
CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Introduction to Virtual Memory
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla
 Vedansh Goenka Joy Liu
TAs:

Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane

Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones

Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng

Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Logistical Stuff

v Recitation Today! Same time and same place. Led by Akash and Vedansh!
§ Focusing on Condition Variables, Caching, and Virtual Memory!

v PennOS Milestone 0!
§ Due tomorrow – Make sure to set up a time with TAs if you haven’t.
§ Will be penalized if you reach out late. Do not procrastinate please.

2

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Poll: how are you?

v Data Structures Review: I want to randomly generate a sequence of sorted
numbers. To do this, we generate a random number and insert the number so
that it remains sorted. Would a LinkedList or an ArrayList work better?
§ Assume we only use a Linear search!

v Part 2: Let’s say we take the list from part 1, randomly generate an index and
remove that index from the sequence until it is empty. Would this be faster on
a LinkedList or an ArrayList?
§ Assume we only use a Linear search!

4

Discuss

e.g. if I have sequence [5, 9, 23] and I randomly
generate 12, I will insert 12 between 9 and 23

discuss

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Answer:

v Run using c++:

v Terminology
v Vector == ArrayList
v List == LinkedList

v On Element size from
100,000 -> 500,000

5

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Back to the Poll Questions

v Data Structures Review: I want to randomly generate a sequence of sorted
numbers. To do this, we generate a random number and insert the number so
that it remains sorted. Would a LinkedList or an ArrayList work better?

v Part 2: Let’s say we take the list from part 1, randomly generate an index and
remove that index from the sequence until it is empty. Would this be faster on
a LinkedList or an ArrayList?

6

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Data Structure Memory Layout

v Important to understanding the poll questions, we understand the memory
layout of these data structures

v ArrayList In C++:

7

int main() {
 vector<int> array_list {1, 2, 3};
 // …
}

heap:

main’s stack frame

array_list (object)

Length = 3
Capacity = 3

Data =

1 2 3

stack:

Elements are next to each
other in memory J

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Data Structure Memory Layout

v Important to understanding the poll questions, we understand the memory
layout of these data structures

v LinkedList In C++:

8

int main() {
 list<int> linked_list {1, 2, 3, 4};
 // …
}

heap:

main’s stack frame

linked_list (object)

Length = 4
tail =

head =

stack:

Elements are not next
to each other in memory L

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Poll Question: Explanation

v Vector wins in-part for a few reasons:
§ Less memory allocations
§ Integers are next to each other in memory, so they benefit from spatial complexity (and

temporal complexity from being iterated through in order)

v Does this mean you should always use vectors?
§ No, there are still cases where you should use lists, but your default in C++, Rust, etc

should be a vector
§ If you are doing something where performance matters, your best bet is to experiment try

all options and analyze which is better.

9

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

What about other languages?

v In C++ (and C, Rust, Zig …) when you declare an object, you have an instance of
that object. If you declare it as a local variable, it exists on the stack

v In most other languages (including Java, Python, etc.), the memory model is
slightly different. Instead, all object variables are object references, that refer
to an object on the heap

10

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

ArrayList in Java Memory Model

v In Java, the memory model is slightly different. all object variables are object
references, that refer to an object on the heap

11

public class MemoryModel {
 public static void main(String[] args) {
 ArrayList l = new ArrayList({1, 2, 3});
 // …
 }
}

main’s stack frame

ArrayList (object ref)

Length = 3
Capacity = 3

Data =

1

2

3
heap:

stack:

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Poll: how are you?

v Let’s say I had a matrix (rectangular two-dimensional array) of integers, and I
want the sum of all integers in it

v Would it be faster to traverse the matrix row-wise or column-wise?
§ row-wise (access all elements of the first row, then second)
§ column:-wise (access all elements of the first column, …)

12

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

pollev.com/cis5480

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Poll: how are you?

v Let’s say I had a matrix (rectangular two-dimensional array) of integers, and I
want the sum of all integers in it

v Would it be faster to traverse the matrix row-wise or column-wise?
§ row-wise (access all elements of the first row, then second)
§ column:-wise (access all elements of the first column, …)

