

30

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Lecture Outline

Multithreaded Cat
= Producer v Consumer

*

» Locks Only
+ Locks + Boolean Flag
» Posix Condition Variables

» Amdahl's Law
" How much can threads really help?
= Live Mandelbrot Example

31

University of Pennsylvania L17: Cond & Threads Wrap-up

CIS 4480 Fall 2025

Condition Variables

+» Variables that allow for a thread to wait (suspend) until they are notified
(continued) to resume

» Avoids waiting clock cycles “spinning”

» Done in the context of mutual exclusion (That’s how you check the condition...)
= A thread must already have a lock, which it will temporarily release while waiting
" Once notified, the thread will re-acquire a lock and resume execution

» Honestly, the look much nicer in C++ but we are limited to our lovely C.

32

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

pthreads and condition variables

+ pthread.h defines datatype pthread cond t

<« | int pthread cond init(pthread cond t* cond,
const pthread condattr_t* attr);

" |nitializes a condition variable with specified attributes

3 [int pthread_cond_destroy(pthread_cond_t* cond);]

= “Uninitializes” a condition variable — clean up when done

+ Just do this to statically initialize: EiaEEERdLlIRaNAERS NL VR DI YRy §

33

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Condition Variables

+» Done in the context of mutual exclusion
= A thread must already have a lock, which it will temporarily release while waiting

= Once notified, the thread will re-acquire a lock and resume execution
//assume these are already initialized

lock(&m); //lock m first
while(some cond is false){

wait(&cv, &m); //wait here, release the mutex m and suspend
// when re-woken, we lock m again if we can..if not, we block..

¥

// m is locked when we leave this loop!
unlock(&m);

34

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

pthreads and condition variables

+ pthread.h defines datatype pthread cond t

< | int pthread cond wait(pthread cond t* cond, pthread mutex t* mutex);

= Atomically releases the mutex and blocks on the condition variable. Once unblocked (by
one of the functions below), function will return and calling thread will have the mutex
locked

(int pthread cond signal(pthread cond t* cond);)
= Wakes up at least one of the threads which is waiting on the condition cond

[int pthread cond broadcast(pthread cond t* cond);)
= Wakes up at all of the threads waiting on the condition cond

35

-
University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

pthread cond t Internal Pseudo-Code

+~ Here is some pseudo code to help understand condition variables
int pthread cond wait(pthread cond t* cond, pthead mutex t* lock) {
pthread mutex unlock(&lock);
sleep_on cond(cond); // this and previous line happen atomically
pthread mutex lock(&lock);
return 9;

int pthread cond signal(pthread cond t* cond) {
wakeup _a thread(cond); // wake up a thread sleeping on the cond
return 9;

}

int pthread cond broadcast(pthread cond t* cond) {
for (thread sleeping : cond->asleep) { // wake's up all threads
wakeup(thread sleeping);

¥

return 9;

}

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

A Condition is Necessary

+~ This appears to force a thread to be suspended until another signals it.

pthread_mutex_lock(&lock);
pthread_cond_wait(&cv, &lock);

pthread_mutex_unlock(&lock);

+» However, threads can have “spurious” wakeups. The thread that is suspended
on the condition can wakeup even before another signal signals it.

+~ All to say, make sure to protect your condition variables with a condition....

37

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Condition Variable & Mutex Visualization

+~ A possible condition variable visualization.

Waiting | sleeping
room | room
Entrance Critical Section Exit

38

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Condition Variable & Mutex Visualization

+~ A possible condition variable visualization.

Waiting | sleeping
room | room
Entrance —— Critical Section Exit

pthread mutex_ lock

A thread enters the critical section by acquiring a lock

39

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Condition Variable & Mutex Visualization

+~ A possible condition variable visualization.

Waiting | sleeping
room | room
Entrance —— Critical Section L Exit

pthread mutex_ lock

pthread mutex _unlock

A thread can exit the critical section by releasing the lock

40

CIS 4480 Fall 2025

University of Pennsylvania

L17: Cond & Threads Wrap-up

Condition Variable & Mutex Visualization

+ A possible condition variable visualization.

