University of Pennsylvania L19: Introduction to Virtual Memory

Introduction to Virtual Memory
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez
Head TAs: Maya Huizar Akash Kaukuntla
Vedansh Goenka Joy Liu

TAs:
Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane
Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones
Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng
Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

CIS4480, Fall 2025

University of Pennsylvania L19: Introduction to Virtual Memory

Logistical Stuff

+» Recitation Today! Same time and same place. Led by Akash and Vedansh!
" Focusing on Condition Variables, Caching, and Virtual Memory!

» PennOS Milestone 0!

= Due tomorrow — Make sure to set up a time with TAs if you haven’t.
= Will be penalized if you reach out late. Do not procrastinate please.

CIS4480, Fall 2025

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

@ Poll Everywhere discuss

+ Data Structures Review: | want to randomly generate a sequence of sorted
numbers. To do this, we generate a random number and insert the number so

that it remains sorted. Would a LinkedList or an ArraylList work better?
= Assume we only use a Linear search!

e.g. if | have sequence [5, 9, 23] and | randomly
generate 12, | will insert 12 between 9 and 23

+» Part 2: Let’s say we take the list from part 1, randomly generate an index and
remove that index from the sequence until it is empty. Would this be faster on

a LinkedList or an ArrayList?
= Assume we only use a Linear search!

CIS4480, Fall 2025

University of Pennsylvania
>

Answer:

« Run using c++:

+» Terminology
** Vector == ArrayList
+* List == LinkedList

+ On Element size from
100,000 -> 500,000

Seconds

Seconds

3500
3000
2500
2000
1500
1000

500

3500
3000
2500
2000
1500
1000

500

: Introduction to Virtual Memory

C++ vector vs list (insert)

100000 200000 300000 400000 500000
Number of Elements

C++ vector vs list (remove)

100000 200000 300000 400000 500000

Element Size

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Back to the Poll Questions

» Data Structures Review: | want to randomly generate a sequence of sorted
numbers. To do this, we generate a random number and insert the number so
that it remains sorted. Would a LinkedList or an ArrayList work better?

» Part 2: Let’s say we take the list from part 1, randomly generate an index and
remove that index from the sequence until it is empty. Would this be faster on
a LinkedList or an ArrayList?

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Data Structure Memory Layout

%+ Important to understanding the poll questions, we understand the memory
layout of these data structures

stack:
main’s stack frame
« ArraylList In C++: array_list (object)
int main() { Length = 3
vector<int> array_list {1, 2, 3};
// .. Capacity =3
} Data = /
//
/
heap: /
Elements are next to each

other in memory © 1 2 3

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Data Structure Memory Layout

%+ Important to understanding the poll questions, we understand the memory
layout of these data structures

stack:
main’s stack frame
X LII"IkEd L|St In C++: Iinked_list (object)
int main() { Length = 4
list<int> linked list {1, 2, 3, 4};
// .. tail = /
! head = / \
/ \\
/ A\
™~ heap: \
/
N k/
Elements are not next _
to each other in memory ® ~ 8

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Poll Question: Explanation

+» Vector wins in-part for a few reasons:
= |Less memory allocations

" |ntegers are next to each other in memory, so they benefit from spatial complexity (and
temporal complexity from being iterated through in order)

+~ Does this mean you should always use vectors?

= No, there are still cases where you should use lists, but your default in C++, Rust, etc
should be a vector

= |f you are doing something where performance matters, your best bet is to experiment try
all options and analyze which is better.

CIS4480, Fall 2025

University of Pennsylvania L19: Introduction to Virtual Memory

What about other languages?

» In C++ (and C, Rust, Zig ...) when you declare an object, you have an instance of
that object. If you declare it as a local variable, it exists on the stack

» In most other languages (including Java, Python, etc.), the memory model is
slightly different. Instead, all object variables are object references, that refer

to an object on the heap

10

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

ArraylList in Java Memory Model

+ In Java, the memory model is slightly different. all object variables are object
references, that refer to an object on the heap

stack:
main’s stack frame
class MemoryModel {] ,
static void main(String[] args) { ArrayList (object ref)
ArraylList 1 = ArraylList({1, 2, 3});
// . \
}
}
1
3 *
heap: Length =3
-] Capacity =3
2 l
Data =
-
/

11

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+» Let’s say | had a matrix (rectangular two-dimensional array) of integers, and |
want the sum of all integers in it

+» Would it be faster to traverse the matrix row-wise or column-wise?
= row-wise (access all elements of the first row, then second)

= column:-wise (access all elements of the first column, ...)

