
CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Cond & Threads Wrap-up
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla
 Vedansh Goenka Joy Liu
TAs:

Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane

Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones

Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng

Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

Rainy Penn by u/EllMo77
Support Ar6sts! J

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Poll: how are you?

v What is love?

2

pollev.com/cis5480

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Administrivia

v PennOS
§ Milestone 0!
§ Need to meet with your TA next week before end of Friday

• Late tokens possible to use
§ Covers general planning, understanding of sp-threads, and more!

v Today’s Recita7on 10/30 (Lead by yours truly & Eric Z perhaps)
§ Will cover threading, locks (spin/mutex), spthread & a baby schedular implementaHon.

• Ques<on focused! More prac<ce for the Final! :D
§ If you come, you’ll basically be ready to do Milestone 0 on the fly.
§ You can totally do it. I know it’s rainy and the day before Halloweenie but pls…

3

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Administrivia

v Check-In will go out sometime tonight – I’ll send an Ed Announcement.

v Don’t forget about the Mid Semester Survey! Due Tomorrow @ midnight!
§ Make sure to give us honest feedback. We’re not perfect. We are always looking to

improve, honestly.

4

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Lecture Outline

v Multithreaded Cat
§ Producer v Consumer

v Locks Only
v Locks + Boolean Flag
v Posix Condition Variables
v Amdahl's Law

§ How much can threads really help?
§ Live Mandelbrot Example

5

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Lecture Outline

v Mul7threaded Cat
§ Producer v Consumer

v Locks Only
v Locks + Boolean Flag
v Posix Condi7on Variables
v Amdahl's Law

§ How much can threads really help?
§ Live Mandelbrot Example

6

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Data Race vs Race Condition

v Implementing a Double Threaded Cat
§ Thread 1: Responsible for reading from the Terminal
§ Thread 2: Responsible for writing to the Terminal

7

🐈 : Reader

🐈 : Reader
🐈⬛ : Writer

gpt rots ur brain

🐈⬛ : Writer

Shared buffer!
stdin

stdout

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Data Race vs Race Condition

v Implemen7ng a Double Threaded Cat
§ Thread 1: Responsible for reading from the Terminal
§ Thread 2: Responsible for wriHng to the Terminal

v Doesn’t seem that bad – at a first glance, it seems all we need to do is protect
the buffer/globals from simultaneous accesses!

v Let’s take a look at our first implementa7on.

8

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

v Is there a data race here?

10

pollev.com/cis5480

void *cat_read(void *arg){
while (true){
 pthread_mutex_lock(&buf_lock);
 n = read(STDIN_FILENO, buffer, BUF_SIZE);
 if (n == 0){ // Ctrl-D
 pthread_mutex_unlock(&buf_lock);
 break;
 }
 pthread_mutex_unlock(&buf_lock);
 }
 pthread_mutex_lock(&done_lock);
 done = true;
 pthread_mutex_unlock(&done_lock);
 return NULL;

}

void *cat_write(void *arg){
 while(true){
 pthread_mutex_lock(&done_lock);
 if (done) break;
 pthread_mutex_unlock(&done_lock);
 pthread_mutex_lock(&buf_lock);
 if (n > 0){
 write(STDOUT_FILENO, buffer, n);
 }
 pthread_mutex_unlock(&buf_lock);
 }
 pthread_mutex_unlock(&done_lock);
 return NULL;
}

static bool done = false;
static ssize_t n = 0;
char buffer[BUF_SIZE] = {0};

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Race Condition vs Data Race

v Data-Race: when there are concurrent accesses to a shared resource, with at
least one write, that can cause the shared resource to enter an invalid or
“unexpected” state.

v Race-Condition: Where the program has different behavior depending on the
ordering of concurrent threads. This can happen even if all accesses to shared
resources are “atomic” or “locked”

11

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

v Is there a way for the writer to never write anything?

12

discuss

void *cat_read(void *arg){
while (true){
 pthread_mutex_lock(&buf_lock);
 n = read(STDIN_FILENO, buffer, BUF_SIZE);
 if (n == 0){ // Ctrl-D
 pthread_mutex_unlock(&buf_lock);
 break;
 }
 pthread_mutex_unlock(&buf_lock);
 }
 pthread_mutex_lock(&done_lock);
 done = true;
 pthread_mutex_unlock(&done_lock);
 return NULL;

}

void *cat_write(void *arg){
 while(true){
 pthread_mutex_lock(&done_lock);
 if (done) break;
 pthread_mutex_unlock(&done_lock);
 pthread_mutex_lock(&buf_lock);
 if (n > 0){
 write(STDOUT_FILENO, buffer, n);
 }
 pthread_mutex_unlock(&buf_lock);
 }
 pthread_mutex_unlock(&done_lock);
 return NULL;
}

static bool done = false;
static ssize_t n = 0;
char buffer[BUF_SIZE] = {0};

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Thread Communica=on

v Threads may need to communicate with each other to know when they can
perform operations
§ (almost like giving each other for permission to proceed)

v Example: Producer and consumer threads
§ One thread creates tasks/data (Our reader)
§ One thread consumes the produced tasks/data to perform some operation (Our writer)
§ The consumer thread can only consume things once the producer has produced them

v Need to make sure this communication has no data race or race condition.
§ This is the hardest thing to reason about. Lots of sketching and tracing.

