
CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Locality, Buffering, Caches
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla

Vedansh Goenka Joy Liu

TAs:

Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane

Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones

Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng

Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ If you were in charge of writing some software, what qualities would you
prioritize?

2

pollev.com/cis5480

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Administrivia

❖ PennOS

▪ Meet with your TAs by the end of this week!

▪ If you meet after Friday (unless there’s no other availability) then you will use up your late
tokens.

▪ Your TAs are going to be your life line if you have any questions regrading PennOS!

❖ Check-In 07
▪ Make sure to get that in today!

▪ Due at 5PM today. So if you forgot, you still have a chance to turn it in!

❖ Recitation this week! Same time same place.

▪ Led by Vedansh and Akash

3

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Lecture Outline

❖ Ideology
❖ Locality
❖ Buffering
❖ Caches

4

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ If you were in charge of writing some software, what qualities would you
prioritize?

5

pollev.com/cis5480

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Some Answers I’d Expect

❖ Efficiency
❖ Correctness
❖ Privacy
❖ Accessibility
❖ Security
❖ User-Friendliness
❖ Speech Rights
❖ Trustworthiness
❖ Maintainability
❖ Versatility

6

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Efficiency is a big motivator

❖ Both historically, and today

Can be seen in our own CS curriculum

❖ APCS or CS1: different sorting algorithms
❖ Space and time complexity -> O(n)
❖ Clock cycles and frequency in hardware
❖ Compiler optimization
❖ Programming approaches: recursion v. iteration

7

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

What do we mean by efficiency?

❖ Well, what do you think we mean by it?

❖ Efficiency to do … what?

8

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Why is efficiency so relevant?

Many ways to approach “making something efficient”

❖ Constraint optimization problem

Some examples:

❖ Resource allocation

❖ Automation

❖ Production/development cycles

9

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Is Efficiency the Most Important Thing ?

❖ How often do we discuss / take into consideration:

▪ Correctness

▪ Accessibility / Universal Design

▪ Security

▪ Maintainability (scalability, readability)

10

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Software Bloat

❖ When successive features with minimal positive impact make the software
run significantly slower or use more memory

❖ Affects performance, available space, and the security of your computer

❖ Wirth’s Law (1995): software is getting slower more rapidly than hardware is
becoming faster.

11

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Examples of Software Bloat & Effects

❖ Apps growing larger in size over time

❖ Devices running slower as they age
▪ Sometimes due to the battery or something wearing out

▪ Sometimes cause the hardware is expected to do more and more

❖ Unwanted features (Grok on Twitter), Stories on Instagram (I still remember
when this happened), Location Tracking on Instagram, DM feature on
Spotify, etc etc etc.

12

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Why is Software Bloat a thing?

13

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

How is the OS responsible?

❖ Newer OS requiring more resources

❖ Can make it easier or harder to delete unwanted files
▪ Deleting applications

▪ This includes purging old data when upgrading the OS

❖ Installing features that you don’t want

▪ Apple intelligence is 4 GB

▪ Microsoft Windows (Most of it)

14

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Lecture Outline

❖ Ideology
❖ Locality
❖ Buffering
❖ Caches

15

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Memory Hierarchy

16

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Principle of Locality

❖ The tendency for the Programs to access the same set of memory locations
over a short period of time

❖ Two main types:
▪ Temporal Locality: If we access a portion of memory, we will likely reference it again soon

▪ Spatial Locality: If we access a portion of memory, we will likely reference memory close
to it in the near future.

❖ Data that is accessed frequently can be stored in hardware that is quicker to
access.

17

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Locality Analogy

❖ If we are at home and we are hungry, where do we get food from?
▪ We get it from our refrigerator!
▪ If the refrigerator is empty, we go to the grocery store
▪ When at the grocery store, we don’t just get what we want right now, but also get other

things we think we want in the near future (so that it will be in our fridge when we want it)

18

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Lecture Outline

❖ Ideology
❖ Locality
❖ Buffering
❖ Caches

19

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ If we compile this and run it, how many times is hello printed?

20

pollev.com/cis5480

int main() {
 if (fork() == 0) {
 write(STDOUT_FILENO, "hello", 5);
 }
 if (fork() == 0) {
 write(STDOUT_FILENO, "hello", 5);
 }
 return EXIT_SUCCESS;
}

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ If we compile this and run it, how many times is hello printed?