11 |2 |6 |9
14 112 |3

12

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

@ Poll Everywhere discuss

+» Let’s say | had a matrix (rectangular two-dimensional array) of integers, and |
want the sum of all integers in it

+» Would it be faster to traverse the matrix row-wise or column-wise?
= row-wise (access all elements of the first row, then second)

= column:-wise (access all elements of the first column, ...)

Hint: Memory Representation in C & C++
11 |2 6 |9

14 112 |3

1 |5 (8 |j10(11|2 |6 (9 |14 (12 |3 |7 |0 |15(13 |4

13

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Instruction Cache

» The CPU not only has to fetch data, but it also fetches instructions. There is a
separate cache for this

= which is why you may see something like L1I cache and L1D cache, for Instructions and
Data respectively

» Consider the following three fake objects linked in inheritance

class B extends A {
void compute() {
/] ..
}
class A { }
void compute() {
/] .. class C extends A {
} void compute() {
} /] ..
}
}

15

University of Pennsylvania L19: Introduction to Virtual Memory

Instruction Cache

«» Consider this code

public class ICacheExample {
public static void main(String[] args) {
ArrayList<A> 1 = new ArrayList<A>();
/] ..
for (A item : 1) {
item.compute();
}
}
}

+ When we call item.compute that
could invoke A’s compute,
B’s compute or C's compute

% Constantly calling different functions,
may not utilizes instruction cache well

public class A {
public void compute() {
// ..

}
¥

public class B extends A {
public void compute() {
/] .

}
}

public class C extends A {
public void compute() {
/] ..

¥
1

CIS4480, Fall 2025

16

University of Pennsylvania

Instruction Cache

L19: Introduction to Virtual Memory

% Consider this code new code: makes it so we always do

\/
0’0

Instruction Cache
is happier with this

A.compute() -> B.compute() -> C.compute()

\.

}

}

rpublic class ICacheExample {
public static void main(String[] args) {

ArrayList<A> la
ArrayList 1b
ArrayList<C> 1c

new ArrayList<A>();
new ArraylList();
new ArraylList<C>();

/] ..

for (A item : la) {
item.compute();

}

for (B item : 1b) {
item.compute();

}
for (C item : 1lc) {

item.compute();

}

CIS4480, Fall 2025

17

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Numbers Everyone Should Know

%+ There is a set of numbers that called “numbers everyone you should know”

*

Numbers Everyone Should Know

‘:’ From Jeff Dean In 2009 L1 cache reference 0.5 ns
Branch mispredict S5 ns
o b f d L2 cache reference 7 ns
” Num ers are OUt O ate Mutex lock/unlock 100 ns
1 fain men ference 100 ns
but the relative orders of el seicy. cRfenwol :
Compress 1K bytes with Zippy 10,000 ns
H d Send 2K bytes over 1 Gbps network 20,000 ns
magnltu e are Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
about the same
Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns

. Google

+» More up to date numbers:

https://colin-
scott.github.io/personal website/research/interactive latency.html

18

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html

University of Pennsylvania L19: Introduction to Virtual Memory

Lecture Outline

+ Wrapping Up: Caching

» Problems with Old Memory Model
+ Virtual Memory High Level

+~ Address Translation

CIS4480, Fall 2025

19

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ What does this print for x at all three points? G it L)

int x = 3;
int *ptr = &x;

printf("[Before Fork]\t x = %d\n", x);
printf("[Before Fork]\t ptr = %p\n", ptr);
+ How does the value of ptr change?
pid_t pid = fork();
if (pid < 9) {
perror(“fork errored");
return EXIT_FAILURE;
1
J

if (pid == 0) {
X += 2;

printf("[Child]\t\t x = %d\n", x);
printf("[Child]\t\t ptr = %p\n", ptr);

return EXIT_SUCCESS;
}
waitpid(pid, NULL, 0);
X -= 2;
printf("[Parent]\t x = %d\n", x);
printf("[Parent]\t ptr = %p\n", ptr);

return EXIT_SUCCESS;

fork_addr.c 20

CIS4480, Fall 2025

University of Pennsylvania L19: Introduction to Virtual Memory

Review: Processes

+» Definition: An instance of a program
that is being executed
(or is ready for execution)