Waiting | sleeping

room room

pthread cond wait

Entrance —

L

Critical Section

pthread mutex_ lock

pthread mutex_unlock

If a thread can’t complete its action, or must wait for some change in
state, it can “go to sleep” until someone wakes it up later.
It will release the lock implicitly when it goes to sleep

41

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Condition Variable & Mutex Visualization

+ A possible condition variable visualization.

| “WAKEUP”
Waiting sleeping «-—-==
room | roo?m pthreachond_wait
/
Entrance —— Critical Section L Exit

pthread mutex_ lock

pthread cond signal
pthread mutex_unlock

When a thread modifies state and then leaves the critical section, it can also call

pthread_cond_signal to wake up threads sleeping on that condition variable
42

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Condition Variable & Mutex Visualization

+ A possible condition variable visualization.

Implicit call to Waiting | sleeping
pthread mutex_ lock room | room pthread cond wait
| ! |

Entrance —— Critical Section L Exit

pthread mutex_ lock

pthread cond signal
pthread mutex_unlock

One or more sleeping threads wake up and attempt to acquire the lock.

Like a normal call to pthread_mutex_lock the thread will block until it can acquire the lock
43

CIS 4480 Fall 2025

University of Pennsylvania

L17: Cond & Threads Wrap-up

Condition Variable & Mutex Visualization with our CAT!

i

ﬁ-»

Writer Sleeping Room

sleeps as done_reading
is false

—

Writer Waiting Room

% - Reader
H : Writer

done_reading = false
done_writing = false

Critical Section
Access to buffer and n

Enters to read

44

CIS 4480 Fall 2025

University of Pennsylvania L17: Cond & Threads Wrap-up

Condition Variable & Mutex Visualization with our CAT!

Writer Sleeping Room Writer Waiting Room
done_reading is false
pthread cond wait

Z
Z
2° ¥
Critical Section
Access to buffer and n

Reads

Reader Waiting Room

Reader Sleeping Room

% - Reader
H : Writer

done_reading = false
done_writing = false

45

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Condition Variable & Mutex Visualization with our CAT!

Writer Sleeping Room Writer Waiting Room - : Reader
done_reading is false ﬁ : Writer
pthread cond wait done_reading = true

Z done_writing = false
E _
2° ¥
Critical Section Writer Waiting Room
Access to buffer and n L done_reading = true
\ pthread_cond_signal(¥%)
—]

Writer Sleeping Room

46

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Condition Variable & Mutex Visualization with our CAT!

Writer Sleeping Room Writer Waiting Room - : Reader
done_reading is false ﬁ : Writer

pthread cond wait goes into waiting room to |
B - —— aquire lock and check done_reading = true

ﬁ if done_reading! done_writing = false
- _
Critical Section Writer Waiting Room
Access to buffer and n done_reading = true
pthread_cond_signal(¥)
I \:ﬁ

Goes to sleep as
done_writing is false

Writer Sleeping Room

47

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Condition Variable & Mutex Visualization with our CAT!

Writer Sleeping Room Writer Waiting Room - : Reader
done_reading is false ﬁ - Writer
pthread_cond_wait H done_reading = true

(f(done_reading) done_writing = false
—

Critical Section Writer Waiting Room
' done_reading = true

done_reading = false pthread_cond_signal(¥)

when writer enters —_—
—

Tenll
e

done_writing is false
pthread cond wait

Writer Sleeping Room 48

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Condition Variable & Mutex Visualization with our CAT!

A« Reader

Writer Sleeping Room Writer Waiting Room
done_reading is false ﬁ : Writer
pthread_cond_wait done_reading = false

done_writing = false

If(done_reading)

Critical Section Writer Waiting Room

Access to buffer and n v done_reading = true
pthread_cond_signal(¥)

_ e —

Writes the contents

done_writing is false
pthread cond wait

Writer Sleeping Room 49

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Condition Variable & Mutex Visualization with our CAT!