13

1 5 8 10

11 2 6 9

14 12 3 7

0 15 13 4

Hint: Memory Representation in C & C++

1 5 8 10 11 2 6 9 14 12 3 7 0 15 13 4

discuss

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Instruction Cache

v The CPU not only has to fetch data, but it also fetches instructions. There is a
separate cache for this
§ which is why you may see something like L1I cache and L1D cache, for Instructions and

Data respectively

v Consider the following three fake objects linked in inheritance

15

public class B extends A {
 public void compute() {
 // …
 }
}

public class C extends A {
 public void compute() {
 // …
 }
}

public class A {
 public void compute() {
 // …
 }
}

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Instruction Cache

v Consider this code

v When we call item.compute that
could invoke A’s compute,
B’s compute or C’s compute

v Constantly calling different functions,
may not utilizes instruction cache well 16

public class ICacheExample {
 public static void main(String[] args) {
 ArrayList<A> l = new ArrayList<A>();
 // …
 for (A item : l) {
 item.compute();
 }
 }
}

public class B extends A {
 public void compute() {
 // …
 }
}

public class C extends A {
 public void compute() {
 // …
 }
}

public class A {
 public void compute() {
 // …
 }
}

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Instruction Cache

v Consider this code new code: makes it so we always do
A.compute() -> B.compute() -> C.compute()

v Instruction Cache
is happier with this

17

public class ICacheExample {
 public static void main(String[] args) {
 ArrayList<A> la = new ArrayList<A>();
 ArrayList lb = new ArrayList();
 ArrayList<C> lc = new ArrayList<C>();
 // …
 for (A item : la) {
 item.compute();
 }
 for (B item : lb) {
 item.compute();
 }
 for (C item : lc) {
 item.compute();
 }
 }
}

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Numbers Everyone Should Know

v There is a set of numbers that called “numbers everyone you should know”

v From Jeff Dean in 2009
v Numbers are out of date

but the relative orders of
magnitude are
about the same

v More up to date numbers:
https://colin-
scott.github.io/personal_website/research/interactive_latency.html

18

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Lecture Outline

v Wrapping Up: Caching
v Problems with Old Memory Model
v Virtual Memory High Level
v Address Translation

19

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Poll: how are you?

v What does this print for x at all three points?

v How does the value of ptr change?

20

pollev.com/cis5480

fork_addr.c

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Review: Processes

v Definition: An instance of a program
that is being executed
(or is ready for execution)

v Consists of:
§ Memory (code, heap, stack, etc)
§ Registers used to manage execution

(stack pointer, program counter, ...)
§ Other resources

22

OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Multiprocessing: The Illusion

v Computer runs many processes simultaneously
§ Applications for one or more users

• Web browsers, email clients, editors, …
§ Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack
Heap

Code
Data

CPU

Registers

Memory

Stack
Heap

Code
Data …

CPU

Registers

Memory

Stack
Heap

Code
Data

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

v Single processor executes multiple processes concurrently
§ Process executions interleaved (multitasking)
§ Address spaces managed by virtual memory system (later in course (now!))
§ Register values for non-executing processes saved in memory

Multiprocessing: The (Traditional) Reality

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Memory As We Know It

25

CPU

0:

1:

2:

3:

4:

5:
...

address (0x3)

data

v The CPU directly uses an address to access a location in memory

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Problem 1: How does everything fit?
On a 64-bit machine, there are ~264 Addressable bytes,
which is: 18,446,744,073,709,551,616 Bytes (1.844 x 1019)

26

Laptops usually have around 8GB which is
8,589,934,592 Bytes (8.589 x 109)

(About to scale; physical memory is smaller than the
period at the end of the sentence compared to the

virtual address space.)

This is just one address space, consider multiple processes…

.

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

Problem 2: Sharing Memory

v How do we enforce process isolation?
§ Could one process just calculate an address into another process?

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Problem 2: Sharing Memory

v How do we enforce process isolation?
§ Could one process just calculate an address into another process?

v What is stopping process B
from accessing A’s memory?