21

Raise Your Hands

int main() {
 if (fork() == 0) {
 printf("hello");
 }
 if (fork() == 0) {
 printf("hello");
 }
 return EXIT_SUCCESS;
}

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ If we compile this and run it, how many times is hello printed?

22

Raise Your Hands

int main() {
 if (fork() == 0) {
 printf("hello\n");
 }
 if (fork() == 0) {
 printf("hello\n");
 }
 return EXIT_SUCCESS;
}

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

C stdio vs POSIX

❖ Why are we getting these different outputs?

❖ Let’s start with the first two examples. Both use different ways of writing to
standard out.

▪ C stdio : user level portable library for standard input/output. Should work on any
environment that has the C standard library

• E.g. printf, fprintf, fputs, getline, etc.

▪ POSIX C API: Portable Operating System Interface. Functions that are supported by many
operating systems to support many OS-level concepts (Input/Output, networking,
processes, threads…)

23

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Buffered writing

❖ By default, C stdio uses buffering on top of POSIX:

▪ When one writes with fwrite(), the data being written is copied into a buffer allocated
by stdio inside your process’ address space

▪ As some point, once enough data has been written, the buffer will be “flushed” to the
operating system.
• When the buffer fills (often 1024 or 4096 bytes)

▪ This prevents invoking the write system call and going to the filesystem too often

24

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Buffered Writing Example

25

int main(int argc, char** argv) {
 char *h = "hi"
 char *i = h + 1;

 FILE* fout = fopen("hi.txt", "w");

 // write "hi" one char at a time
 fwrite(h, sizeof(char), 1, fout);
 fwrite(i, sizeof(char), 1, fout);

 fclose(fout);
 return EXIT_SUCCESS;
}

hi.txt (disk/OS)

buf

h i

Arrow shows what has
just finished executing.

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Buffered Writing Example

26

int main(int argc, char** argv) {
 char *h = "hi"
 char *i = h + 1;

 FILE* fout = fopen("hi.txt", "w");

 // write "hi" one char at a time
 fwrite(h, sizeof(char), 1, fout);
 fwrite(i, sizeof(char), 1, fout);

 fclose(fout);
 return EXIT_SUCCESS;
}

hi.txt (disk/OS)

buf

h i

C stdio buffer for "hi.txt"

Arrow shows what has
just finished executing.

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Buffered Writing Example

27

hi.txt (disk/OS)

buf

h i

C stdio buffer

Store ‘h’ into

buffer, so that

we do not go to
filesystem yet

int main(int argc, char** argv) {
 char *h = "hi"
 char *i = h + 1;

 FILE* fout = fopen("hi.txt", "w");

 // write "hi" one char at a time
 fwrite(h, sizeof(char), 1, fout);
 fwrite(i, sizeof(char), 1, fout);

 fclose(fout);
 return EXIT_SUCCESS;
}

Arrow shows what has
just finished executing.

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Buffered Writing Example

28

hi.txt (disk/OS)

buf

h i

C stdio buffer

h

Store ‘i’ into

buffer, so that

we do not go to
filesystem yet

int main(int argc, char** argv) {
 char *h = "hi"
 char *i = h + 1;

 FILE* fout = fopen("hi.txt", "w");

 // write "hi" one char at a time
 fwrite(h, sizeof(char), 1, fout);
 fwrite(i, sizeof(char), 1, fout);

 fclose(fout);
 return EXIT_SUCCESS;
}

Arrow shows what has
just finished executing.

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Buffered Writing Example

29

hi.txt (disk/OS)

buf

h i

Arrow shows what has
just finished executing.

C stdio buffer

h i

When we call fclose,

we deallocate and

flush the buffer to disk

int main(int argc, char** argv) {
 char *h = "hi"
 char *i = h + 1;

 FILE* fout = fopen("hi.txt", "w");

 // write "hi" one char at a time
 fwrite(h, sizeof(char), 1, fout);
 fwrite(i, sizeof(char), 1, fout);

 fclose(fout);
 return EXIT_SUCCESS;
}

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Buffered Writing Example

30

hi.txt (disk/OS)

h i

buf

h iint main(int argc, char** argv) {
 char *h = "hi"
 char *i = h + 1;

 FILE* fout = fopen("hi.txt", "w");

 // write "hi" one char at a time
 fwrite(h, sizeof(char), 1, fout);
 fwrite(i, sizeof(char), 1, fout);

 fclose(fout);
 return EXIT_SUCCESS;
}

Arrow shows what has
just finished executing.

