University of Pennsylvania L18: Locality

Locality, Buffering, Caches

Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez
Head TAs: Maya Huizar Akash Kaukuntla
Vedansh Goenka Joy Liu

TAs:
Eric Zou Joseph Dattilo Aniket Ghorpade
Zihao Zhou Eric Lee Shruti Agarwal
Connor Cummings Shreya Mukunthan Alexander Mehta
Bo Sun Steven Chang Rania Souissi

Sana Manesh

Shriya Sane
YemisiJones
Raymond Feng
Rashi Agrawal

CIS 4480 Fall 2025

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ |f you were in charge of writing some software, what qualities would you
prioritize?

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Administrivia

+» PennOS
= Meet with your TAs by the end of this week!

" |f you meet after Friday (unless there’s no other availability) then you will use up your late
tokens.

" Your TAs are going to be your life line if you have any questions regrading PennOS!

«» Check-In 07

= Make sure to get that in today!
" Due at 5PM today. So if you forgot, you still have a chance to turnitin!

+» Recitation this week! Same time same place.
" |Led by Vedansh and Akash

University of Pennsylvania

Lecture Outline

+» ldeology
» Locality
+» Buffering
+ Caches

L18: Locality

CIS 4480 Fall 2025

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ |f you were in charge of writing some software, what qualities would you
prioritize?

CIS 4480 Fall 2025

University of Pennsylvania L18: Locality

Some Answers I’'d Expect

Efficiency
Correctness
Privacy
Accessibility
Security
User-Friendliness
Speech Rights
Trustworthiness
Maintainability
Versatility

University of Pennsylvania L18: Locality

Efficiency is a big motivator

Both historically, and today

Can be seen in our own CS curriculum

APCS or CS1: different sorting algorithms

Space and time complexity -> O(n)

Clock cycles and frequency in hardware
Compiler optimization

Programming approaches: recursion v. iteration

CIS 4480 Fall 2025

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

What do we mean by efficiency?

+» Well, what do you think we mean by it?

+ Efficiency to do ... what?

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Why is efficiency so relevant?

Many ways to approach “making something efficient”
Constraint optimization problem

Some examples:
Resource allocation

Automation

Production/development cycles

CIS 4480 Fall 2025

University of Pennsylvania L18: Locality

Is Efficiency the Most Important Thing™?

+» How often do we discuss / take into consideration:
= Correctness
= Accessibility / Universal Design
= Security
= Maintainability (scalability, readability)

10

CIS 4480 Fall 2025

University of Pennsylvania L18: Locality

Software Bloat

When successive features with minimal positive impact make the software
run significantly slower or use more memory

Affects performance, available space, and the security of your computer

Wirth’s Law (1995): software is getting slower more rapidly than hardware is
becoming faster.

11

L18: Locality CIS 4480 Fall 2025

University of Pennsylvania

Examples of Software Bloat & Effects

Apps growing larger in size over time

Devices running slower as they age
Sometimes due to the battery or something wearing out
Sometimes cause the hardware is expected to do more and more

Unwanted features (Grok on Twitter), Stories on Instagram (I still remember
when this happened), Location Tracking on Instagram, DM feature on
Spotify, etc etc etc.

12

L18: Locality CIS 4480 Fall 2025

% University of Pennsylvania

Why is Software Bloat a thing?

Historical price of computer memory and storage
This data is expressed in US dollars per terabyte (TB), adjusted for inflation. "Memory" refers to random access

memory (RAM), "disk" to magnetic storage, "flash" to special memory used for rapid data access and rewriting,
and "solid state" to solid-state drives (SSDs).

10 million $/TB
1 million $/TB

100,000 $/TB

10,000 $/TB
1,000 $/TB Memory
Flash
100 $/TB as
Solid state
| Disk
1990 1995 2000 2005 2010 2015 2020 2023
Data source: John C. McCallum (2023); U.S. Bureau of Labor Statistics (2024) OurWorldinData.org/technological-change | CC BY
Note: For each year, the time series shows the cheapest historical price recorded until that year. This data is expressed in constant 2020
Us$.

13

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

How is the OS responsible?

+» Newer OS requiring more resources

« Can make it easier or harder to delete unwanted files
= Deleting applications
= This includes purging old data when upgrading the OS

+ Installing features that you don’t want

= Apple intelligence is 4 GB
= Microsoft Windows (Most of it)

14

University of Pennsylvania

Lecture Outline

+ |ldeology
+ Locality
+» Buffering
+ Caches

L18: Locality

CIS 4480 Fall 2025

15

CT¢C|

University of Pennsylvania

L18: Locality

CIS 4480 Fall 2025

Memory Hierarchy

LO:

L1 cache holds cache lines retrieved

L2 cache holds cache lines

retrieved from L3 cache.