A« Reader

Writer Sleeping Room Writer Waiting Room
done_reading is false H - Writer
pthread_cond_wait done_reading = false
(f(done_reading) done_writing = true
—_—
I Critical Section Writer Waiting Room
H ! done_reading = true
done_writing = true pthread_cond_signal(¥)
___, pthread cond signal(#) '
el
22

done_writing is false
pthread cond wait

Writer Sleeping Room 50

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Condition Variable & Mutex Visualization with our CAT!

Writer Sleeping Room Writer Waiting Room - : Reader
done_reading is false ﬁ - Writer
pthread_cond_wait done_reading = true

ﬁ f(done_reading) done_writing = false
I l
Critical Section Writer Waiting Room
done_reading = true
pthread_cond_signal(¥)
B ——
A \;ﬁ

done_writing is true

pthread cond wait

Writer Sleeping Room 51

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Condition Variable & Mutex Visualization with our CAT!

Writer Sleeping Room Writer Waiting Room - : Reader
done_reading is false ﬁ - Writer
pthread_cond_wait done_reading = false

ﬁ f(done_reading) done_writing = false
—p
I Critical Section l Writer Waiting Room
done_reading = true
> pthread_cond_signal(¥)
\ ;:3 —
Before reading, set done_writing to false.

—\ 1

pthread cond wait

Writer Sleeping Room 52

University of Pennsylvania L17: Cond & Threads Wrap-up

CIS 4480 Fall 2025

Condition Variable & Mutex Visualization with our CAT!

Writer Sleeping Room

done_reading is false
pthread cond wait

—. =

Writer Waiting Room

If(done_reading)

% - Reader
H : Writer

done_reading = false
done_writing = false

I

& \;ﬁ
cntrl-d

l

Critical Section

Exit
done_reading = true

pthread_cond_signal(¥%)

—(

| —1

pthread cond wait

Writer Sleeping Room

Writer Waiting Room

done_reading = true
pthread_cond_signal(¥)

53

University of Pennsylvania L17: Cond & Threads Wrap-up

CIS 4480 Fall 2025

Condition Variable & Mutex Visualization with our CAT!

Writer Sleeping Room

done_reading is false
pthread cond wait

Writer Waiting Room

=

If(done_reading)

% - Reader
H : Writer

done_reading = false
done_writing = false

l

Critical Section

|

done_reading = true

Exit

pthread_cond_signal(¥)

i

—(

| —1

pthread cond wait

Writer Sleeping Room

Writer Waiting Room

done_reading = true
pthread_cond_signal(¥)

54

University of Pennsylvania L17: Cond & Threads Wrap-up

CIS 4480 Fall 2025

Condition Variable & Mutex Visualization with our CAT!

Writer Sleeping Room

done_reading is false
pthread cond wait

Writer Waiting Room

If(done_reading)

% - Reader
H : Writer

done_reading = false
done_writing = false

l

done_reading = false

—
I
Critical Section
—p

|

done_reading = true

Exit

pthread_cond_signal(¥%)

i

—(

| —1

pthread cond wait

Writer Sleeping Room

Writer Waiting Room

done_reading = true
pthread_cond_signal(¥)

55

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Condition Variable & Mutex Visualization with our CAT!

A« Reader

Writer Sleeping Room Writer Waiting Room
done_reading is false ﬁ : Writer
pthread_cond_wait done_reading = false
f(done_reading) done_writing = false
—
I Critical Section l Writer Waiting Room
done_reading = false .
done_reading = true
pthread_cond_signal(¥)
B ———

n = 0 (nothing to write! ctrl-d!) ‘
; done_reading = true
7 pthread_cond_signal(¥)

Exit

\/

pthread cond wait

Writer Sleeping Room 56

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Condition Variable & Mutex Visualization with our CAT!