14

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Lecture Outline

v Multithreaded Cat
§ Producer v Consumer

v Locks Only
v Locks + Boolean Flag
v Posix Condition Variables
v Amdahl's Law

§ How much can threads really help?
§ Live Mandelbrot Example

15

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Producer & Consumer Problem

v Common design pattern in concurrent programming.
§ There are at least two threads, at least one producer and at least one consumer.
§ The producer threads create some data that is then added to a shared data structure
§ Consumers will process and remove data from the shared data structure

v Let’s try to go ahead and fix our example doubly threaded cat as best we can.

16

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Producer Consumer Example

v Which needs to proceed first, the reader
or the writer in our example?

v We have to ensure that our reader reads
before the other thread writes.

v Currently, we don’t have anything to
change here. So let’s check out our
writer.

17

void *cat_read(void *arg){
while (true){
 pthread_mutex_lock(&buf_lock);
 n = read(STDIN_FILENO, buffer, BUF_SIZE);
 if (n == 0){ // Ctrl-D
 pthread_mutex_unlock(&buf_lock);
 break;
 }
 pthread_mutex_unlock(&buf_lock);
 }
 pthread_mutex_lock(&done_lock);
 done = true;
 pthread_mutex_unlock(&done_lock);
 return NULL;

}

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Producer Consumer Example

v Would be great to not attempt to write
before we’re sure the reader has read so
lets go ahead and do this.

18

void *cat_write(void *arg){
 while(true){
 pthread_mutex_lock(&done_lock);
 if (done) break;
 pthread_mutex_unlock(&done_lock);

 pthread_mutex_lock(&buf_lock);
 if (n > 0){
 write(STDOUT_FILENO, buffer, n);
 }
 pthread_mutex_unlock(&buf_lock);
 }
 pthread_mutex_unlock(&done_lock);
 return NULL;
}

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Producer Consumer Example
v Would be great to not a7empt to write

before we’re sure the reader has read
so lets go ahead and do this.

v We’ll use a done_reading bool to
indicate if reader is done reading and
use a mutex for that variable.
§ Writer will reset the variable.

(Consume the permission)

v We pass this red square once the
reader has read into the buffer. So let’s
go back to the reader to ensure we set
this flag. 19

void *cat_write(void *arg){
 while(true){
 pthread_mutex_lock(&done_lock);
 if (done) break;
 pthread_mutex_unlock(&done_lock);

pthread_mutex_lock(&has_read);
while(!done_reading){

pthread_mutex_unlock(&has_read);
pthread_mutex_lock(&has_read);

}
done_reading = false;
pthread_mutex_unlock(&has_read);

 pthread_mutex_lock(&buf_lock);
 if (n > 0){
 write(STDOUT_FILENO, buffer, n);
 }
 pthread_mutex_unlock(&buf_lock);
 }
 pthread_mutex_unlock(&done_lock);
 return NULL;
}

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Producer Consumer Example

v Where should we indicate that we are
done reading?
§ Once we are actually done reading!

v But what else do we need to do?

20

void *cat_read(void *arg){
while (true){
 pthread_mutex_lock(&buf_lock);
 n = read(STDIN_FILENO, buffer, BUF_SIZE);
 if (n == 0){ // Ctrl-D
 pthread_mutex_unlock(&buf_lock);
 break;
 }
 pthread_mutex_unlock(&buf_lock);

pthread_mutex_lock(&has_read);
done_reading = true;
pthread_mutex_unlock(&has_read);

 }
 pthread_mutex_lock(&done_lock);
 done = true;
 pthread_mutex_unlock(&done_lock);
 return NULL;

}

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

21

discuss

void *cat_read(void *arg){
while (true){
 pthread_mutex_lock(&buf_lock);
 n = read(STDIN_FILENO, buffer, BUF_SIZE);
 if (n == 0){ // Ctrl-D
 pthread_mutex_unlock(&buf_lock);
 break;
 }
 pthread_mutex_unlock(&buf_lock);

pthread_mutex_lock(&has_read);
done_reading = true;
pthread_mutex_unlock(&has_read);

 }
 pthread_mutex_lock(&done_lock);
 done = true;
 pthread_mutex_unlock(&done_lock);
 return NULL;

}

v What is missing here?

void *cat_write(void *arg){
 while(true){
 pthread_mutex_lock(&done_lock);
 if (done) break;
 pthread_mutex_unlock(&done_lock);

pthread_mutex_lock(&has_read);
while(!done_reading){

pthread_mutex_unlock(&has_read);
pthread_mutex_lock(&has_read);

}
done_reading = false;
pthread_mutex_unlock(&has_read);

 pthread_mutex_lock(&buf_lock);
 if (n > 0){
 write(STDOUT_FILENO, buffer, n);
 }
 pthread_mutex_unlock(&buf_lock);
 }
 pthread_mutex_unlock(&done_lock);
 return NULL;
}