L3 cache holds cache lines

retrieved from main memory.

Main memory holds disk blocks

retrieved from local disks.

Local disks hold files

1 CPU registers hold words retrieved
Smaller, from the L1 cache.
faster, L1: / Llcache
and (SRAM)
costlier from the L2 cache.
(per byte] L2: L2 cache

per byte (SRAM)
storage
devices
L3: L3 cache
(SRAM)
Larger,
slower, L4: Main memory
and (DRAM)
cheaper
(per byte)
storage 5. Local secondary storage
devices (local disks)

(e.g., Web servers)

hird Edition

retrieved from disks
on remote servers.

Remote secondary storage

16

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Principle of Locality

% The tendency for the Programs to access the same set of memory locations
over a short period of time

< Two main types:
« Temporal Locality: If we access a portion of memory, we will likely reference it again soon

= Spatial Locality: If we access a portion of memory, we will likely reference memory close
to it in the near future.

+» Data that is accessed frequently can be stored in hardware that is quicker to
access.

17

University of Pennsylvania L18: Locality

CIS 4480 Fall 2025

Locality Analogy

+» If we are at home and we are hungry, where do we get food from?
= We get it from our refrigerator!
= |f the refrigerator is empty, we go to the grocery store
« When at the grocery store, we don’t just get what we want right now, but also get other
things we think we want in the near future (so that it will be in our fridge when we want it)

18

University of Pennsylvania

Lecture Outline

+ |ldeology
% Locality
+ Buffering
+ Caches

L18: Locality

CIS 4480 Fall 2025

19

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ |f we compile this and run it, how many times is hello printed?

(int main() {

if (fork() == 0) {
write(STDOUT_FILENO, "hello", 5);
}
if (fork() == 0) {
write(STDOUT _FILENO, "hello", 5);

}
return EXIT_SUCCESS;

\} v

20

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

@ Poll Everywhere Raise Your Hands

+ |f we compile this and run it, how many times is hello printed?

(int main() {

if (fork() == 0) {
printf("hello");

}

if (fork() == 0) {
printf("hello");

}
return EXIT_SUCCESS;

\} v

21

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

@ Poll Everywhere Raise Your Hands

+ |f we compile this and run it, how many times is hello printed?

(int main() {

if (fork() == 0) {
printf("hello\n");

}

if (fork() == 0) {
printf("hello\n");

}
return EXIT_SUCCESS;

\} v

22

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

C stdio vs POSIX

+» Why are we getting these different outputs?

+» Let’s start with the first two examples. Both use different ways of writing to
standard out.

« Cstdio : user level portable library for standard input/output. Should work on any
environment that has the C standard library

- E.g. printf, fprintf, fputs, getline, etc.

= POSIX C API: Portable Operating System Interface. Functions that are supported by many

operating systems to support many OS-level concepts (Input/Output, networking,
processes, threads...)

23

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Buffered writing

+» By default, C stdio uses buffering on top of POSIX:

= When one writes with fwrite(), the data being written is copied into a buffer allocated
by stdio inside your process’ address space

= As some point, once enough data has been written, the buffer will be “flushed” to the

operating system.
- When the buffer fills (often 1024 or 4096 bytes)

= This prevents invoking the write system call and going to the filesystem too often

24

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Buffered Writing Example Arrow shows what has

just finished executing.

buf

int main(int argc, char** argv) { h i
char *h = "hi"

mpp Char *i = h + 1;

FILE* fout = fopen("hi.txt", "w");

// write "hi" one char at a time
fwrite(h, sizeof(char), 1, fout);
fwrite(i, sizeof(char), 1, fout);
fclose(fout); hi.txt (disk/OS)
return EXIT_SUCCESS;

25

University of Pennsylvania L18: Locality

Buffered Writing Example

int main(int argc, char** argv) {
char *h = "hi"
char *i = h + 1;

=P FILE* fout = fopen("hi.txt", "w");

// write "hi" one char at a time
fwrite(h, sizeof(char), 1, fout);
fwrite(i, sizeof(char), 1, fout);

fclose(fout);
return EXIT_SUCCESS;

}

Arrow shows what has
just finished executing.

buf

C stdio buffer for "hi.txt"

hi.txt (disk/OS)

26

CIS 4480 Fall 2025

University of Pennsylvania L18: Locality

Buffered Writing Example

int main(int argc, char** argv) {
char *h = "hi"
char *i = h + 1;

FILE* fout = fopen("hi.txt", "w");