+» Consists of:
= Memory (code, heap, stack, etc)

= Registers used to manage execution
(stack pointer, program counter, ...)

= QOther resources

SP=>

Stack

!

I

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

P =>

Read-Only Segments
.text, .rodata

22

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data see Data
Code Code Code

CPU CPU CPU

Registers Registers Registers

+» Computer runs many processes simultaneously
= Applications for one or more users
« Web browsers, email clients, editors, ...

= Background tasks
- Monitoring network & I/O devices

CIS4480, Fall 2025

University of Pennsylvania L19: Introduction to Virtual Memory

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data ves Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

+ Single processor executes multiple processes concurrently

" Process executions interleaved (multitasking)
= Address spaces managed by virtual memory system (later in course (now!))
= Register values for non-executing processes saved in memory

University of Pennsylvania L19: Introduction to Virtual Memory

Memory As We Know It

+» The CPU directly uses an address to access a location in memory

address (OX3)

data

A S el =

CIS4480, Fall 2025

25

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Problem 1: How does everything fit?

On a 64-bit machine, there are ~2% Addressable bytes, Laptops usually have around 8GB which is
which is: 18,446,744,073,709,551,616 Bytes (1.844 x 10%°) 8,589,934,592 Bytes (8.589 x 107)

> .

(About to scale; physical memory is smaller than the
period at the end of the sentence compared to the
virtual address space.)

This is just one address space, consider multiple processes...

26

CIS4480, Fall 2025

University of Pennsylvania L19: Introduction to Virtual Memory

Problem 2: Sharing Memory

Memory
Stack Stack Stack
Heap Heap Heap
Data : Data cee Data
Code : Code Code
Saved Saved Saved
registers : registers registers

CPU

Registers

+ How do we enforce process isolation?
" Could one process just calculate an address into another process?

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Problem 2: Sharing Memory

+ How do we enforce process isolation?
" Could one process just calculate an address into another process?

Address Space’

Process A -,

+ What is stopping process B e
from accessing A’s memory? .

Process B

University of Pennsylvania L19: Introduction to Virtual Memory

Problem 3: How do we segment things

+» A process’ address space contains many
different “segments” that have specific
functionality.

- Problem: How do we keep track of the

location and permissions (Read/Write) each
segment may have?

= (e.g., that Read-Only data can’t be written to)

The real question is who is keeping track of this?

SP=>

Stack

'

I

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

P =>

Read-Only Segments
.text, .rodata

CIS4480, Fall 2025

29

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

“Translating”

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

P =

Note: some mappings are missing,
not enough space.

POV: You're a process 3 POV: You're the operating system : 30

University of Pennsylvania L19: Introduction to Virtual Memory

Lecture Outline

+ Wrapping Up: Caching

» Problems with Old Memory Model
+ Virtual Memory High Level

+~ Address Translation

CIS4480, Fall 2025

31

University of Pennsylvania L19: Introduction to Virtual Memory

This Is Not What Happens

+» The CPU directly uses an address to access a location in memory

address (OX3)

data

A S el =

CIS4480, Fall 2025

32

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Indirection

» "Any problem in computer science can be solved by adding another level of

indirection."
= David wheeler, inventor of the subroutine (e.g. functions)

» The ability to indirectly reference something using a name, reference or
container instead of the value itself. A flexible mapping between a name and a
thing allows changing the thing without notifying holders of the name.
= May add some work to use indirection (understatement of the year)

= Example: If the physical location of a variable changes, you don’t need to tell the process
that...