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

24

pollev.com/cis5480

void *cat_read(void *arg){
while (true){
 pthread_mutex_lock(&buf_lock);
 n = read(STDIN_FILENO, buffer, BUF_SIZE);
 if (n == 0){ // Ctrl-D
 pthread_mutex_unlock(&buf_lock);
 break;
 }
 pthread_mutex_unlock(&buf_lock);

pthread_mutex_lock(&has_read);
done_reading = true;
pthread_mutex_unlock(&has_read);

pthread_mutex_lock(&has_written);
while(!done_writing){

pthread_mutex_unlock(&has_written);
pthread_mutex_lock(&has_written);

}
done_writing = false;
pthread_mutex_unlock(&has_written);

 }

}

void *cat_write(void *arg){
 while(true){
 pthread_mutex_lock(&done_lock);
 if (done) break;
 pthread_mutex_unlock(&done_lock);

pthread_mutex_lock(&has_read);
while(!done_reading){

pthread_mutex_unlock(&has_read);
pthread_mutex_lock(&has_read);

}
done_reading = false;
pthread_mutex_unlock(&has_read);

 pthread_mutex_lock(&buf_lock);
 if (n > 0){
 write(STDOUT_FILENO, buffer, n);
 }
 pthread_mutex_unlock(&buf_lock);
 }
 pthread_mutex_unlock(&done_lock);
 return NULL;
}

What is missing here? One more piece left.

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Let’s Simplify and demo!

27

void *cat_write(void *arg){
 while(true){

pthread_mutex_lock(&has_read);
while(!done_reading){

pthread_mutex_unlock(&has_read);
pthread_mutex_lock(&has_read);

}
done_reading = false;
pthread_mutex_unlock(&has_read);

 pthread_mutex_lock(&buf_lock);
 if (n > 0){
 write(STDOUT_FILENO, buffer, n);
 } else {
 pthread_mutex_unlock(&buf_lock);
 break;
 }
 pthread_mutex_unlock(&buf_lock);

pthread_mutex_lock(&has_written);
done_writing = true;
pthread_mutex_unlock(&has_written);

 }
 return NULL;
}

void *cat_read(void *arg){
while (true){
 pthread_mutex_lock(&buf_lock);
 n = read(STDIN_FILENO, buffer, BUF_SIZE);
 if (n == 0){ // Ctrl-D
 pthread_mutex_unlock(&buf_lock);
 break;
 }
 pthread_mutex_unlock(&buf_lock);

pthread_mutex_lock(&has_read);
done_reading = true;
pthread_mutex_unlock(&has_read);

pthread_mutex_lock(&has_written);
while(!done_writing){

pthread_mutex_unlock(&has_written);
pthread_mutex_lock(&has_written);

}
done_writing = false;
pthread_mutex_unlock(&has_written);

 } //checkout code for edge case…
return NULL;

}

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Can we do better?

v The code is correct, but do we no7ce anything wrong with this code?

v Maybe a common inefficiency that I have told you about several 7mes before
(just in other contexts?)

v The consumer code “busy waits” when there is nothing for it to consume and
the producer “busy waits” for the consumer to consume

v For us, the Writer busy waits un7l there is something to write and the Reader
busy waits un7l the Writer is done wri7ng.

28

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Do we need buf_lock here?

29

void *cat_write(void *arg){
 while(true){

pthread_mutex_lock(&has_read);
while(!done_reading){

pthread_mutex_unlock(&has_read);
pthread_mutex_lock(&has_read);

}
done_reading = false;
pthread_mutex_unlock(&has_read);

 pthread_mutex_lock(&buf_lock);
 if (n > 0){
 write(STDOUT_FILENO, buffer, n);
 } else {
 pthread_mutex_unlock(&buf_lock);
 break;
 }
 pthread_mutex_unlock(&buf_lock);

pthread_mutex_lock(&has_written);
done_writing = true;
pthread_mutex_unlock(&has_written);

 }
 return NULL;
}

void *cat_read(void *arg){
while (true){
 pthread_mutex_lock(&buf_lock);
 n = read(STDIN_FILENO, buffer, BUF_SIZE);
 if (n == 0){ // Ctrl-D
 pthread_mutex_unlock(&buf_lock);
 break;
 }
 pthread_mutex_unlock(&buf_lock);

pthread_mutex_lock(&has_read);
done_reading = true;
pthread_mutex_unlock(&has_read);

pthread_mutex_lock(&has_written);
while(!done_writing){

pthread_mutex_unlock(&has_written);
pthread_mutex_lock(&has_written);

}
done_writing = false;
pthread_mutex_unlock(&has_written);

 } //checkout code for edge case…
return NULL;

}

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Thread Communica=on: Naïve Solu=on

v Consider the previous example where a thread must wait to be notified before
it can continue…

v Possible solution: “Spinning”
§ Infinitely loop until the producer thread notifies that the consumer thread can print

v See cat_spin.c
§ The thread in the loop uses A LOT of cpu just checking until the value is safe
§ Use htop to see CPU util

v Alternative: Condition variables

30

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Lecture Outline

v Multithreaded Cat
§ Producer v Consumer

v Locks Only
v Locks + Boolean Flag
v Posix Condition Variables
v Amdahl's Law

§ How much can threads really help?
§ Live Mandelbrot Example

31

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condition Variables

v Variables that allow for a thread to wait (suspend) until they are notified
(continued) to resume

v Avoids waiting clock cycles “spinning”

v Done in the context of mutual exclusion (That’s how you check the condition…)
§ A thread must already have a lock, which it will temporarily release while waiting
§ Once notified, the thread will re-acquire a lock and resume execution

v Honestly, the look much nicer in C++ but we are limited to our lovely C.