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Unbuffered Writing Example

31

int main(int argc, char** argv) {
 char buf[2] = {'h', 'i'};
 int fd = open("hi.txt", O_WRONLY | O_CREAT);

 // read "hi" one char at a time
 write(fd, &buf, sizeof(char));

 write(fd, &buf+1, sizeof(char));

 close(fd);
 return EXIT_SUCCESS;
} hi.txt (disk/OS)

h

buf

h i

Arrow shows what has
just finished executing.

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Unbuffered Writing Example

32

int main(int argc, char** argv) {
 char buf[2] = {'h', 'i'};
 int fd = open("hi.txt", O_WRONLY | O_CREAT);

 // read "hi" one char at a time
 write(fd, &buf, sizeof(char));

 write(fd, &buf+1, sizeof(char));

 close(fd);
 return EXIT_SUCCESS;
} hi.txt (disk/OS)

h i

buf

h i

Arrow shows what has
just finished executing.

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Unbuffered Writing Example

33

int main(int argc, char** argv) {
 char buf[2] = {'h', 'i'};
 int fd = open("hi.txt", O_WRONLY | O_CREAT);

 // read "hi" one char at a time
 write(fd, &buf, sizeof(char));

 write(fd, &buf+1, sizeof(char));

 close(fd);
 return EXIT_SUCCESS;
} hi.txt (disk/OS)

h i

buf

h i

Two OS/File system

accesses instead of one

Arrow shows what has
just finished executing.

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Buffered Reading

❖ By default, C stdio uses buffering on top of POSIX:

▪ When one reads with fread(), a lot of data is copied into a buffer allocated by
stdio inside your process’ address space

▪ Next time you read data, it is retrieved from the buffer
• This avoids having to invoke a system call again

▪ As some point, the buffer will be “refreshed”:

• When you process everything in the buffer (often 1024 or 4096 bytes)

▪ Similar thing happens when you write to a file

34

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Quick Aside: strace

❖ Basic usage: strace ./program [args]
❖ strace exec’s a program and “traces” the system calls that it utilizes to execute.

❖ Will show you the system call, its arguments, return values and more!

▪ "Arguments are printed in symbolic form with passion.”

❖ Really useful tool. See example usage below.

❖ We can use this to see if the past couple of slides are true or not.
35

$ strace ./cat /dev/null
…
open("/dev/null", O_RDONLY) = 3
…

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Buffered Reading Example

36

int main(int argc, char** argv) {
 char buf[2];
 FILE* fin = fopen("hi.txt", "rb");

 // read "hi" one char at a time
 fread(&buf, sizeof(char), 1, fin);

 fread(&buf+1, sizeof(char), 1, fin);

 fclose(fin);
 return EXIT_SUCCESS;
} hi.txt (disk/OS)

h i

buf

Arrow signifies what
will be executed next

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Buffered Reading Example

37

int main(int argc, char** argv) {
 char buf[2];
 FILE* fin = fopen("hi.txt", "rb");

 // read "hi" one char at a time
 fread(&buf, sizeof(char), 1, fin);

 fread(&buf+1, sizeof(char), 1, fin);

 fclose(fin);
 return EXIT_SUCCESS;
}

C stdio buffer

hi.txt (disk/OS)

……

h i

buf

Arrow signifies what
will be executed next

h i

Read as much as

you can from the
file

Copy out what
was requested

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Buffered Reading Example

38

int main(int argc, char** argv) {
 char buf[2];
 FILE* fin = fopen("hi.txt", "rb");

 // read "hi" one char at a time
 fread(&buf, sizeof(char), 1, fin);

 fread(&buf+1, sizeof(char), 1, fin);

 fclose(fin);
 return EXIT_SUCCESS;
}

C stdio buffer

hi.txt (disk/OS)

h i ……

h i

buf

h

Arrow signifies what
will be executed next

Get next char
from buffer

No need to go to
file!