// write "hi" one char at a time
=l fwrite(h, sizeof(char), 1, fout);
fwrite(i, sizeof(char), 1, fout);

fclose(fout);
return EXIT_SUCCESS;

}

Arrow shows what has

just finished executing.

buf

Store ‘h’ into
buffer, so that
we do not go to
filesystem yet

h

y

C stdio buffer

hi.txt (disk/OS)

27

CIS 4480 Fall 2025

University of Pennsylvania L18: Locality

Buffered Writing Example

int main(int argc, char** argv) {
char *h = "hi"
char *i = h + 1;

FILE* fout = fopen("hi.txt", "w");

// write "hi" one char at a time
fwrite(h, sizeof(char), 1, fout);
m—P fyrite(i, sizeof(char), 1, fout);

fclose(fout);
return EXIT_SUCCESS;

}

Arrow shows what has

just finished executing.

buf

Store ‘i’ into
buffer, so that
we do not go to
filesystem yet

h

|
N

C stdio bu@

h

hi.txt (disk/OS)

28

CIS 4480 Fall 2025

University of Pennsylvania

Buffered Writing Example

L18: Locality

int main(int argc, char** argv) {

char *h = "hi"
char *i = h + 1;

FILE* fout = fopen("hi.txt", "w");
// write "hi" one char at a time
fwrite(h, sizeof(char), 1, fout);

fwrite(i, sizeof(char), 1, fout);

fclose(fout);

mmep return EXIT_SUCCESS;

}

Arrow shows what has

just finished executing.

buf

C stdio buffer
h i

When we call fclose,

we deallocate and

flush the buffer to disk
hi.txt (disk/OS)

29

CIS 4480 Fall 2025

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Buffered Writing Example Arrow shows what has

just finished executing.

buf

int main(int argc, char** argv) { h i
char *h = "hi"
char *i = h + 1;

FILE* fout = fopen("hi.txt", "w");

// write "hi" one char at a time
fwrite(h, sizeof(char), 1, fout);
fwrite(i, sizeof(char), 1, fout);

fclose(fout); hi.txt (dISk/OS)

! return EXIT_SUCCESS; h i

30

University of Pennsylvania L18: Locality

Unbuffered Writing Example

int main(int argc, char** argv) {
char buf[2] = {'h", "i'};
int fd = open("hi.txt", O WRONLY | O _CREAT);

// read "hi" one char at a time
m=P rite(fd, &buf, sizeof(char));

write(fd, &buf+l, sizeof(char));

close(fd);
return EXIT_SUCCESS;

¥

Arrow shows what has

just finished executing.

buf

h

{txt (disk/OS)
h

31

CIS 4480 Fall 2025

University of Pennsylvania L18: Locality

Unbuffered Writing Example

int main(int argc, char** argv) {
char buf[2] = {'h", "i'};
int fd = open("hi.txt", O WRONLY | O _CREAT);

// read "hi" one char at a time
write(fd, &buf, sizeof(char));

P Write(fd, &buf+l, sizeof(char));

close(fd);
return EXIT_SUCCESS;

¥

Arrow shows what has

just finished executing.

buf

hi.txt (digk/OS)
h i

32

CIS 4480 Fall 2025

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Unbuffered Writing Example Arrow shows what has

just finished executing.

buf

int main(int argc, char** argv) { h
char buf[2] = {'h", "i'};

int fd = open("hi.txt", O WRONLY | O _CREAT);

// read "hi" one char at a time

| . Two OS/File system
write(fd, &buf, sizeof(char));

accesses instead of one

write(fd, &buf+l, sizeof(char)); ®

close(fd);

=l roturn EXIT SUCCESS;
} - hi.txt (disk/OS)

h [

33

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Buffered Reading

+ By default, C stdio uses buffering on top of POSIX:

When one reads with fread(), a lot of data is copied into a buffer allocated by
stdioinside your process’ address space

Next time you read data, it is retrieved from the buffer
- This avoids having to invoke a system call again

As some point, the buffer will be “refreshed”:
- When you process everything in the buffer (often 1024 or 4096 bytes)

Similar thing happens when you write to a file

34

CIS 4480 Fall 2025

L18: Locality

University of Pennsylvania

Quick Aside: strace

«» Basic usage: Strace ./program [args]
% strace exec’s a program and “traces” the system calls that it utilizes to execute.
» Will show you the system call, its arguments, return values and more!

= "Arguments are printed in symbolic form with passion.”

» Really useful tool. See example usage below.

$ strace ./cat /dev/null

open("/dev/null", O RDONLY) = 3

+» We can use this to see if the past couple of slides are true or not.