32

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

pthreads and condition variables

v pthread.h defines datatype pthread_cond_t

v pthread_mutex_init()

§ IniHalizes a condiHon variable with specified a^ributes

v
§ “UniniHalizes” a condiHon variable – clean up when done

v Just do this to sta7cally ini7alize:

33

int pthread_cond_init(pthread_cond_t* cond,
 const pthread_condattr_t* attr);

int pthread_cond_destroy(pthread_cond_t* cond);

pthread_cond_t cv = PTHREAD_COND_INITIALIZER;

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condi=on Variables

v Done in the context of mutual exclusion
§ A thread must already have a lock, which it will temporarily release while waiting
§ Once notified, the thread will re-acquire a lock and resume execution

34

//assume these are already initialized
condition_var cv;
mutex m;

lock(&m); //lock m first
while(some_cond_is_false){
 wait(&cv, &m); //wait here, release the mutex m and suspend
 // when re-woken, we lock m again if we can…if not, we block…
}
// m is locked when we leave this loop!
unlock(&m);

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

pthreads and condi=on variables

v pthread.h defines datatype pthread_cond_t

v pthread_mutex_init()

§ Atomically releases the mutex and blocks on the condiHon variable. Once unblocked (by
one of the funcHons below), funcHon will return and calling thread will have the mutex
locked

§ Wakes up at least one of the threads which is waiHng on the condiHon cond

§ Wakes up at all of the threads waiHng on the condiHon cond

35

int pthread_cond_broadcast(pthread_cond_t* cond);

int pthread_cond_signal(pthread_cond_t* cond);

int pthread_cond_wait(pthread_cond_t* cond, pthread_mutex_t* mutex);

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

pthread_cond_t Internal Pseudo-Code
v Here is some pseudo code to help understand condition variables

36

int pthread_cond_wait(pthread_cond_t* cond, pthead_mutex_t* lock) {
 pthread_mutex_unlock(&lock);
 sleep_on_cond(cond); // this and previous line happen atomically
 pthread_mutex_lock(&lock);
 return 0;
}

int pthread_cond_signal(pthread_cond_t* cond) {
 wakeup_a_thread(cond); // wake up a thread sleeping on the cond
 return 0;

}

int pthread_cond_broadcast(pthread_cond_t* cond) {
 for (thread_sleeping : cond->asleep) { // wake's up all threads
 wakeup(thread_sleeping);
 }
 return 0;

}

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

A Condition is Necessary

v This appears to force a thread to be suspended until another signals it.

v However, threads can have “spurious” wakeups. The thread that is suspended
on the condition can wakeup even before another signal signals it.

v All to say, make sure to protect your condition variables with a condition….

37

pthread_mutex_lock(&lock);
pthread_cond_wait(&cv, &lock);

pthread_mutex_unlock(&lock);

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condition Variable & Mutex Visualization

v A possible condition variable visualization.

38

Cri@cal Sec@onEntrance Exit

sleeping
room

Wai@ng
room

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condi=on Variable & Mutex Visualiza=on

v A possible condition variable visualization.

39

Cri@cal Sec@onEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock

A thread enters the critical section by acquiring a lock

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condition Variable & Mutex Visualization

v A possible condition variable visualization.

40

Cri@cal Sec@onEntrance Exit

sleeping
room

Wai@ng
room

pthread_mutex_lock pthread_mutex_unlock

A thread can exit the critical section by releasing the lock

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condi=on Variable & Mutex Visualiza=on

v A possible condi7on variable visualiza7on.

41

Critical SectionEntrance Exit

sleeping
room

Wai@ng
room

pthread_mutex_lock pthread_mutex_unlock

pthread_cond_wait

If a thread can’t complete its action, or must wait for some change in
state, it can “go to sleep” until someone wakes it up later.
It will release the lock implicitly when it goes to sleep

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condi=on Variable & Mutex Visualiza=on

v A possible condi7on variable visualiza7on.

42

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock pthread_cond_signal
pthread_mutex_unlock

pthread_cond_wait

When a thread modifies state and then leaves the critical section, it can also call
pthread_cond_signal to wake up threads sleeping on that condition variable

“WAKEUP”

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condi=on Variable & Mutex Visualiza=on

v A possible condi7on variable visualiza7on.

43

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock pthread_cond_signal
pthread_mutex_unlock

pthread_cond_wait

One or more sleeping threads wake up and attempt to acquire the lock.
Like a normal call to pthread_mutex_lock the thread will block until it can acquire the lock

Implicit call to
pthread_mutex_lock

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condi=on Variable & Mutex Visualiza=on with our CAT!

44

Cri@cal Sec@on
Access to buffer and n

🐈 : Reader
🐈⬛ : Writer
done_reading = false
done_writing = false

🐈⬛

🐈

Writer Sleeping Room Writer Wai@ng Room

Enters to read

sleeps as done_reading
 is false

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condi=on Variable & Mutex Visualiza=on with our CAT!