A« Reader

Writer Sleeping Room Writer Waiting Room
done_reading is false ﬁ : Writer
pthread_cond_wait done_reading = false
f(done_reading) done_writing = false
I l
Critical Section . Writer Waiting Room
done_reading = false .
done_reading = true
pthread_cond_signal(¥)
—_—

| — [/

Exit

i
: ¢

pthread cond wait

Writer Sleeping Room 57

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Demo: cat_cv.c

+ Let’s check out the cat_cv implementation and see how it differs with
utilization!

58

University of Pennsylvania

@ Poll Everywhere

L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

pollev.com/cis5480

+~ Are these while loops necessary?

while (true){

= read(STDIN_FILENO, buffer, BUF_SIZE);
if (n == 0){
| break;

by

pthread_mutex_lock(&has_read);
done_reading = true;
pthread_mutex_unlock(&has_read);

while(done_reading == true) pthread_cond_signal(&writer);

pthread_mutex_lock(&has_written);
while(!done_writing){

| pthread_cond_wait(&reader, &has_written);
}

done_writing = false;
pthread_mutex_unlock(&has_written);

reader

while(true){

pthread_mutex_lock(&has_read);
while(!done_reading){

| pthread_cond_wait(&writer, &has_read);
}

done_reading = false;
pthread_mutex_unlock(&has_read);

if (n > 0){

| write(STDOUT_FILENO, buffer, n);
} else{

| break;

by

pthread_mutex_lock(&has_written);
done_writing = true;
pthread_mutex_unlock(&has_written);

while(done_writing == true) pthread_cond_signal(&reader); I

writer

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

A Quick Introduction; Semaphores

+» Condition Variable, Mutex, & Bool
= All of these together, helped us create a rudimentary Semaphore.
= Semaphores allow threads to either
« Continue (The light is green)
 Stop (The light is red)
+ We made two Semaphores(0)
= Where 0 means that no threads can pass.
= Until the other threads set the bool to (1), then one thread passes.
= That thread then takes that permission slip, and thus resets the semaphore to (0).

%+ Our Example uses a Boolean, but for multiple threads, you can use a signed
Integer.

" Try to see if you can implement one yourself as practice!

62

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Lecture Outline

Multithreaded Cat
= Producer v Consumer

*

» Locks Only

+ Locks + Boolean Flag

» Posix Condition Variables
» Amdahl's Law

" How much can threads really help?
= Live Mandelbrot Example

63

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Amdahl's Law

» For most algorithms, there are parts that parallelize well and parts that don’t.
This causes adding threads to have diminishing returns
= (even ignoring the overhead costs of creating & scheduling threads)

+ Consider we have some parallel algorithm T, =1

®= The 1 subscript indicates this is run on 1 thread
= we define the work for the entire algorithm as 1

+ We define S as being the percentage that can be parallelized
" T,=S+(1-5S) //(1-S) is the sequential part

64

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Amdahl's Law

%~ For running on one thread:

+» If we have P threads and perfect linear speedup on the parallelizable part, we
get

S

+» Speed up multiplier for P threads from sequential is:
Ty 1

Tp 1—S+%

65

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Amdahl's Law

» Let’s say that we have 100000 threads (P = 100000) and our algorithm is only
2/3 parallel? (s = 0.6666..)

T 1 . :
= == szeee = 2.9999 times faster than sequential
Tp 1-0.6666+ 2

+» What if it is 90% parallel? (S = 0.9):

T 1 . .
= == oo— = 9.99 times faster than sequential
T 1-09+55555

+ What if it is 99% parallel? (S = 0.99):

T 1 . .
= == o5o— = 99.99 times faster than sequential
Tp 1-0.99+

66

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Limitation: Hardware Threads

» These algorithms are limited by hardware.

» Number of Hardware Threads: The number of threads can genuinely run in
parallel on hardware

» We may be able to create a huge number of threads, but only run a few (e.g. 4)
in parallel at a time.