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Buffered Reading Example

39

int main(int argc, char** argv) {
 char buf[2];
 FILE* fin = fopen("hi.txt", "rb");

 // read "hi" one char at a time
 fread(&buf, sizeof(char), 1, fin);

 fread(&buf+1, sizeof(char), 1, fin);

 fclose(fin);
 return EXIT_SUCCESS;
}

C stdio buffer

hi.txt (disk/OS)

h i ……

h i

buf

h i

Arrow signifies what
will be executed next

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Buffered Reading Example

40

int main(int argc, char** argv) {
 char buf[2];
 FILE* fin = fopen("hi.txt", "rb");

 // read "hi" one char at a time
 fread(&buf, sizeof(char), 1, fin);

 fread(&buf+1, sizeof(char), 1, fin);

 fclose(fin);
 return EXIT_SUCCESS;
} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what
will be executed next

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Why NOT Buffer?

❖ Reliability – the buffer needs to be flushed
▪ Loss of computer power = loss of data
▪ “Completion” of a write (i.e. return from fwrite()) does not mean the data has actually

been written

❖ Performance – buffering takes time
▪ Copying data into the stdio buffer consumes CPU cycles and memory bandwidth

▪ Can potentially slow down high-performance applications, like a web server or database
(“zero-copy”)

❖ When is buffering faster? Slower?

41

Many small writes Large writes
Singular write

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Quick Aside: exit vs _exit

▪ Causes the process to terminate, but before it does it calls all “installed” exit functions.

• Saw some of those in Penn-Shell…not sure why.

▪ Additionally, it flushes and closes all stdio buffers before the process terminates.

• By default, “return” calls exit() somewhere down the line. If you’d like to see this, examine the
obj file created by a binary.

▪ Causes the process to terminate immediately. There is no flushing.

• Check it out for yourself. Everything that uses fwrite will not actually write to the file.

42

int exit(int status);

int _exit(int status);

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the programs address space

43

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes

int main() {
 if (fork() == 0) {
 printf("hello");
 }
 if (fork() == 0) {
 printf("hello");
 }
 return EXIT_SUCCESS;
}

Process 0

stdio buf

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the programs address space

44

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes

int main() {
 if (fork() == 0) {
 printf("hello");
 }
 if (fork() == 0) {
 printf("hello");
 }
 return EXIT_SUCCESS;
}

Process 0

stdio buf

Process 1

stdio buf

hello

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the programs address space

45

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes

int main() {
 if (fork() == 0) {
 printf("hello");
 }
 if (fork() == 0) {
 printf("hello");
 }
 return EXIT_SUCCESS;
}

Process 0

stdio buf

Process 1

stdio buf

hello

Process 2

stdio buf

Process 3

stdio buf

hello

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Fork Problem Explained

❖ Remember: printf (and stdio) buffers input in the programs address space

46

Arrow signifies what will be executed next.
I execute processes in parallel and “in sync”
for demonstration purposes

int main() {
 if (fork() == 0) {
 printf("hello");
 }
 if (fork() == 0) {
 printf("hello");
 }
 return EXIT_SUCCESS;
}

Process 0

stdio buf

Process 1

stdio buf

hello

Process 2

stdio buf

Process 3

stdio buf

hello

hello

hello

Hello is printed 4 times!

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Fork Problem Explained (pt.2)

❖ Why did we get different outputs when printf printed a newline character after
hello?
▪ Only difference was:

❖ All we needed to do to get the expected output was add a \n. why?

❖ printf prints to stdout and by default stdout is line buffered because it
refers to a TTY. Meaning it flushes the buffer on a newline character
❖ If we ran ./prog > out.txt (redirect the output of the program to a file), we would

get different output since buffering policy changes.

47

printf("hello"); printf("hello\n");vs

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

How to flush/modify the cstdio buffer

❖ For C stdio:

▪ Fflush

▪ Flushes the stream to the OS/filesystem

▪ setvbuf

▪ Has a family of related functions like setbuf(), setbuffer(), setlinebuf();

▪ Can set the stream to be unbuffered or a specified buffer

48

int fflush(FILE* stream);

int setvbuf(FILE* stream, char* buf,
 int mode, size_t size);

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

How to flush POSIX?

❖ When we write to a file with POSIX it is sent to the filesystem, is it immediately
sent to disc? No

▪ Well, we do have the block cache… so it may not be written to disc

▪ Since all File I/O requests go to the file system, if another process accesses the same file,
then it should see the data even if it is the block cache and not in disc.

▪ If we lose power though…

49

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

How to flush POSIX to disk

❖ Two functions
▪ Fsync

▪ Flushes all in-core data and metadata to the storage medium

▪ fdatasync

▪ Sends the file data to disk

▪ Does not flush modified metadata unless necessary for data.