35

University of Pennsylvania L18: Locality

Buffered Reading Example

int main(int argc, char** argv) {
char buf[2];
mtP- FTLE* fin = fopen("hi.txt", "rb");

// read "hi" one char at a time
fread(&buf, sizeof(char), 1, fin);

fread(&uf+l, sizeof(char), 1, fin);

fclose(fin);
return EXIT_SUCCESS;

Arrow signifies what
will be executed next

buf

hi.txt (disk/OS)

h

36

CIS 4480 Fall 2025

L18: Locality CIS 4480 Fall 2025

University of Pennsylvania

Buffered Reading Example Arrow signifies what

will be executed next

Copy out what
buf was requested

int main(int argc, char** argv) {
char buf[2];
FILE* fin = fopen("hi.txt", "rb");

C stdio buffer

// read "hi" one char at a time

= fread(&buf, sizeof(char), 1, fin); h R R
fread(&uf+l, sizeof(char), 1, fin); Read as much as
fclose(fin); you can from the
return EXIT SUCCESS; file

hi.txt (disk/OS)
h [

¥

37

University of Pennsylvania L18: Locality

Buffered Reading Example

int main(int argc, char** argv) {
char buf[2];
FILE* fin = fopen("hi.txt", "rb");

// read "hi" one char at a time
fread(&buf, sizeof(char), 1, fin);

mtel- read (& uf+1, sizeof(char), 1, fin);

fclose(fin);
return EXIT_SUCCESS;

¥

Arrow signifies what
will be executed next

Get next char
buf from buffer

h A

C stdio buffer,
h [T

No need to go to
file!
hi.txt (disk/OS)

h [

38

CIS 4480 Fall 2025

CIS 4480 Fall 2025

University of Pennsylvania L18: Locality

Buffered Reading Example Arrow signifies what

will be executed next

buf

int main(int argc, char** argv) { h i
char buf[2];
FILE* fin = fopen("hi.txt", "rb");

C stdio buffer

// read "hi" one char at a time
fread(&uf, sizeof(char), 1, fin); h R

fread(&uf+l, sizeof(char), 1, fin);

—Vfclose(fin);
t EXIT SUCCESS; i i
return _ hi.txt (disk/OS)

¥

h [

39

University of Pennsylvania

Buffered Reading Example

L18: Locality

int main(int argc, char** argv) {

char buf[2];
FILE* fin = ‘Fopen("hi.tXt", "I"'b");

// read "hi" one char at a time
fread(&buf, sizeof(char), 1, fin);

fread(&uf+l, sizeof(char), 1, fin);

fclose(fin);

mm=P>~eturn EXIT SUCCESS;

¥

Arrow signifies what
will be executed next

buf

hi.txt (disk/OS)

h

40

CIS 4480 Fall 2025

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Why NOT Buffer?

+ Reliability — the buffer needs to be flushed
» Loss of computer power = loss of data

“Completion” of a write (i.e. return from fwrite()) does not mean the data has actually
been written

+» Performance — buffering takes time
« Copying data into the stdio buffer consumes CPU cycles and memory bandwidth

= Can potentially slow down high-performance applications, like a web server or database
(“zero-copy”)

+» When is buffering faster?| Slower?

Many small writes Large writes
Singular write

41

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Quick Aside: exit vs _exit

[int exit(int status); J

= Causes the process to terminate, but before it does it calls all “installed” exit functions.

- Saw some of those in Penn-Shell...not sure why.

= Additionally, it flushes and closes all stdio buffers before the process terminates.

- By default, “return” calls exit() somewhere down the line. If you’d like to see this, examine the
obj file created by a binary.

[int ~exit(int status); J

= Causes the process to terminate immediately. There is no flushing.

- Check it out for yourself. Everything that uses fwrite will not actually write to the file.

42

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Arrow signifies what will be executed next.

FOrk PrOblem ExplaiHEd | execute processes in parallel and “in sync”

for demonstration purposes

<+ Remember: printf (and stdio) buffers input in the programs address space

~ ~N Process O

int main() {
=T if (fork() == 0) { stdio buf
printf("hello");
}
if (fork() == 0) {
printf("hello");

}
return EXIT_SUCCESS;

\} </

43

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Arrow signifies what will be executed next.