Process A
using

Process A
using

Process B
using

Process B
using

Process B
using

Process A

Process B

😡

‘Address Space’

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Problem 3: How do we segment things

v A process’ address space contains many
different “segments” that have specific
functionality.

v Problem: How do we keep track of the
location and permissions (Read/Write) each
segment may have?
§ (e.g., that Read-Only data can’t be written to)

The real question is who is keeping track of this?
29

OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Problem 3: How do we segment things?

30

OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

POV: You’re the operating systemPOV: You’re a process

Note: some mappings are missing,
 not enough space.

“Translating”

Physical Memory (RAM)

…
.

…
.

…
.

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Lecture Outline

v Wrapping Up: Caching
v Problems with Old Memory Model
v Virtual Memory High Level
v Address Translation

31

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

This Is Not What Happens

v The CPU directly uses an address to access a location in memory

32

CPU

0:

1:

2:

3:

4:

5:
...

address (0x3)

data

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Indirection

v "Any problem in computer science can be solved by adding another level of
indirection."
§ David wheeler, inventor of the subroutine (e.g. functions)

v The ability to indirectly reference something using a name, reference or
container instead of the value itself. A flexible mapping between a name and a
thing allows changing the thing without notifying holders of the name.
§ May add some work to use indirection (understatement of the year)
§ Example: If the physical location of a variable changes, you don’t need to tell the process

that…

v Idea: instead of directly referring to physical memory, add a level of indirection
33

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Idea:

v We don’t need all processes to have their data in physical memory, just the
ones that are currently running

v For the process’ that are currently running: we don’t need all their data to be
in physical memory, just the parts that are currently being used

v Data that isn’t currently stored in physical memory, can be stored elsewhere
(disk).
§ Disk is "permanent storage" usually used for the file system
§ Disk has a longer access time than physical memory (RAM)

34

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Pages

v Memory can be split up into units called “pages”

35

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

ß Ram may contain pages from
other active processes

Pages are of fixed size ~4KiB
4KiB -> (4 * 1024 = 4096 bytes.)

Pages in physical
memory are called “Page
frames”

A page may not have an
accompanying page frame until
the page is used

(what the process thinks it has)

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Definitions

v Addressable Memory: the total amount of memory that can be theoretically
be accessed based on:
§ number of addresses (“address space”)
§ bytes per address (“addressability”)

v Physical Memory: the total amount of memory that is physically available on
the computer

v Virtual Memory: An abstraction technique for making memory look larger than
it is and hides many details from the programs.

36

Sometimes called “virtual memory”
or the “virtual address space”

IT MAY OR MAY NOT EXIST ON HARDWARE
(like if that memory is never used)

(As in the references might not even be “valid”)

Physical memory holds a subset of the
addressable memory being used

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Virtual Address Translation

v Programs don’t know about physical addresses; virtual addresses are
translated into them by the MMU

37

CPU

0:

1:

2:

3:

4:

5:
...

Virtual address
(0x300)

data

MMU

Physical address
(0x3)

Memory
Management
Unit

THIS SLIDE IS 🔑 TO THE WHOLE IDEA

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Page Tables

v Virtual addresses can be converted into physical addresses via a page table.

v There is one page table per processes, managed by the MMU

38

More details about
translation later

Virtual page # Valid Physical Page Number

0 0 null //page hasn’t been used yet

1 1 0

2 1 1

3 0 disk

Valid determines if the page
is in physical memory

If a page is on disk,
MMU will fetch it

“A page has not
been allocated
for this page”.

“A page is
allocated but not

in memory”.

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

User code Kernel code

Exception: page fault Handle page fault:
How it is handled
depends on if this
page has been
handled before

Returns to running thread

Access a
virtual page
not in RAM

Page Fault Exception

v An Exception is a transfer of control to the OS kernel in response to some
synchronous event (directly caused by what was just executed)

v In this case, writing to a memory location that is not in physical memory
currently

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Problem: Paging Replacement

v We don’t have space to store all active pages in physical memory.

v If physical memory is full and we need to load in a page, then how do we
choose a page in physical memory to store on disk in the swap file

v If we need to load in a page from disk, how do we decide which page in
physical memory to “evict”

v Goal: Minimize the number of times we have to go to disk. It takes a while to
go to disk.