» ldea: instead of directly referring to physical memory, add a level of indirection

33

University of Pennsylvania L19: Introduction to Virtual Memory

CIS4480, Fall 2025

Idea:

+ We don’t need all processes to have their data in physical memory, just the

*

0

D)

0

ones that are currently running

For the process’ that are currently running: we don’t need all their data to be
in physical memory, just the parts that are currently being used

Data that isn’t currently stored in physical memory, can be stored elsewhere
(disk).

= Disk is "permanent storage" usually used for the file system
= Disk has a longer access time than physical memory (RAM)

34

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Pages are of fixed size ~4KiB

Pages 4KiB -> (4 * 1824 = 4096 bytes.)

+» Memory can be split up into units called “pages”

(what the process thinks it has) Physical memory

Address space

Pages currently in use are stored
in physical memory (RAM)

< Ram may contain pages from
other active processes

Pages in physical
memory are called “Page
o, disk frames”

D, Pages not currently in use

(but were used in the past)
are stored on disk

A page may not have an
accompanying page frame until
the page is used

Unused pages may
not have any mapping

35

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Definitions Sometimes called “virtual memory”
or the “virtual address space”

+» Addressable Memory: the total amount of memory that can be theoretically

be accessed based on:

B . 1T MAY OR MAY NOT EXIST ON HARDWARE
" number of addresses (“address space”)

= byt dd “add bility” (like if that memory is never used)
vtes per address ("addressability”) (As in the references might not even be “valid”)

» Physical Memory: the total amount of memory that is physically available on

the computer Physical memory holds a subset of the
addressable memory being used

+ Virtual Memory: An abstraction technique for making memory look larger than
it is and hides many details from the programs.

36

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Virtual Address Translation

+» Programs don’t know about physical addresses; virtual addresses are
translated into them by the MMU

Virtual address Physical address
(0x300) (0x3)

\

Memory
Management
Unit

oo Wy BQ

data

THIS SLIDE IS #° TO THE WHOLE IDEA 37

University of Pennsylvania L19: Introduction to Virtual Memory

Page Tables

More details about
translation later

CIS4480, Fall 2025

% Virtual addresses can be converted into physical addresses via a page table.

%+ There is one page table per processes, managed by the MMU

Virtual page # Valid Physical Page Number

0 0 null //page hasn’t been used yet

1 1 0

2 1 1

3 0 disk e~

Valid determines if the page
1S 1n physical memory

If a page is on

“A page has not
been allocated

/ for this page”.

“A page is
allocated but not
in memory”.

1Sk,

MMU will fetch it

38

University of Pennsylvania

Page Fault Exception

+ An Exception is a transfer of control to the OS kernel in response to some
synchronous event (directly caused by what was just executed)

In this case, writing to a memory location that is not in physical memory
currently

Access a

L19: Introduction to Virtual Memory ClIS4480, Fall 2025

User code Kernel code

Exception: page fault

virtual page —— %
not in RAM

Handle page fault:
How it is handled
depends on if this
page has been
handled before

Returns to running thread

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Problem: Paging Replacement

More details about page replacement later
+» We don’t have space to store all active pages in physical memory.

+ If physical memory is full and we need to load in a page, then how do we
choose a page in physical memory to store on disk in the swap file

+ If we need to load in a page from disk, how do we decide which page in
physical memory to “evict”

» Goal: Minimize the number of times we have to go to disk. It takes a while to
go to disk.

40

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» What happens if this process tries to access an address in page 3?

Physical memory
Address space

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may

not have any mapping
41

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» What happens if we need to load in page 1 and physical memory is full?

Physical memory
Address space

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may

not have any mapping
43

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Lecture Outline

+» Problems with old memory model
+ Virtual Memory High Level
+» Address Translation

45

University of Pennsylvania L19: Introduction to Virtual Memory

Aside: Bits

+» We represent data on the computer in binary representation (base 2)
+~ A bitis a single “digit” in a binary representation.
+~ AbitiseitheraOoral

+» In decimal -> 243
» In binary ->0b11110011

CIS4480, Fall 2025

46

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

oo T T

Hexadecimal 0 0000
1 0001 Ox1
+ Base 16 representation of numbers 2 S
3 0011 0x3
4 0100 Ox4
+~ Allows us to represent binary with 5 0101 Ox5
fewer characters 6 0110 0x6
" 0b11110011 == OxF3 7 0111 Ox7
A binary N hex 8 1000 0x8
9 1001 0x9
10 1010 OxA
11 1011 OxB
12 1100 OxC
13 1101 OxD
14 1110 OxE
15 1111 OxF

47

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

» A page is typically 4 KiB -> 212 -> 4096 bytes

+ |f physical memory is 32 KiB, how many page frames are there?