FOrk PrOblem ExplaiHEd | execute processes in parallel and “in sync”

for demonstration purposes

<+ Remember: printf (and stdio) buffers input in the programs address space

e ~N Process O Process 1

t main() {
1nifm?$2r‘k() == 0) { stdio buf ‘stdio buf

printf("hello"); hello
}
—t—pif (fork() == 0) {
printf("hello");

}
return EXIT_SUCCESS;

b

44

University of Pennsylvania

Fork Problem Explained

<+ Remember: printf (and stdio) buffers input in the programs address space

(int main() { A
if (fork() == 0) {
printf("hello");
}
if (fork() == 0) {
> printf("hello");
}
return EXIT_SUCCESS;
\} </

L18: Locality

Arrow signifies what will be executed next.
| execute processes in parallel and “in sync”
for demonstration purposes

Process O

stdio buf

Process 2

‘ stdio buf

Process 1

‘ stdio buf

hello

Process 3

‘ stdio buf

hello

CIS 4480 Fall 2025

45

University of Pennsylvania

Fork Problem Explained

<+ Remember: printf (and stdio) buffers input in the programs address space

(int main() {

if (fork() == 0) {
printf("hello");

}

if (fork() == 0) {
printf("hello");

}

—t=» return EXIT SUCCESS;

b

J

Hello is printed 4 times!

L18: Locality

Arrow signifies what will be executed next.
| execute processes in parallel and “in sync”

for demonstration purposes

Process O

stdio buf

Process 2

‘ stdio buf

hello

Process 1

‘ stdio buf

hello

Process 3

‘ stdio buf

hello
hello

CIS 4480 Fall 2025

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Fork Problem Explained (pt.2)

+» Why did we get different outputs when printf printed a newline character after
hello?
= Only difference was:

printf("hello"); vs |printf("hello\n");

+ All we needed to do to get the expected output was add a \n. why?

« printf prints to stdout and by default stdout is line buffered because it
refers to a TTY. Meaning it flushes the buffer on a newline character

** Ifweran ./prog > out.txt (redirect the output of the program to a file), we would
get different output since buffering policy changes.

47

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

How to flush/modify the cstdio buffer

« For C stdio:

(int fflush(FILE* stream); |
" Flushes the stream to the OS/filesystem

int setvbuf(FILE* stream, char* buf,
int mode, size t size);

" Has a family of related functions like setbuf(), setbuffer(), setlinebuf();
" Canset the stream to be unbuffered or a specified buffer

48

University of Pennsylvania L18: Locality

How to flush POSIX?

+» When we write to a file with POSIX it is sent to the filesystem, is it immediately
sent to disc? No

= Well, we do have the block cache... so it may not be written to disc

= Since all File I/O requests go to the file system, if another process accesses the same file,
then it should see the data even if it is the block cache and not in disc.

= |f we lose power though...

CIS 4480 Fall 2025

49

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

How to flush POSIX to disk

« Two functions
*(int fsync(int fd); |

" Flushes all in-core data and metadata to the storage medium

-[int fdatasync(int fd); J
= Sends the file data to disk
" Does not flush modified metadata unless necessary for data.

50

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Blank slide

« Transition Slide

51

L18: Locality CIS 4480 Fall 2025

University of Pennsylvania

@ Poll Everywhere discuss

+ Data Structures Review: | want to randomly generate a sequence of sorted
numbers. To do this, we generate a random number and insert the number so
that it remains sorted. Would a LinkedList or an ArrayList work better?
= Assume we only use a Linear search!

e.g. if | have sequence [5, 9, 23] and | randomly
generate 12, | will insert 12 between 9 and 23

+» Part 2: Let’s say we take the list from part 1, randomly generate an index and
remove that index from the sequence until it is empty. Would this be faster on

a LinkedList or an ArrayList?

= Assume we only use a Linear search!
52

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Lecture Outline

+ |ldeology
» Locality
+» Buffering
+~ Caches

53

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Answer:

C++ vector vs list (insert)

+ Run using c++:

2300
2000

1500

+» Terminology

500

Seconds

‘:‘ VeCtOF == ArrayLiSt 100000 200000 300000 400000 500000

‘0‘ L- 1 . Mumber of Elements
#* List == LinkedList --

C++ vector vs list (remove)

3500

SO0

+» On Element size from e
100,000 -> 500,000

1500

Seconds

100000 200000 200000 A00000 200000

Element Size

54

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Data Access Time

+» Data is stored on a physical piece of hardware

«» The distance data must travel on hardware affects how
long it takes for that data to be processed

+» Example: data stored closer to the CPU is quicker to access

= We see this already with registers. Data in registers is stored on the chip and is faster to
access than data in RAM

55

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Memory Hierarchy so far

+» So far, we know of three places where we store data

" CPU Registers

- Small storage size

 Quick access time
" Physical Memory

- In-between registers and disk
= Disk

- Massive storage size

- Long access time

+ (Generally) as we go further from the CPU, storage space goes up, but access
times increase