40

More details about page replacement later

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Paging

v What happens if this process tries to access an address in page 3?

41

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

pollev.com/cis5480

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Paging

v What happens if we need to load in page 1 and physical memory is full?

43

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

pollev.com/cis5480

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Lecture Outline

v Problems with old memory model
v Virtual Memory High Level
v Address Translation

45

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Aside: Bits

v We represent data on the computer in binary representation (base 2)
v A bit is a single “digit” in a binary representation.
v A bit is either a 0 or a 1

v In decimal -> 243
v In binary -> 0b11110011

46

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Hexadecimal

v Base 16 representation of numbers

v Allows us to represent binary with
fewer characters
§ 0b11110011 == 0xF3

 ^ binary ^ hex

47

Decimal Binary Hex

0 0000 0x0

1 0001 0x1

2 0010 0x2

3 0011 0x3

4 0100 0x4

5 0101 0x5

6 0110 0x6

7 0111 0x7

8 1000 0x8

9 1001 0x9

10 1010 0xA

11 1011 0xB

12 1100 0xC

13 1101 0xD

14 1110 0xE

15 1111 0xF

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Pages & Frames Details

v A page is typically 4 KiB -> 212 -> 4096 bytes

v If physical memory is 32 KiB, how many page frames are there?

v If addressable memory for a single process consists of 64 KiB bytes, how many
pages are there for one process?

v If there is one page table per process, how many entries should there be in a
single page table?

48

A. 5 B. 4 C. 32 D. 8 E. We’re lost…

A. 64 B. 16 C. 20 D. 6 E. We’re lost…

A. 6 B. 8 C. 16 D. 5 E. None of These…

pollev.com/cis5480

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Addresses

v Virtual Address:
§ Used to refer to a location in a virtual address space.
§ Generated by the CPU and used by our programs

v Physical Address
§ Refers to a location on physical memory
§ Virtual addresses are converted to physical addresses

50

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Page Offset

v This idea of Virtual Memory abstracts things on the level of Pages
§ (4096 bytes == 212 bytes)

v On almost every machine, memory is byte-addressable meaning that each
byte in memory has its own address

v How many distinct addresses can correspond to the same page?

v At a minimum, how many bits are dedicated to calculating the location (offset)
of an address within a page?

51

4096 addresses to a single page

12 bits

'00’64 bits:

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

One way to read() 𝑛 bytes

52

pollev.com/cis5480

v If there are 16 pages (virtual), how many bits
would you need to represent the number of
pages?

v If there are 8 pages frames (physical), how
many bits would we need to represent the
number of page frames?

A. 4 2

B. 4 3

C. 3 3

D. 5 3

E. We’re lost…

Page bits Frame bits

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

High Level: Steps For Translation

v Derive the virtual page number from a virtual address

v Look up the virtual page number in the page table
§ Handle the case where the virtual page doesn’t correspond to a physical page frame

v Construct the physical address

54

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Address Translation: Virtual Page Number

v A virtual address is composed of two parts relevant for translating:
§ Virtual Page Number length = bits to represent number of pages
§ Page offset length = bits to represent number of bytes in a page

v The virtual page number determines which page we want to access

v The page offset determines which location within a page we want to access.
§ Remember that a page is many bytes (~4KiB -> 4096 bytes)

55

Virtual Page Number Page Offset

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Virtual Address High Level View

v High level view:
§ Each page starts at a multiple of 4096 (0X1000)
§ If we take an address and add 4096

(0x1000) we get the same offset
but into the next page

56

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x0595

0x1595

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Address Translation: Virtual Page Number

v A virtual address is composed of two parts relevant for translating:
§ Virtual Page Number length = bits to represent number of pages
§ Page offset length = bits to represent number of bytes in a page

v Example address: 0x1234
§ What is the page number?
§ What is the offset?
§ Reminder: there are 16 virtual pages, and a page is 4096 bytes

57

Virtual Page Number Page Offset
pollev.com/cis5480

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Address Translation: Lookup & Combining

v Once we have the page number, we can look up in our page table to find the
corresponding physical page number.
§ For now, we will assume there is an associate page frame

v With the physical page number, combine it with the page offset to get the
physical address

§ In our example, with 0x1234, our physical address is 0x5234

59

Virtual page # Valid Physical Page Number

0x0 0 null

0x1 1 0x5

… … …

Physical Page Number Page Offset

Translation
Done!