45

Cri@cal Sec@on
Access to buffer and n

Reader Sleeping Room

🐈 : Reader
🐈⬛ : Writer
done_reading = false
done_writing = false

💤 🐈⬛

Reader Waiting Room

🐈

Writer Sleeping Room Writer Wai@ng Room

Reads

done_reading is false
pthread_cond_wait

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condi=on Variable & Mutex Visualiza=on with our CAT!

46

Cri@cal Sec@on
Access to buffer and n

Writer Sleeping Room

🐈 : Reader
🐈⬛ : Writer
done_reading = true
done_writing = false

💤 🐈⬛

Writer Waiting Room

🐈

Writer Sleeping Room Writer Wai@ng Room

done_reading = true
pthread_cond_signal(🐈⬛)

done_reading is false
pthread_cond_wait

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condi=on Variable & Mutex Visualiza=on with our CAT!

47

Cri@cal Sec@on
Access to buffer and n

Writer Sleeping Room

🐈 : Reader
🐈⬛ : Writer
done_reading = true
done_writing = false

☀ 🐈⬛
Writer Waiting Room

🐈

Writer Sleeping Room Writer Wai@ng Room

done_reading = true
pthread_cond_signal(🐈⬛)

Goes to sleep as
done_wri@ng is false

goes into waiting room to
aquire lock and check
 if done_reading!

done_reading is false
pthread_cond_wait

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condi=on Variable & Mutex Visualiza=on with our CAT!

48

Cri@cal Sec@on

Writer Sleeping Room

🐈 : Reader
🐈⬛ : Writer
done_reading = true
done_writing = false

🐈⬛

Writer Waiting Room

💤 🐈

Writer Sleeping Room Writer Wai@ng Room

done_reading = true
pthread_cond_signal(🐈⬛)

If(done_reading) ✅

done_writing is false
pthread_cond_wait

done_reading = false
when writer enters

done_reading is false
pthread_cond_wait

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condition Variable & Mutex Visualization with our CAT!

49

Critical Section
Access to buffer and n

Writer Sleeping Room

🐈 : Reader
🐈⬛ : Writer
done_reading = false
done_wri@ng = false

🐈⬛

Writer Wai@ng Room

Writer Sleeping Room Writer Wai@ng Room

done_reading = true
pthread_cond_signal(🐈⬛)

If(done_reading) ✅

Writes the contents

💤 🐈
done_wri@ng is false
pthread_cond_wait

done_reading is false
pthread_cond_wait

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condi=on Variable & Mutex Visualiza=on with our CAT!

50

Cri@cal Sec@on

Writer Sleeping Room

🐈 : Reader
🐈⬛ : Writer
done_reading = false
done_writing = true

🐈⬛

Writer Waiting Room

Writer Sleeping Room Writer Waiting Room

done_reading = true
pthread_cond_signal(🐈⬛)

If(done_reading) ✅

done_writing = true
pthread_cond_signal(🐈)

💤 🐈
done_wri@ng is false
pthread_cond_wait

done_reading is false
pthread_cond_wait

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condi=on Variable & Mutex Visualiza=on with our CAT!

51

Critical Section

Writer Sleeping Room

🐈 : Reader
🐈⬛ : Writer
done_reading = true
done_wri@ng = false🐈⬛

Writer Wai@ng Room

☀ 🐈

Writer Sleeping Room Writer Waiting Room

done_reading = true
pthread_cond_signal(🐈⬛)

If(done_reading) ✅

done_wri@ng is true

pthread_cond_wait

done_reading is false
pthread_cond_wait

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condi=on Variable & Mutex Visualiza=on with our CAT!

52

Cri@cal Sec@on

Writer Sleeping Room

🐈 : Reader
🐈⬛ : Writer
done_reading = false
done_wri@ng = false

Writer Wai@ng Room

☀ 🐈

Writer Sleeping Room Writer Waiting Room

done_reading = true
pthread_cond_signal(🐈⬛)

If(done_reading) ✅

pthread_cond_wait

Before reading, set done_wri@ng to false.

🐈⬛

done_reading is false
pthread_cond_wait

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condition Variable & Mutex Visualization with our CAT!

53

Cri@cal Sec@on

Exit

Writer Sleeping Room

🐈 : Reader
🐈⬛ : Writer
done_reading = false
done_writing = false

🐈⬛

Writer Waiting Room

🐈

Writer Sleeping Room Writer Wai@ng Room

done_reading = true
pthread_cond_signal(🐈⬛)

If(done_reading) ✅

pthread_cond_wait

cntrl-d

done_reading = true
pthread_cond_signal(🐈⬛)

done_reading is false
pthread_cond_wait

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condi=on Variable & Mutex Visualiza=on with our CAT!

54

Cri@cal Sec@on

Exit

Writer Sleeping Room

🐈 : Reader
🐈⬛ : Writer
done_reading = false
done_wri@ng = false

🐈⬛

Writer Wai@ng Room

🐈

Writer Sleeping Room Writer Waiting Room

done_reading = true
pthread_cond_signal(🐈⬛)

If(done_reading) ✅

pthread_cond_wait

done_reading = true
pthread_cond_signal(🐈⬛)

done_reading is false
pthread_cond_wait

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condi=on Variable & Mutex Visualiza=on with our CAT!