50

int fsync(int fd);

int fdatasync(int fd);

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Blank slide

❖ Transition Slide

51

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ Data Structures Review: I want to randomly generate a sequence of sorted
numbers. To do this, we generate a random number and insert the number so
that it remains sorted. Would a LinkedList or an ArrayList work better?
▪ Assume we only use a Linear search!

❖ Part 2: Let’s say we take the list from part 1, randomly generate an index and
remove that index from the sequence until it is empty. Would this be faster on
a LinkedList or an ArrayList?
▪ Assume we only use a Linear search!

52

Discuss

e.g. if I have sequence [5, 9, 23] and I randomly
generate 12, I will insert 12 between 9 and 23

discuss

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Lecture Outline

❖ Ideology
❖ Locality
❖ Buffering
❖ Caches

53

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Answer:

❖ Run using c++:

❖ Terminology
❖ Vector == ArrayList

❖ List == LinkedList

❖ On Element size from
100,000 -> 500,000

54

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Data Access Time

❖ Data is stored on a physical piece of hardware

❖ The distance data must travel on hardware affects how
long it takes for that data to be processed

❖ Example: data stored closer to the CPU is quicker to access
▪ We see this already with registers. Data in registers is stored on the chip and is faster to

access than data in RAM

55

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Memory Hierarchy so far

❖ So far, we know of three places where we store data
▪ CPU Registers

• Small storage size

• Quick access time

▪ Physical Memory

• In-between registers and disk

▪ Disk

• Massive storage size

• Long access time

❖ (Generally) as we go further from the CPU, storage space goes up, but access
times increase

56

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Memory Hierarchy

57

Each layer can be thought

of as a “cache” of the
layer below

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Cache

❖ Pronounced “cash”

❖ English: A hidden storage space for equipment, weapons, valuables, supplies,
etc.

❖ Computer: Memory with shorter access time used for the storage of data for
increased performance. Data is usually either something frequently and/or
recently used.
▪ Physical memory is a “Cache” of page frames which may be stored on disk. (Instead of

going to disk, we can go to physical memory which is quicker to access)

58

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Processor Memory Gap

❖ Processor speed kept growing ~55% per year

❖ Time to access memory didn’t grow as fast ~7% per year

❖ Memory access would create a bottleneck on performance
▪ It is important that data is quick to access to get better CPU utilization

59

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Memory (as we know it now)

❖ The CPU directly uses an address to access a location in memory

60

CPU

0:

1:

2:

3:

4:

5:

data

...

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Memory (closer to reality)

❖ Programs don’t know about many of things going on under the hood with
memory. They send an address to the MMU, and the MMU will help get the
data

61

CPU

0:

1:

2:

3:

4:

5:

...

Virtual address
(0x300)

data

MMU

Physical address
(0x3)

Memory
Management
Unit

RAM

Also checks
Caches

Caches

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Cache vs Memory Relative Speed

❖ Animation from Mike Acton’s Cppcon 2014 talk on “data oriented design”.

▪ https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

▪ Animation starts at 30:30, ends 31:07 ish

62

https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830
https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Cache Performance

❖ Accessing data in the cache allows for much better utilization of the CPU

❖ Accessing data not in the cache can cause a bottleneck: CPU would have to
wait for data to come from memory.

❖ How is data loaded into a Cache?

63

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Cache Lines

❖ Imagine memory as a big array of data:

❖ We can split memory into 64-byte “lines” or “blocks”(64 bytes on most
architectures)

❖ When we access data at an address, we bring the whole cache line (cache
block) into the L1 Cache

▪ Data next to address access is thus also brought into the cache!

64

Access this data
Neighboring data brought into the cache

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Principle of Locality

❖ The tendency for the CPU to access the same set of memory locations over a
short period of time

❖ Two main types:

▪ Temporal Locality: If we access a portion of memory, we will likely reference it again soon

▪ Spatial Locality: If we access a portion of memory, we will likely reference memory close
to it in the near future.

❖ Caches take advantage of these tendencies to help with cache management

65

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Cache Replacement Policy

❖ Caches are small and can only hold so many cache lines inside it.

❖ When we access data not in the cache, and the cache is full, we must evict an
existing entry.