» Can see this information in with 1scpu in bash
= A computer can have some number of CPU sockets
= Each CPU can have one or more cores

" Each Core can run 1 or more threads

67

L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

If Time: Fun Example — Mandelbrot Sets

+ Singly Threaded v Multithreaded (12 threads)

68

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

That’s all!

+» As practice, see if you can implement the writer/reader cat from scratch going
from Spining Mutex Locks to Condition Variables!
" This is great practice since it’s not straightforward to synchronize two threads.

69

-
University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

@ Poll Everywhere discuss

+~ Exam style question: Is there a way for the writer to never write anything?

void *cat _read(void *arg){ void *cat_write(void *arg){
while (true){ while(true){
pthread mutex lock(&buf lock); pthread mutex lock(&done_lock);
n = read(STDIN_FILENO, buffer, BUF_SIZE); if (done) break;
if (n ==0){ // Ctrl-D pthread mutex unlock(&done lock);
pthread mutex unlock(&buf lock); pthread mutex lock(&buf lock);
break; if (n > 0){
} write(STDOUT FILENO, buffer, n);
pthread mutex_unlock(&buf_lock); }
} pthread mutex_ unlock(&buf_ lock);
pthread mutex lock(&done_lock); }
done = true; pthread mutex_unlock(&done_lock);
pthread mutex unlock(&done lock); return NULL;
return NULL;

Yes. If the reader is always pre-empted by the writer when it has the buf lock,
then the writer will never be able to enter the write condition because it can
never acquire the lock! (The writer will starve.)

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

@ Poll Everywhere discuss

void *cat _read(void *arg){

while (true){ +» What is missing here?

pthread mutex lock(&buf lock); . .
h = read(STDIN FILENO, buffer. BUF SIZE);: = Although the writer now waits for the

if (n ==0){ // Ctrl-D reader, we also need the reader to wait for
pthread mutex unlock(&buf lock); .
break; the writer.

}
pthread_mutex_unlock(&buf_lock);

pthread mutex lock(&has read); = If not, the reader could proceed to the

O e ok (ghas read); next line before the writer even has a
chance to read from it.

}
pthread mutex lock(&done_ lock);

done = true; . . . L.
pthread mutex_unlock(&done lock); = Just like in the writer, we have a similar

return NULL; piece of code right here.

71

University of Pennsylvania

@ Poll Everywhere

void *cat _read(void *arg){
while (true){
pthread mutex_lock(&buf lock);
n = read(STDIN_FILENO, buffer, BUF_SIZE);
if (n == 0){ // Ctrl-D
pthread mutex unlock(&buf lock);
break;

}
pthread mutex unlock(&buf lock);

pthread mutex lock(&has read);
done reading = true;
pthread mutex unlock(&has_read);

pthread mutex_ lock(&has written);
while(!done_writing){
pthread mutex _unlock(&has_written);
pthread mutex lock(&has written);
}
done writing = false;
pthread mutex _unlock(&has_written);

}
// done flag set down here.

L17: Cond & Threads Wrap-up

discuss

What is missing here?

Although the writer now waits for the
reader, we also need the reader to wait for
the writer.

If not, the reader could proceed to the
next line before the writer even has a
chance to read from it.

Just like in the writer, we have a similar
piece of code right here.

And we also consume the permission to
proceed, done_writing, setting it to
false.

CIS 4480 Fall 2025

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

void *cat_write(void *arg){

while(true)q +» What is missing here?

thread mutex lock(&done lock); . . .
g (done) break; (~tock) = Now the writer needs to indicate to the

pthread_mutex_unlock(&done_lock); reader that itis done ertlng

pthread mutex lock(&has read);
while(!done_reading){
pthread mutex_unlock(&has_read);
pthread mutex_ lock(&has _read);

done reading = false;
pthread mutex unlock(&has_read);

pthread_mutex_lock(&buf_lock);
if (n > 0){
write(STDOUT_FILENO, buffer, n);

}
pthread mutex unlock(&buf lock);

¥
pthread_mutex_unlock(&done_lock);

return NULL;