55

Cri@cal Sec@on

Exit

Writer Sleeping Room

🐈 : Reader
🐈⬛ : Writer
done_reading = false
done_wri@ng = false

🐈⬛

Writer Wai@ng Room

🐈

Writer Sleeping Room Writer Wai@ng Room

done_reading = true
pthread_cond_signal(🐈⬛)

If(done_reading) ✅

pthread_cond_wait

done_reading = true
pthread_cond_signal(🐈⬛)

done_reading = false

done_reading is false
pthread_cond_wait

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condition Variable & Mutex Visualization with our CAT!

56

Critical Section

Exit

Writer Sleeping Room

🐈 : Reader
🐈⬛ : Writer
done_reading = false
done_wri@ng = false

🐈⬛

Writer Waiting Room

🐈

Writer Sleeping Room Writer Wai@ng Room

done_reading = true
pthread_cond_signal(🐈⬛)

If(done_reading) ✅

pthread_cond_wait

done_reading = true
pthread_cond_signal(🐈⬛)

done_reading = false

n = 0 (nothing to write! ctrl-d!)

done_reading is false
pthread_cond_wait

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Condi=on Variable & Mutex Visualiza=on with our CAT!

57

Critical Section

Exit

Writer Sleeping Room

🐈 : Reader
🐈⬛ : Writer
done_reading = false
done_wri@ng = false

🐈⬛

Writer Wai@ng Room

🐈

Writer Sleeping Room Writer Wai@ng Room

done_reading = true
pthread_cond_signal(🐈⬛)

If(done_reading) ✅

pthread_cond_wait

done_reading = false

done_reading is false
pthread_cond_wait

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Demo: cat_cv.c

v Let’s check out the cat_cv implementa7on and see how it differs with
u7liza7on!

58

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

59

pollev.com/cis5480

v Are these while loops necessary?

writer reader

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

A Quick Introduc=on; Semaphores

v Condition Variable, Mutex, & Bool
§ All of these together, helped us create a rudimentary Semaphore.
§ Semaphores allow threads to either

• Continue (The light is green)
• Stop (The light is red)

v We made two Semaphores(0)
§ Where 0 means that no threads can pass.
§ Until the other threads set the bool to (1), then one thread passes.
§ That thread then takes that permission slip, and thus resets the semaphore to (0).

v Our Example uses a Boolean, but for multiple threads, you can use a signed
integer.
§ Try to see if you can implement one yourself as practice!

62

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Lecture Outline

v Mul7threaded Cat
§ Producer v Consumer

v Locks Only
v Locks + Boolean Flag
v Posix Condi7on Variables
v Amdahl's Law

§ How much can threads really help?
§ Live Mandelbrot Example

63

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Amdahl's Law

v For most algorithms, there are parts that parallelize well and parts that don’t.
This causes adding threads to have diminishing returns
§ (even ignoring the overhead costs of creaHng & scheduling threads)

v Consider we have some parallel algorithm T1 = 1
§ The 1 subscript indicates this is run on 1 thread
§ we define the work for the enHre algorithm as 1

v We define S as being the percentage that can be parallelized
§ T1 = S + (1 – S) // (1-S) is the sequen0al part

64

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Amdahl's Law

v For running on one thread:
§ T1 = (1 – S) + S

v If we have P threads and perfect linear speedup on the parallelizable part, we
get

§ TP = (1-S) + !
"

v Speed up mul=plier for P threads from sequen=al is:

§ #!
#"

 = $

$%!&#$

65

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Amdahl's Law

v Let’s say that we have 100000 threads (P = 100000) and our algorithm is only
2/3 parallel? (s = 0.6666..)

§ #!
#"

 = $
$%'.))))& %.''''

!%%%%%
= 2.9999	𝑡𝑖𝑚𝑒𝑠	𝑓𝑎𝑠𝑡𝑒𝑟	𝑡ℎ𝑎𝑛	𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

v What if it is 90% parallel? (S = 0.9):

§ #!
#"

 = $
$%'.*& %.(

!%%%%%
= 9.99	𝑡𝑖𝑚𝑒𝑠	𝑓𝑎𝑠𝑡𝑒𝑟	𝑡ℎ𝑎𝑛	𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

v What if it is 99% parallel? (S = 0.99):

§ #!
#"

 = $
$%'.**& %.((

!%%%%%
= 99.99	𝑡𝑖𝑚𝑒𝑠	𝑓𝑎𝑠𝑡𝑒𝑟	𝑡ℎ𝑎𝑛	𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

66

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Limita=on: Hardware Threads

v These algorithms are limited by hardware.
v Number of Hardware Threads: The number of threads can genuinely run in

parallel on hardware

v We may be able to create a huge number of threads, but only run a few (e.g. 4)
in parallel at a time.

v Can see this information in with lscpu in bash
§ A computer can have some number of CPU sockets
§ Each CPU can have one or more cores
§ Each Core can run 1 or more threads

67

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

If Time: Fun Example – Mandelbrot Sets

v Singly Threaded v Mul=threaded (12 threads)

68

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

That’s all!

v As prac=ce, see if you can implement the writer/reader cat from scratch going
from Spining Mutex Locks to Condi=on Variables!
§ This is great pracHce since it’s not straigheorward to synchronize two threads.