❖ When we access a line, we can do a quick calculation on the address to
determine which entry in the cache we can store it in. (Depending on
architecture, 1 to 12 possible slots in the cache)

▪ Cache’s typically follow an LRU (Least Recently Used) on the entries a line can be stored in

66

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

LRU (Least Recently Used)

❖ If a cache line is used recently, it is likely to be used again in the near future

❖ Use past knowledge to predict the future

❖ Replace the cache line that has had the longest time since it was last used

67

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Back to the Poll Questions

❖ Data Structures Review: I want to randomly generate a sequence of sorted
numbers. To do this, we generate a random number and insert the number so
that it remains sorted. Would a LinkedList or an ArrayList work better?

❖ Part 2: Let’s say we take the list from part 1, randomly generate an index and
remove that index from the sequence until it is empty. Would this be faster on
a LinkedList or an ArrayList?

68

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Data Structure Memory Layout

❖ Important to understanding the poll questions, we understand the memory
layout of these data structures

❖ ArrayList In C++:

69

int main() {
 vector<int> array_list {1, 2, 3};
 // …
}

heap:

main’s stack frame

array_list (object)

Length = 3

Capacity = 3

Data =

1 2 3

stack:

Elements are next to each
other in memory ☺

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Data Structure Memory Layout

❖ Important to understanding the poll questions, we understand the memory
layout of these data structures

❖ LinkedList In C++:

70

int main() {
 list<int> linked_list {1, 2, 3, 4};
 // …
}

heap:

main’s stack frame

linked_list (object)

Length = 4

tail =

head =

stack:

Elements are not next
to each other in memory 

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Poll Question: Explanation

❖ Vector wins in-part for a few reasons:

▪ Less memory allocations

▪ Integers are next to each other in memory, so they benefit from spatial complexity (and
temporal complexity from being iterated through in order)

❖ Does this mean you should always use vectors?

▪ No, there are still cases where you should use lists, but your default in C++, Rust, etc
should be a vector

▪ If you are doing something where performance matters, your best bet is to experiment try
all options and analyze which is better.

71

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

What about other languages?

❖ In C++ (and C, Rust, Zig …) when you declare an object, you have an instance of
that object. If you declare it as a local variable, it exists on the stack

❖ In most other languages (including Java, Python, etc.), the memory model is
slightly different. Instead, all object variables are object references, that refer
to an object on the heap

72

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

ArrayList in Java Memory Model

❖ In Java, the memory model is slightly different. all object variables are object
references, that refer to an object on the heap

73

public class MemoryModel {
 public static void main(String[] args) {
 ArrayList l = new ArrayList({1, 2, 3});
 // …
 }
}

main’s stack frame

ArrayList (object ref)

Length = 3

Capacity = 3

Data =

1

2

3
heap:

stack:

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional array) of integers, and I
want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

74

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

pollev.com/cis5480

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Poll: how are you?

❖ Let’s say I had a matrix (rectangular two-dimensional array) of integers, and I
want the sum of all integers in it

❖ Would it be faster to traverse the matrix row-wise or column-wise?

▪ row-wise (access all elements of the first row, then second)

▪ column:-wise (access all elements of the first column, …)

75

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

Hint: Memory Representation in C & C++

1 5 8 10 11 2 6 9 14 12 3 7 0 15 13 4

pollev.com/cis5480

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Instruction Cache

❖ The CPU not only has to fetch data, but it also fetches instructions. There is a
separate cache for this

▪ which is why you may see something like L1I cache and L1D cache, for Instructions and
Data respectively

❖ Consider the following three fake objects linked in inheritance

77

public class B extends A {
 public void compute() {
 // …
 }
}

public class C extends A {
 public void compute() {
 // …
 }
}

public class A {
 public void compute() {
 // …
 }
}

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Instruction Cache

❖ Consider this code

❖ When we call item.compute that
could invoke A’s compute,
B’s compute or C’s compute

❖ Constantly calling different functions,
may not utilizes instruction cache well 78

public class ICacheExample {
 public static void main(String[] args) {
 ArrayList<A> l = new ArrayList<A>();
 // …
 for (A item : l) {
 item.compute();
 }
 }
}

public class B extends A {
 public void compute() {
 // …
 }
}

public class C extends A {
 public void compute() {
 // …
 }
}

public class A {
 public void compute() {
 // …
 }
}

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Instruction Cache

❖ Consider this code new code: makes it so we always do
A.compute() -> B.compute() -> C.compute()