73

University of Pennsylvania

@ Poll Everywhere

void *cat_write(void *arg){
while(true){

}

pthread mutex lock(&done_lock);
if (done) break;
pthread mutex unlock(&done lock);

pthread mutex lock(&has read);
while(!done_reading){
pthread mutex_unlock(&has_read);
pthread mutex_ lock(&has _read);

done reading = false;
pthread mutex unlock(&has_read);

pthread mutex lock(&buf lock);
if (n > 0){
write(STDOUT _FILENO, buffer,

}
pthread mutex unlock(&buf lock);

pthread mutex lock(&has written);
done writing = true;
pthread mutex unlock(&has_written);

pthread_mutex_unlock(&done_lock);
return NULL;

L17: Cond & Threads Wrap-up

CIS 4480 Fall 2025

pollev.com/cis5480

What is missing here?

= Now the writer needs to indicate to the

reader that it is done writing.

74

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

+~ Are these while loops necessary? Not in this example.

while (true){ while(true){
pthread_mutex_lock(&has_read);
while(!done_reading){

| pthread_cond_wait(&writer, &has_read);
}

done_reading = false;
pthread_mutex_lock(&has_read); pthread_mutex_unlock(&has_read);
done_reading = true;

pthread_mutex_unlock(&has_read); if (n>0){

| write(STDOUT_FILENO, buffer, n);
} else{
break;

while(done_reading == true) pthread_cond_signal(&writer); |
}

pthread_mutex_lock(&has_written);

while(!done_writing){ pthread_mutex_lock(&has_written);

| pthread_cond_wait(&reader, &has_written); done_writing = true;

} pthread_mutex_unlock(&has_written);
done_writing = false;

pthread_mutex_unlock(&has_written); while(done_writing == true) pthread_cond_signal(&reader);
— — pa— ’

While loops like these are used when you are worried that a thread will reach a wait, before it can be signaled,
meaning it will miss the signal!

University of Pennsylvania

@ Poll Everywhere

L17: Cond & Threads Wrap-up

CIS 4480 Fall 2025

pollev.com/cis5480

+~ Are these while loops necessary? Not in this example.

while (true){
n = read(STDIN_FILENO, buffer, BUF_SIZE);
if (n == 0){

}

pthread_mutex_lock(&has_read) ;
done_reading = true;
pthread_mutex_unlock(&has_read);

while(done_reading == true) pthread_cond_signal(&writer);

pthread_mutex_lock(&has_written);
while(!done_writing){

| pthread_cond_wait(&reader, &has_written);
}

done_writing = false;
pthread_mutex_unlock(&has_written);

If the reader is done_reading, then it will set it to true! If the writer has acquired the lock, then it must have already

been suspended before the reader could set the variable. Thus, the signal will be received! If the reader sets it
before the writer sleeps, then the writer will not even call _cond_wait.

while(true){

pthread_mutex_lock(&has_read);
while(!done_reading){

| pthread_cond_wait(&writer, &has_read);
}

done_reading = false;
pthread_mutex_unlock(&has_read);

if (n > 0){

| write(STDOUT_FILENO, buffer, n);
} else{

| break;

}

pthread_mutex_lock(&has_written);
done_writing = true;
pthread_mutex_unlock(&has_written);

while(done_writing == true) pthread_cond_signal(&reader);

L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Extra Things that you won’t be tested on.

77

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Parallel Algorithms

+ One interesting applications of threads is for faster algorithms

+» Common Example: Merge sort

78

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Merge Sort: Core Ideas

% Itis easier to sort small arrays than big arrays
+ It is quicker to merge two sorted arrays than sort an unsorted array

= Consider the two sorted arrays:

13|56 2 4 / 8
firstindex secondlndex

Output array

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Merge Sort: Core Ideas

% Itis easier to sort small arrays than big arrays
+ It is quicker to merge two sorted arrays than sort an unsorted array

= Consider the two sorted arrays:

13|56 2 4 / 8
firstindex secondIndex

Output array 1

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Merge Sort: Core Ideas

% Itis easier to sort small arrays than big arrays
+ It is quicker to merge two sorted arrays than sort an unsorted array

= Consider the two sorted arrays:

13|56 2 4 / 8
firstindex secondindex

Output array 1 2

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Merge Sort: Core Ideas

% Itis easier to sort small arrays than big arrays
+ It is quicker to merge two sorted arrays than sort an unsorted array

= Consider the two sorted arrays:

13|56 2 4 / 8
firstindex secondlndex

Output array 1 | 2 3

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Merge Sort: Core Ideas

% Itis easier to sort small arrays than big arrays
+ It is quicker to merge two sorted arrays than sort an unsorted array

= Consider the two sorted arrays:

13|56 2 4 / 8
firstindex secondindex

Output array 1 2 3| 4

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Merge Sort: Core Ideas

% Itis easier to sort small arrays than big arrays
+ It is quicker to merge two sorted arrays than sort an unsorted array

= Consider the two sorted arrays:

13|56 2 4 / 8
firstindex secondlndex

Output array 1 2 31 4|5

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Merge Sort: Core Ideas

% Itis easier to sort small arrays than big arrays
+ It is quicker to merge two sorted arrays than sort an unsorted array

= Consider the two sorted arrays:

13|56 2 | 4 | 7 | 8

Y I

firstindex secondlndex

Output array 1 | 2 314 |5 |6

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Merge Sort: Core Ideas

% Itis easier to sort small arrays than big arrays
+ It is quicker to merge two sorted arrays than sort an unsorted array

= Consider the two sorted arrays:

13|56 2 | 4 | 7 | 8

Y I

firstindex secondindex

Output array 1 | 2 314|567

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Merge Sort: Core Ideas

% Itis easier to sort small arrays than big arrays
+ It is quicker to merge two sorted arrays than sort an unsorted array

= Consider the two sorted arrays:

| X

firstindex secondlndex

Output array 1 | 2 314 |56 | 7|8

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Merge Sort: High Level Example

20 10 15 54 55 11 /8 14

CIS 4480 Fall 2025

University of Pennsylvania

L17: Cond & Threads Wrap-up

Merge Sort: High Level Example

20

10

15

54

55

11

/8

14

20

10

15

54

55

11

/8

14

University of Pennsylvania

L17: Cond & Threads Wrap-up

Merge Sort: High Level Example

20

10

15

54

55

11

/8

14

20

10

15 | 54

20

10

15

54

55

11

/8

14

55

11

/8

14

CIS 4480 Fall 2025

University of Pennsylvania

L17: Cond & Threads Wrap-up

Merge Sort: High Level Example

20 | 10 | 15 | 54 | 55 | 11 | 78 | 14
20 | 10 | 15 | 54 55 | 11 | 78 | 14

20 | 10 15 | 54 55 | 11 78 | 14

— ~ = N = N = ~

20 10 15 54 55 11 78 1

CIS 4480 Fall 2025

University of Pennsylvania

L17: Cond & Threads Wrap-up

Merge Sort: High Level Example

20 | 10 | 15 | 54 | 55 | 11 | 78 | 14
20 | 10 | 15 | 54 55 | 11 | 78 | 14

0 | 10 > | 28 >» | A B8 | &

— ~ = N = N = ~

20 10 15 54 55 11 78 14

N L N 4 N 4 N V4

10 | 20 15 | 54 11 | 55 14 | 78

CIS 4480 Fall 2025

University of Pennsylvania

L17: Cond & Threads Wrap-up

Merge Sort: High Level Example

20 | 10 | 15 | 54 | 55 | 11 | 78 | 14
20 | 10 | 15 | 54 55 | 11 | 78 | 14
20 | 10 15 | 54 55 | 11 78 | 14
— ~ = N = N = ~
20 10 15 54 55 11 78 14
N L N 4 N 4 N V4
10 | 20 15 | 54 11 | 55 14 | 78
\
10 | 15 | 20 | 54 11 | 14 | 55 | 78