69

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

v Exam style quesBon: Is there a way for the writer to never write anything?

v Yes. If the reader is always pre-empted by the writer when it has the buf_lock,
then the writer will never be able to enter the write condiBon because it can
never acquire the lock! (The writer will starve.)

70

discuss

void *cat_read(void *arg){
while (true){
 pthread_mutex_lock(&buf_lock);
 n = read(STDIN_FILENO, buffer, BUF_SIZE);
 if (n == 0){ // Ctrl-D
 pthread_mutex_unlock(&buf_lock);
 break;
 }
 pthread_mutex_unlock(&buf_lock);
 }
 pthread_mutex_lock(&done_lock);
 done = true;
 pthread_mutex_unlock(&done_lock);
 return NULL;

}

void *cat_write(void *arg){
 while(true){
 pthread_mutex_lock(&done_lock);
 if (done) break;
 pthread_mutex_unlock(&done_lock);
 pthread_mutex_lock(&buf_lock);
 if (n > 0){
 write(STDOUT_FILENO, buffer, n);
 }
 pthread_mutex_unlock(&buf_lock);
 }
 pthread_mutex_unlock(&done_lock);
 return NULL;
}

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

71

discuss

void *cat_read(void *arg){
while (true){
 pthread_mutex_lock(&buf_lock);
 n = read(STDIN_FILENO, buffer, BUF_SIZE);
 if (n == 0){ // Ctrl-D
 pthread_mutex_unlock(&buf_lock);
 break;
 }
 pthread_mutex_unlock(&buf_lock);

pthread_mutex_lock(&has_read);
done_reading = true;
pthread_mutex_unlock(&has_read);

 }
 pthread_mutex_lock(&done_lock);
 done = true;
 pthread_mutex_unlock(&done_lock);
 return NULL;

}

v What is missing here?
§ Although the writer now waits for the

reader, we also need the reader to wait for
the writer.

§ If not, the reader could proceed to the
next line before the writer even has a
chance to read from it.

§ Just like in the writer, we have a similar
piece of code right here.

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

72

discuss

void *cat_read(void *arg){
while (true){
 pthread_mutex_lock(&buf_lock);
 n = read(STDIN_FILENO, buffer, BUF_SIZE);
 if (n == 0){ // Ctrl-D
 pthread_mutex_unlock(&buf_lock);
 break;
 }
 pthread_mutex_unlock(&buf_lock);

pthread_mutex_lock(&has_read);
done_reading = true;
pthread_mutex_unlock(&has_read);

pthread_mutex_lock(&has_written);
while(!done_writing){

pthread_mutex_unlock(&has_written);
pthread_mutex_lock(&has_written);

}
done_writing = false;
pthread_mutex_unlock(&has_written);

 }
 // done flag set down here.
}

v What is missing here?
§ Although the writer now waits for the

reader, we also need the reader to wait for
the writer.

§ If not, the reader could proceed to the
next line before the writer even has a
chance to read from it.

§ Just like in the writer, we have a similar
piece of code right here.

§ And we also consume the permission to
proceed, done_writing, se=ng it to
false.

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

73

pollev.com/cis5480

void *cat_write(void *arg){
 while(true){
 pthread_mutex_lock(&done_lock);
 if (done) break;
 pthread_mutex_unlock(&done_lock);

pthread_mutex_lock(&has_read);
while(!done_reading){

pthread_mutex_unlock(&has_read);
pthread_mutex_lock(&has_read);

}
done_reading = false;
pthread_mutex_unlock(&has_read);

 pthread_mutex_lock(&buf_lock);
 if (n > 0){
 write(STDOUT_FILENO, buffer, n);
 }
 pthread_mutex_unlock(&buf_lock);

}
 pthread_mutex_unlock(&done_lock);
 return NULL;
}

v What is missing here?
§ Now the writer needs to indicate to the

reader that it is done wri?ng.

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

74

pollev.com/cis5480

void *cat_write(void *arg){
 while(true){
 pthread_mutex_lock(&done_lock);
 if (done) break;
 pthread_mutex_unlock(&done_lock);

pthread_mutex_lock(&has_read);
while(!done_reading){

pthread_mutex_unlock(&has_read);
pthread_mutex_lock(&has_read);

}
done_reading = false;
pthread_mutex_unlock(&has_read);

 pthread_mutex_lock(&buf_lock);
 if (n > 0){
 write(STDOUT_FILENO, buffer, n);
 }
 pthread_mutex_unlock(&buf_lock);

pthread_mutex_lock(&has_written);
done_writing = true;
pthread_mutex_unlock(&has_written);

 }
 pthread_mutex_unlock(&done_lock);
 return NULL;
}

v What is missing here?
§ Now the writer needs to indicate to the

reader that it is done wri?ng.

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

75

pollev.com/cis5480

v Are these while loops necessary? Not in this example.

While loops like these are used when you are worried that a thread will reach a wait, before it can be signaled,
meaning it will miss the signal!