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Page Faults

v What if we accessed a page whose page frame was not in physical memory?

v In this example, Virtual page 0x3

60

Virtual page # Valid Physical Page Number

0x0 0 null

0x1 1 0x0

0x2 1 0x5

0x3 0 Disk

… … …

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Page Faults

v In this example, Virtual page 0x3, whose frame is on disk (page 0x3 handled
before, but was evicted at some point)
§ MMU fetches the page from disk
§ Evicts an old page from physical memory if necessary

• Uses LRU or some page replacement algorithm
• Writes the contents of the evicted page back to disk

§ Store the previously fetched page to physical memory
61

Virtual page # Valid Physical Page Number

0x0 0 null

0x1 1 0x0

0x2 1 0x5

0x3 0 Disk

… … …

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Page Faults

v In this example, Virtual page 0x0, which has never been accessed before
§ Evict an old page if necessary (A page that isn’t needed)
§ Claim an empty frame and use it as the frame for our virtual page

62

Virtual page # Valid Physical Page Number

0x0 0 null

0x1 1 0x0

0x2 1 0x5

0x3 0 Disk

… … …

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

That’s all for now!

63

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Poll Everywhere Solutions

64

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Poll: how are you?

v What does this print for x at all three points?

v How does the value of ptr change?

65

pollev.com/cis5480

The value of ptr stays constant showing that
the virtual address is identical
for both the parent and child!

fork_addr.c

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Paging

v What happens if this process tries to access an address in page 3?

66

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

The MMU accesses
the corresponding
frame (frame 2)

pollev.com/cis5480

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Paging

v What happens if we need to load in page 1 and physical memory is full?

67

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

We get a page fault,
the OS evicts a page
from a frame, loads in
new page into that frame

pollev.com/cis5480

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Pages & Frames Details

A. 5 B. 4 C. 32 D. 8 E. We’re lost…

A. 64 B. 16 C. 20 D. 6 E. We’re lost…

A. 6 B. 8 C. 16 D. 5 E. None of These

v A page is typically 4 KiB -> 212 -> 4096 bytes

v If physical memory is 32 KiB, how many page frames are there?

v If addressable memory for a single process consists of 64 KiB bytes, how many
pages are there for one process?

v If there is one page table per process, how many entries should there be in a
single page table?

32 KiB / 4 KiB = 8 frames

64 KiB / 4 KiB = 16 pages

One entry per page

pollev.com/cis5480

68

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

One way to read() 𝑛 bytes

69

pollev.com/cis5480

v If there are 16 pages (virtual), how many bits
would you need to represent the number of
pages?

v If there are 8 pages frames (physical), how
many bits would we need to represent the
number of page frames?

A. 4 2

B. 4 3

C. 3 3

D. 5 3

E. We’re lost…

Page bits Frame bits

num_bits = log2(16) = 4
or
16 = 24, so 4

num_bits = log2(8) = 3
or
8 = 23, so 3

CIS4480, Fall 2025L19: Introduction to Virtual MemoryUniversity of Pennsylvania

Address Translation: Virtual Page Number

v A virtual address is composed of two parts relevant for translating:
§ Virtual Page Number length = bits to represent number of pages
§ Page offset length = bits to represent number of bytes in a page

v Example address: 0x1234
§ What is the page number?
§ What is the offset?
§ Reminder: there are 16 virtual pages, and a page is 4096 bytes

70

0001 0010 0011 0100

0001 -> 0x1

0010 0011 0100 -> 0x234

pollev.com/cis5480
Virtual Page Number Page Offset