CIS 4480 Fall 2025

University of Pennsylvania

L17: Cond & Threads Wrap-up

Merge Sort: High Level Example

20 | 10 | 15 | 54 | 55 | 11 | 78 | 14

20 | 10 | 15 | 54 55 | 11 | 78 | 14
20 | 10 15 | 54 55 | 11 78 | 14
— ~ = N = N = ~
20 10 15 54 55 11 78 14
N L N 4 N 4 N V4
10 | 20 15 | 54 11 | 55 14 | 78

\

10 | 15 | 20 | 54 11 | 14 | 55 | 78

/
10 | 11 | 14 | 15 | 20 | 54 | 55 | 78

CIS 4480 Fall 2025

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Merge Sort Algorithmic Analysis

+» Algorithmic analysis of merge sort gets us to O(n * log(n)) runtime.

r)

void merge sort(int[] arr, int lo, int hi) {
// lo high start at @ and arr.length respectively
int mid = (lo + hi) / 2;
merge_sort(arr, lo, mid); // sort the bottom half
merge sort(arr, mid, hi); // sort the upper half

// combine the upper and lower half into one sorted
// array containing all eles
merge(arr[lo : mid], arr[mid : hi]);

}

. J

+ We recurse log,(N) times, each recursive “layer” does O(N) work

95

University of Pennsylvania
>

L17: Cond & Threads Wrap-up

CIS 4480 Fall 2025

Merge Sort Algorithmic Analysis

«» We can use threads to speed this up:

U

(void merge sort(int[] arr, int lo, int hi) {

// lo high start at @ and arr.length respectively
int mid = (lo + hi) / 2;

// sort bottom half in parallel
pthread create(merge sort(arr, lo, mid));
merge_sort(arr, mid, hi); // sort the upper half

pthread _join(); // join the thread that did bottom half

// combine the upper and lower half into one sorted
// array containing all eles
merge(arr[lo : mid], arr[mid : hi]);

= Now we are sorting both halves of the array in parallel!

96

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ We can use threads to speed this up:

(void merge sort(int[] arr, int lo, int hi) {

// lo high start at © and arr.length respectively
int mid = (lo + hi) / 2;

// sort bottom half in parallel
pthread create(merge sort(arr, lo, mid));
merge_sort(arr, mid, hi); // sort the upper half

pthread _join(); // join the thread that did bottom half

// combine the upper and lower half into one sorted
// array containing all eles
merge(arr[lo : mid], arr[mid : hi]);
U y
= Now we are sorting both halves of the array in parallel!

= How long does this take to run?
®" How much work is being done? 97

University of Pennsylvania L17: Cond & Threads Wrap-up CIS 4480 Fall 2025

Will not test you on this

Parallel Algos:

+ We can define T(n) to be the running time of our algorithm

+» We can split up our work between two parts, the part done sequentially, and
the part done in parallel
= T(n) = sequential_part + parallel_part
" T(n) =0O(n) merging + T(n/2) sort half the array
 This is a recursive definition

+ |f we start recurring...
" T(n)=0(n) + O(n/2) + T(n/4)
" T(n)=0(n) + O(n/2) + O(n/4) + T(n/8)

98

University of Pennsylvania L17: Cond & Threads Wrap-up

CIS 4480 Fall 2025

Will t test thi
Parallel Algos: 1 NOTEESt yoron this

+ |f we start recurring...
" T(n)=0(n) +O(n/2) + T(n/4)
" T(n)=0(n) + O(n/2) + O(n/4) + T(n/8)

= Eventually we stop, there is a limit to the length of the array.
And we can say an array of size 1 is already sorted, so T(1) = O(1)

» This approximates to T(n) =~2 * O(n) = O(n)

= This parallel merge sort is O(n), but there are further optimizations that can be done to
reach ~O(log(n))

» There is a lot more to parallel algo analysis than just this, | am just giving you a
sneak peek

99