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

76

pollev.com/cis5480

v Are these while loops necessary? Not in this example.

If the reader is done_reading, then it will set it to true! If the writer has acquired the lock, then it must have already
been suspended before the reader could set the variable. Thus, the signal will be received! If the reader sets it
before the writer sleeps, then the writer will not even call _cond_wait.

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Extra Things that you won’t be tested on.

77

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Parallel Algorithms

v One interes=ng applica=ons of threads is for faster algorithms

v Common Example: Merge sort

78

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort: Core Ideas

v It is easier to sort small arrays than big arrays
v It is quicker to merge two sorted arrays than sort an unsorted array

§ Consider the two sorted arrays:

2 4 7 81 3 5 6

Output array

firstIndex secondIndex

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort: Core Ideas

v It is easier to sort small arrays than big arrays
v It is quicker to merge two sorted arrays than sort an unsorted array

§ Consider the two sorted arrays:

2 4 7 81 3 5 6

1Output array

firstIndex secondIndex

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort: Core Ideas

v It is easier to sort small arrays than big arrays
v It is quicker to merge two sorted arrays than sort an unsorted array

§ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2Output array

firstIndex secondIndex

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort: Core Ideas

v It is easier to sort small arrays than big arrays
v It is quicker to merge two sorted arrays than sort an unsorted array

§ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3Output array

firstIndex secondIndex

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort: Core Ideas

v It is easier to sort small arrays than big arrays
v It is quicker to merge two sorted arrays than sort an unsorted array

§ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4Output array

firstIndex secondIndex

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort: Core Ideas

v It is easier to sort small arrays than big arrays
v It is quicker to merge two sorted arrays than sort an unsorted array

§ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4 5Output array

firstIndex secondIndex

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort: Core Ideas

v It is easier to sort small arrays than big arrays
v It is quicker to merge two sorted arrays than sort an unsorted array

§ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4 5 6Output array

firstIndex secondIndex

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort: Core Ideas

v It is easier to sort small arrays than big arrays
v It is quicker to merge two sorted arrays than sort an unsorted array

§ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4 5 6 7Output array

firstIndex secondIndex

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort: Core Ideas

v It is easier to sort small arrays than big arrays
v It is quicker to merge two sorted arrays than sort an unsorted array

§ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4 5 6 7 8Output array

firstIndex secondIndex

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78

10 11 14 15 20 54 55 78

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

v Algorithmic analysis of merge sort gets us to O(n * log(n)) runtime.

v We recurse log2(N) times, each recursive “layer” does O(N) work

95

void merge_sort(int[] arr, int lo, int hi) {
 // lo high start at 0 and arr.length respectively
 int mid = (lo + hi) / 2;
 merge_sort(arr, lo, mid); // sort the bottom half
 merge_sort(arr, mid, hi); // sort the upper half

 // combine the upper and lower half into one sorted
 // array containing all eles
 merge(arr[lo : mid], arr[mid : hi]);
}

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

v We can use threads to speed this up:

§ Now we are sorting both halves of the array in parallel!

96

void merge_sort(int[] arr, int lo, int hi) {
 // lo high start at 0 and arr.length respectively
 int mid = (lo + hi) / 2;

 // sort bottom half in parallel
 pthread_create(merge_sort(arr, lo, mid));
 merge_sort(arr, mid, hi); // sort the upper half

 pthread_join(); // join the thread that did bottom half

 // combine the upper and lower half into one sorted
 // array containing all eles
 merge(arr[lo : mid], arr[mid : hi]);
}

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

v We can use threads to speed this up:

§ Now we are sorting both halves of the array in parallel!
§ How long does this take to run?
§ How much work is being done? 97

void merge_sort(int[] arr, int lo, int hi) {
 // lo high start at 0 and arr.length respectively
 int mid = (lo + hi) / 2;

 // sort bottom half in parallel
 pthread_create(merge_sort(arr, lo, mid));
 merge_sort(arr, mid, hi); // sort the upper half

 pthread_join(); // join the thread that did bottom half

 // combine the upper and lower half into one sorted
 // array containing all eles
 merge(arr[lo : mid], arr[mid : hi]);
}

pollev.com/cis5480

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Parallel Algos:

v We can define T(n) to be the running time of our algorithm

v We can split up our work between two parts, the part done sequentially, and
the part done in parallel
§ T(n) = sequential_part + parallel_part
§ T(n) = O(n) merging + T(n/2) sort half the array

• This is a recursive definition

v If we start recurring…
§ T(n) = O(n) + O(n/2) + T(n/4)
§ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

98

Will not test you on this

CIS 4480 Fall 2025L17: Cond & Threads Wrap-upUniversity of Pennsylvania

Parallel Algos:

v If we start recurring…
§ T(n) = O(n) + O(n/2) + T(n/4)
§ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)
§ …
§ Eventually we stop, there is a limit to the length of the array.

And we can say an array of size 1 is already sorted, so T(1) = O(1)

v This approximates to T(n) = ~2 * O(n) = O(n)
§ This parallel merge sort is O(n), but there are further optimizations that can be done to

reach ~O(log(n))

v There is a lot more to parallel algo analysis than just this, I am just giving you a
sneak peek 99

Will not test you on this