56

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Memory Hiera rChy Each layer can be thought

of as a “cache’” of the
layer below

LO:
4 CPU registers hold words retrieved
Smaller, 11 h from the L1 cache.
faster, L1: cache
and (SRAM) L1 cache holds cache lines retrieved
costlier from the L2 cache.
(per byte) L2: L2 cache
per byt (SRAM)
storage L2 cache holds cache lines
devices retrieved from L3 cache.
IL3: L3 cache
(SRAM)
L3 cache holds cache lines
Larger,
slower, L4: Main memory
and (DRAM)
cheaper Main memory holds disk blocks
[per b‘l_.l"tE'} retrieved from local disks.
storage |s. Local secondary storage
devices (local disks)
Local disks hold files

Y retrieved from disks
on remote servers.
L6: Remote secondary storage

(e.g., Web servers)

Bryant a i ystems: A Programmer’s Perspective, Third Edition

57

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Cache

« Pronounced “cash”

» English: A hidden storage space for equipment, weapons, valuables, supplies,
etc.

+» Computer: Memory with shorter access time used for the storage of data for
increased performance. Data is usually either something frequently and/or
recently used.

= Physical memory is a “Cache” of page frames which may be stored on disk. (Instead of
going to disk, we can go to physical memory which is quicker to access)

58

L18: Locality CIS 4480 Fall 2025

University of Pennsylvania

Processor Memory Gap

100,000
10,000 -1 e e e L e e o
8 1000 IS
3
E
O
5 Y000 I e e e s R R s
(o
10 L e !
1 2 1 14 14 1§ 1
1980 1985 1990 1995 2000 2005 2010

Year

+ Processor speed kept growing ~55% per year
% Time to access memory didn’t grow as fast ~7% per year

+ Memory access would create a bottleneck on performance
= |tis important that data is quick to access to get better CPU utilization

59

University of Pennsylvania L18: Locality

Memory (as we know it now)

+» The CPU directly uses an address to access a location in memory

address (OX3)

data

A S - ol

CIS 4480 Fall 2025

60

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Memory (closer to reality)

» Programs don’t know about many of things going on under the hood with
memory. They send an address to the MMU, and the MMU will help get the

data RAM
. 0:
Virtual address Physical address
(0x300) (0x3) 1:
2:
Memory Also checks 3:
Management Caches 4
Unit
Caches 5

data

61

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

>

Cache vs Memory Relative Speed

% Animation from Mike Acton’s Cppcon 2014 talk on “data oriented design”.
= https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830
® Animation starts at 30:30, ends 31:07 ish

The Battle of North Bridge —

62

https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830
https://youtu.be/rX0ItVEVjHc?si=MRTeW3taRmRU1fpB&t=1830

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Cache Performance

% Accessing data in the cache allows for much better utilization of the CPU

+» Accessing data not in the cache can cause a bottleneck: CPU would have to
wait for data to come from memory.

«» How is data loaded into a Cache?

63

University of Pennsylvania L18: Locality

CIS 4480 Fall 2025

Cache Lines

% Imagine memory as a big array of data:

1 Neighboring data brought into the cache
Access this data

+» We can split memory into 64-byte “lines” or “blocks”(64 bytes on most
architectures)

+» When we access data at an address, we bring the whole cache line (cache
block) into the L1 Cache

= Data next to address access is thus also brought into the cache!

64

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Principle of Locality

% The tendency for the CPU to access the same set of memory locations over a
short period of time

+» Two main types:

= Temporal Locality: If we access a portion of memory, we will likely reference it again soon

= Spatial Locality: If we access a portion of memory, we will likely reference memory close
to it in the near future.

+» Caches take advantage of these tendencies to help with cache management

65

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Cache Replacement Policy

» Caches are small and can only hold so many cache lines inside it.

» When we access data not in the cache, and the cache is full, we must evict an
existing entry.

- When we access a line, we can do a quick calculation on the address to
determine which entry in the cache we can store it in. (Depending on
architecture, 1 to 12 possible slots in the cache)

= Cache’s typically follow an LRU (Least Recently Used) on the entries a line can be stored in

66

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

LRU (Least Recently Used)

+ If a cache line is used recently, it is likely to be used again in the near future
+» Use past knowledge to predict the future

+~ Replace the cache line that has had the longest time since it was last used

67

L18: Locality CIS 4480 Fall 2025

University of Pennsylvania

Back to the Poll Questions

» Data Structures Review: | want to randomly generate a sequence of sorted
numbers. To do this, we generate a random number and insert the number so
that it remains sorted. Would a LinkedList or an ArrayList work better?

» Part 2: Let’s say we take the list from part 1, randomly generate an index and
remove that index from the sequence until it is empty. Would this be faster on
a LinkedList or an ArrayList?