❖ Instruction Cache
is happier with this

79

public class ICacheExample {
 public static void main(String[] args) {
 ArrayList<A> la = new ArrayList<A>();
 ArrayList lb = new ArrayList();
 ArrayList<C> lc = new ArrayList<C>();
 // …
 for (A item : la) {
 item.compute();
 }
 for (B item : lb) {
 item.compute();
 }
 for (C item : lc) {
 item.compute();
 }
 }
}

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Numbers Everyone Should Know

❖ There is a set of numbers that called “numbers everyone you should know”

❖ From Jeff Dean in 2009

❖ Numbers are out of date
but the relative orders of
magnitude are
about the same

❖ More up to date numbers:
https://colin-
scott.github.io/personal_website/research/interactive_latency.html

80

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html

CIS 4480 Fall 2025L18: LocalityUniversity of Pennsylvania

Some more stuff ☺

❖ Scott Meyers: CPU Caches and Why You Care

▪ https://www.youtube.com/watch?v=WDIkqP4JbkE

❖ What Every Programmer Should Know About Caches:
▪ https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

81

https://www.youtube.com/watch?v=WDIkqP4JbkE
https://www.youtube.com/watch?v=WDIkqP4JbkE
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

	Default Section
	Slide 1: Locality, Buffering, Caches Computer Operating Systems, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Poll: how are you?
	Slide 6: Some Answers I’d Expect
	Slide 7: Efficiency is a big motivator
	Slide 8: What do we mean by efficiency?
	Slide 9: Why is efficiency so relevant?
	Slide 10: Is Efficiency the Most Important Thing™?
	Slide 11: Software Bloat
	Slide 12: Examples of Software Bloat & Effects
	Slide 13: Why is Software Bloat a thing?
	Slide 14: How is the OS responsible?
	Slide 15: Lecture Outline
	Slide 16: Memory Hierarchy
	Slide 17: Principle of Locality
	Slide 18: Locality Analogy
	Slide 19: Lecture Outline
	Slide 20: Poll: how are you?
	Slide 21: Poll: how are you?
	Slide 22: Poll: how are you?
	Slide 23: C stdio vs POSIX
	Slide 24: Buffered writing
	Slide 25: Buffered Writing Example
	Slide 26: Buffered Writing Example
	Slide 27: Buffered Writing Example
	Slide 28: Buffered Writing Example
	Slide 29: Buffered Writing Example
	Slide 30: Buffered Writing Example
	Slide 31: Unbuffered Writing Example
	Slide 32: Unbuffered Writing Example
	Slide 33: Unbuffered Writing Example
	Slide 34: Buffered Reading
	Slide 35: Quick Aside: strace
	Slide 36: Buffered Reading Example
	Slide 37: Buffered Reading Example
	Slide 38: Buffered Reading Example
	Slide 39: Buffered Reading Example
	Slide 40: Buffered Reading Example
	Slide 41: Why NOT Buffer?
	Slide 42: Quick Aside: exit vs _exit
	Slide 43: Fork Problem Explained
	Slide 44: Fork Problem Explained
	Slide 45: Fork Problem Explained
	Slide 46: Fork Problem Explained
	Slide 47: Fork Problem Explained (pt.2)
	Slide 48: How to flush/modify the cstdio buffer
	Slide 49: How to flush POSIX?
	Slide 50: How to flush POSIX to disk
	Slide 51: Blank slide
	Slide 52: Poll: how are you?
	Slide 53: Lecture Outline
	Slide 54: Answer:
	Slide 55: Data Access Time
	Slide 56: Memory Hierarchy so far
	Slide 57: Memory Hierarchy
	Slide 58: Cache
	Slide 59: Processor Memory Gap
	Slide 60: Memory (as we know it now)
	Slide 61: Memory (closer to reality)
	Slide 62: Cache vs Memory Relative Speed
	Slide 63: Cache Performance
	Slide 64: Cache Lines
	Slide 65: Principle of Locality
	Slide 66: Cache Replacement Policy
	Slide 67: LRU (Least Recently Used)
	Slide 68: Back to the Poll Questions
	Slide 69: Data Structure Memory Layout
	Slide 70: Data Structure Memory Layout
	Slide 71: Poll Question: Explanation
	Slide 72: What about other languages?
	Slide 73: ArrayList in Java Memory Model
	Slide 74: Poll: how are you?
	Slide 75: Poll: how are you?
	Slide 77: Instruction Cache
	Slide 78: Instruction Cache
	Slide 79: Instruction Cache
	Slide 80: Numbers Everyone Should Know
	Slide 81: Some more stuff 