A. B. 4 C(C. 32 D. 8 E. We’re lost...

+ |f addressable memory for a single process consists of 64 KiB bytes, how many
pages are there for one process?

A. B. 16 C. 20 D. 6 E. We’re lost...

» |f there is one page table per process, how many entries should there be in a
single page table?
A. B. 8 C. 16 D. 5 E. NoneofThese..

48

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Addresses

% Virtual Address:
= Used to refer to a location in a virtual address space.
= Generated by the CPU and used by our programs

+» Physical Address
= Refers to a location on physical memory
= Virtual addresses are converted to physical addresses

50

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Page Offset

% This idea of Virtual Memory abstracts things on the level of Pages
= (4096 bytes == 212 bytes)

» On almost every machine, memory is byte-addressable meaning that each
byte in memory has its own address

» How many distinct addresses can correspond to the same page?

4096 addresses to a single page
» At a minimum, how many bits are dedicated to calculating the location (offset)
of an address within a page? 12 bits |

[|
64 bits: '00"

51

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ If there are 16 pages (virtual), how many bits

would you need to represent the number of Page bits ; Frame bits
pages?
A.
B. 4 3
C. 3 3
» |f there are 8 pages frames (physical), how
many bits would we need to represent the D. 5 3

number of page frames? E. We're lost...

52

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

High Level: Steps For Translation

+ Derive the virtual page number from a virtual address

» Look up the virtual page number in the page table
= Handle the case where the virtual page doesn’t correspond to a physical page frame

% Construct the physical address

54

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Address Translation: Virtual Page Number

+» Avirtual address is composed of two parts relevant for translating:
= Virtual Page Number length = bits to represent number of pages
= Page offset length = bits to represent number of bytes in a page

Virtual Page Number Page Offset

+~ The virtual page number determines which page we want to access

+ The page offset determines which location within a page we want to access.
= Remember that a page is many bytes (~4KiB -> 4096 bytes)

55

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Virtual Address High Level View

+ High level view:
= Each page starts at a multiple of 4096 (0X1000)

= |f we take an address and add 4096 0x0000
(Ox1000) we get the same offset 0x0595

but into the next page 0x1000
0x1595

0x2000
0x3000
0x4000

0x5000

56

University of Pennsylvania

L19: Introduction to Virtual Memory

Address Translation: Virtual Page Number

+» Avirtual address is composed of two parts relevant for translating:
= Virtual Page Number length = bits to represent number of pages
= Page offset length = bits to represent number of bytes in a page

Virtual Page Number Page Offset
pollev.com/cis5480

» Example address: 0x1234

= What is the page number?
" What is the offset?

= Reminder: there are 16 virtual pages, and a page is 4096 bytes

CIS4480, Fall 2025

57

University of Pennsylvania L19: Introduction to Virtual Memory

Address Translation: Lookup & Combining

CIS4480, Fall 2025

%+ Once we have the page number, we can look up in our page table to find the

corresponding physical page number.

" For now, we will assume there is an associate page frame

Virtual page # Valid Physical Page Number
0x0 0 null
Ox1 1 O0x5

» With the physical page number, combine it with the page offset to get the

physical address

Physical Page Number

Page Offset

" |n our example, with 0x1234, our physical address is 0x5234

Translation
Done!

59

University of Pennsylvania

Page Faults

L19: Introduction to Virtual Memory

+» What if we accessed a page whose page frame was not in physical memory?