68

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Data Structure Memory Layout

+» Important to understanding the poll questions, we understand the memory
layout of these data structures

stack:
main’s stack frame
< ArrayList In C++: array_list (object)
int main() { Length = 3
vector<int> array_list {1, 2, 3};
7 Capacity =3
} Data = /
//
/
heap: /
Elements are next to each

other in memory © 1 2 3

69

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Data Structure Memory Layout

+» Important to understanding the poll questions, we understand the memory
layout of these data structures

stack:
main’s stack frame
X LlnkEdLISt In C++: Iinked_list (ObjECt)
int main() { Length = 4
list<int> linked list {1, 2, 3, 4};
// .. tail = /
! head/=/ \
7\
/ \
™~ heap:
/
N k/
Elements are not next -
to each other in memory ® ~ 70

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Poll Question: Explanation

% Vector wins in-part for a few reasons:

= Less memory allocations

" |ntegers are next to each other in memory, so they benefit from spatial complexity (and
temporal complexity from being iterated through in order)

% Does this mean you should always use vectors?

" No, there are still cases where you should use lists, but your default in C++, Rust, etc
should be a vector

" |f you are doing something where performance matters, your best bet is to experiment try
all options and analyze which is better.

71

L18: Locality CIS 4480 Fall 2025

University of Pennsylvania

What about other languages?

+ In C++ (and C, Rust, Zig ...) when you declare an object, you have an instance of
that object. If you declare it as a local variable, it exists on the stack

% In most other languages (including Java, Python, etc.), the memory model is
slightly different. Instead, all object variables are object references, that refer

to an object on the heap

72

University of Pennsylvania L18: Locality

CIS 4480 Fall 2025

ArraylList in Java Memory Model

+ InJava, the memory model is slightly different. all object variables are object
references, that refer to an object on the heap

public class MemoryModel {
public static void main(String[] args) {
ArrayList 1 = new ArrayList({1, 2, 3});
/] ..

}
¥

\TJ

stack:
main’s stack frame
ArrayList (object ref)
\
\
L]
heap: Length =3
Capacity =3
Data =
-
/
/

73

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

% Let’s say | had a matrix (rectangular two-dimensional array) of integers, and |
want the sum of all integers in it

« Would it be faster to traverse the matrix row-wise or column-wise?

" row-wise (access all elements of the first row, then second)
= column:-wise (access all elements of the first column, ...)

11 |2 6 |9
14 |12 |3 7

74

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480

% Let’s say | had a matrix (rectangular two-dimensional array) of integers, and |
want the sum of all integers in it

« Would it be faster to traverse the matrix row-wise or column-wise?

" row-wise (access all elements of the first row, then second)
= column:-wise (access all elements of the first column, ...)

Hint: Memory Representation in C & C++

11 |2 6 |9
14 |12 |3 7

1 (5 (8 (10112 (6 |9 14 (123 (7 [0 [15(13 (4

75

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Instruction Cache

% The CPU not only has to fetch data, but it also fetches instructions. There is a
separate cache for this

= which is why you may see something like L1I cache and L1D cache, for Instructions and
Data respectively

+» Consider the following three fake objects linked in inheritance

class B extends A {
void compute() {
/] ..
}
class A { }
void compute() {
// .. class C extends A {
} void compute() {
} /] ..
}
}

77

University of Pennsylvania L18: Locality

Instruction Cache

« Consider this code

public class ICacheExample {
public static void main(String[] args) {
ArraylList<A> 1 = new ArrayList<A>();
/] ..
for (A item : 1) {
item.compute();
}
}
}

public class A {
public void compute() {
/] ..
}
}

+» When we call item.compute that
could invoke A’s compute,
B’s compute or C's compute

+ Constantly calling different functions,
may not utilizes instruction cache well

public class B extends A {
public void compute() {
/] ..
}
}

public class C extends A {
public void compute() {
/] ..

}
)

CIS 4480 Fall 2025

78

University of Pennsylvania

Instruction Cache

L18: Locality

+» Consider this code new code: makes it so we always do
A.compute() -> B.compute() -> C.compute()

% Instruction Cache
is happier with this

ArrayList<A> 1la
ArrayList 1b
ArrayList<C> 1c
/] ..

item.compute();

¥

item.compute();

¥

item.compute();

}
}
}

\

rpublic class ICacheExample {
public static void main(String[] args) {

new ArrayList<A>();
new ArraylList();
new ArrayList<C>();

for (A item : la) {

for (B item : 1b) {

for (C item : 1lc) {

CIS 4480 Fall 2025

79

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Numbers Everyone Should Know

% There is a set of numbers that called “numbers everyone you should know”

Numbers Everyone Should Know

X FrOm JEff Dean In 2009 L1 cache reference 0.5 ns
Branch mispredict 5 ns
«» Numbers are out of date t‘ftcac?e i‘;‘fefe”?e m; ne
futex 10C uniocx ns
1 fain mem nce 100 ns
but the relative orders of et eiory cefeceich i
Compress 1K bytes with Zippy 10,000 ns
M (j Send 2K bytes over 1 Gbps network 20,000 ns
magnltu e are Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
about the same
Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns

. (‘I‘ Qic

+» More up to date numbers: sl

https://colin-
scott.github.io/personal website/research/interactive latency.html

80

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html

University of Pennsylvania L18: Locality CIS 4480 Fall 2025

Some more stuff ©

+ Scott Meyers: CPU Caches and Why You Care
" https://www.youtube.com/watch?v=WDIkqP4JbkE

%+ What Every Programmer Should Know About Caches:
" https://people.freebsd.org/~Istewart/articles/cpumemory.pdf

81

https://www.youtube.com/watch?v=WDIkqP4JbkE
https://www.youtube.com/watch?v=WDIkqP4JbkE
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

	Default Section
	Slide 1: Locality, Buffering, Caches Computer Operating Systems, Fall 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Poll: how are you?
	Slide 6: Some Answers I’d Expect
	Slide 7: Efficiency is a big motivator
	Slide 8: What do we mean by efficiency?
	Slide 9: Why is efficiency so relevant?
	Slide 10: Is Efficiency the Most Important Thing™?
	Slide 11: Software Bloat
	Slide 12: Examples of Software Bloat & Effects
	Slide 13: Why is Software Bloat a thing?
	Slide 14: How is the OS responsible?
	Slide 15: Lecture Outline
	Slide 16: Memory Hierarchy
	Slide 17: Principle of Locality
	Slide 18: Locality Analogy
	Slide 19: Lecture Outline
	Slide 20: Poll: how are you?
	Slide 21: Poll: how are you?
	Slide 22: Poll: how are you?
	Slide 23: C stdio vs POSIX
	Slide 24: Buffered writing
	Slide 25: Buffered Writing Example
	Slide 26: Buffered Writing Example
	Slide 27: Buffered Writing Example
	Slide 28: Buffered Writing Example
	Slide 29: Buffered Writing Example
	Slide 30: Buffered Writing Example
	Slide 31: Unbuffered Writing Example
	Slide 32: Unbuffered Writing Example
	Slide 33: Unbuffered Writing Example
	Slide 34: Buffered Reading
	Slide 35: Quick Aside: strace
	Slide 36: Buffered Reading Example
	Slide 37: Buffered Reading Example
	Slide 38: Buffered Reading Example
	Slide 39: Buffered Reading Example
	Slide 40: Buffered Reading Example
	Slide 41: Why NOT Buffer?
	Slide 42: Quick Aside: exit vs _exit
	Slide 43: Fork Problem Explained
	Slide 44: Fork Problem Explained
	Slide 45: Fork Problem Explained
	Slide 46: Fork Problem Explained
	Slide 47: Fork Problem Explained (pt.2)
	Slide 48: How to flush/modify the cstdio buffer
	Slide 49: How to flush POSIX?
	Slide 50: How to flush POSIX to disk
	Slide 51: Blank slide
	Slide 52: Poll: how are you?
	Slide 53: Lecture Outline
	Slide 54: Answer:
	Slide 55: Data Access Time
	Slide 56: Memory Hierarchy so far
	Slide 57: Memory Hierarchy
	Slide 58: Cache
	Slide 59: Processor Memory Gap
	Slide 60: Memory (as we know it now)
	Slide 61: Memory (closer to reality)
	Slide 62: Cache vs Memory Relative Speed
	Slide 63: Cache Performance
	Slide 64: Cache Lines
	Slide 65: Principle of Locality
	Slide 66: Cache Replacement Policy
	Slide 67: LRU (Least Recently Used)
	Slide 68: Back to the Poll Questions
	Slide 69: Data Structure Memory Layout
	Slide 70: Data Structure Memory Layout
	Slide 71: Poll Question: Explanation
	Slide 72: What about other languages?
	Slide 73: ArrayList in Java Memory Model
	Slide 74: Poll: how are you?
	Slide 75: Poll: how are you?
	Slide 77: Instruction Cache
	Slide 78: Instruction Cache
	Slide 79: Instruction Cache
	Slide 80: Numbers Everyone Should Know
	Slide 81: Some more stuff 