Virtual page # Valid Physical Page Number
0x0 0 null

Ox1 1 0x0

Ox2 1 O0x5

0x3 0 Disk

In this example, Virtual page 0x3

CIS4480, Fall 2025

University of Pennsylvania

Page Faults

L19: Introduction to Virtual Memory

Virtual page # Valid Physical Page Number
0x0 0 null

Ox1 1 0x0

0x2 1 O0x5

0x3 0 Disk

In this example, Virtual page 0x3, whose frame is on disk (page 0x3 handled
before, but was evicted at some point)
= MMU fetches the page from disk

= Evicts an old page from physical memory if necessary
- Uses LRU or some page replacement algorithm
- Writes the contents of the evicted page back to disk

= Store the previously fetched page to physical memory

CIS4480, Fall 2025

University of Pennsylvania

Page Faults

L19: Introduction to Virtual Memory

Virtual page # Valid Physical Page Number
0x0 0 null

Ox1 1 0x0

O0x2 1 O0x5

0x3 0 Disk

In this example, Virtual page 0x0, which has never been accessed before

= Evict an old page if necessary (A page that isn’t needed)
= Claim an empty frame and use it as the frame for our virtual page

CIS4480, Fall 2025

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

That’s all for now!

63

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

Poll Everywhere Solutions

64

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ What does this print for x at all three points? G it L)

int x = 3;
int *ptr = &x;

printf("[Before Fork]\t x = %d\n", x);
printf("[Before Fork]\t ptr = %p\n", ptr);
+ How does the value of ptr change?
pid_t pid = fork();
if (pid < 9) {
perror(“fork errored");
return EXIT_FAILURE;
}

The value of ptr stays constant showing that if (pid == @) {
° ° ° ° X += 2,
the virtual address 1s 1dent.1cal DrintFC"[ChildI\EAE X = %d\n", x):
for both the parent and child! printf("[Child]\t\t ptr = %p\n", ptr);

return EXIT_SUCCESS;

1
J

waitpid(pid, NULL, 0);

X -= 2;
printf("[Parent]\t x = %d\n", x);
printf("[Parent]\t ptr = %p\n", ptr);

return EXIT_SUCCESS;

fork_addr.c 65

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» What happens if this process tries to access an address in page 3?

Physical memory
Address space

Pages currently in use are stored
in physical memory (RAM)

The MMU accesses
the corresponding
frame (frame 2)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may

not have any mapping
66

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» What happens if we need to load in page 1 and physical memory is full?

Physical memory
Address space

Pages currently in use are stored
in physical memory (RAM)

We get a page fauli,
the OS evicts a page
from a frame, loads in

o Jisk New page into that frame

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may

not have any mapping
67

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

» A page is typically 4 KiB -> 212 -> 4096 bytes

O I I I ?
If physical memory is 32 KiB, how many page frames are there? ., .., o _ g frames

A. B. 4 C(C. 32 D. 8 E. We’re lost...

+ |f addressable memory for a single process consists of 64 KiB bytes, how many

pages are there for one process? . .
64 KiB / 4 KiB = 16 pages

A. B. 16 C. 20 D. 6 E. We’re lost...

» |f there is one page table per process, how many entries should there be in a
single page table?
A. B. 8 C. 16 D. 5 E. NoneofThese

One entry per page
68

University of Pennsylvania L19: Introduction to Virtual Memory CIS4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ If there are 16 pages (virtual), how many bits

would you need to represent the number of Page bits : Frame bits

pages?
num_bits = log,(16) =4 A.
or
4 3
16 =24 s04
C. 3 3
» |f there are 8 pages frames (physical), how
many bits would we need to represent the D. 5 3
number of page frames? E. We're lost...
num_bits = log,(8) =3
or

8:23,503 69

University of Pennsylvania

L19: Introduction to Virtual Memory

Address Translation: Virtual Page Number

+» Avirtual address is composed of two parts relevant for translating:
= Virtual Page Number length = bits to represent number of pages
= Page offset length = bits to represent number of bytes in a page

Virtual Page Number Page Offset
pollev.com/cis5480

+» Example address: 0x1234 0001 0010

= What is the page number? 0001
= What is the offset?

0011 0100

-> ox1

0010 0011 0100 -> 0x234
= Reminder: there are 16 virtual pages, and a page is 4096 bytes

CIS4480, Fall 2025

70

