University of Pennsylvania

L20: Virtual Memory & Page Tables

Virtual Memory and Page Tables

Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez
Head TAs: Maya Huizar Akash Kaukuntla
Vedansh Goenka Joy Liu

TAs:
Eric Zou Joseph Dattilo Aniket Ghorpade
Zihao Zhou Eric Lee Shruti Agarwal
Connor Cummings Shreya Mukunthan Alexander Mehta
Bo Sun Steven Chang Rania Souissi

Sana Manesh

Shriya Sane
Yemisi Jones
Raymond Feng
Rashi Agrawal

CIS 4480 Fall 2025

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+» How is PennOS going? Any questions, comments or concerns from last lecture?

University of Pennsylvania L20: Virtual Memory & Page Tables

Logistics

» Milestone 0 was due last week on Friday.

» Milestone 1 is due Next Week, Nov 215t

" |t might be early, but keep your TA in the loop for when you’d like to schedule the
demonstration of your work.

» Recitation 8: “Virtual Memory on Steroids”
= Led by Alex and Connor

» No Class, Nov 25t and Nov 27t for Thanksgiving Break.

CIS 4480 Fall 2025

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Logistics

+ Apply to be a TA for this course!

" https://www.cis.upenn.edu/ta-information/

+ Here’s the timeline!
= Application due Nov 30t
= You'll hear back by Dec 4t
" |nterviews conducted Dec 8t — 10t
= Offers sometime on Dec 10t

*

+ If you have any ideas for how to make the course better, would like to make an
impact on a course, and would like to support students as they navigate
PennOS; consider applying!

https://www.cis.upenn.edu/ta-information/
https://www.cis.upenn.edu/ta-information/
https://www.cis.upenn.edu/ta-information/
https://www.cis.upenn.edu/ta-information/
https://www.cis.upenn.edu/ta-information/

University of Pennsylvania

Lecture Outline

» High Level Refresher

« TLB

+ Page Table Details

» Multi-Level Page Tables
» Inverted Page Tables

L20: Virtual Memory & Page Tables

CIS 4480 Fall 2025

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Direct Addressing

+» The CPU directly uses an address to access a location in memory
= Creates several different issues....

Virtual address Ox16f5e33ea
Ox16f5e33e8
(0X €33eg) Ox16f5e33ea

S — oasrsene
0x16f5e33e8

Ox16f5e33e7
Ox16f5e33e6

0x000000001
0x000000000

data

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Virtual Memory: Translation

+» Programs don’t know about physical addresses; virtual addresses are

translated into them by the MMU
Page: 0x00f5e3

Virtual address 0x3eb
-—-\@xm:
Memory 0x3e8:
Management 0x3e7
Unit 0x3e6
Oxffe
Oxfff
data

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Virtual Memory: Translation

+» Programs don’t know about physical addresses; virtual addresses are

translated into them by the MMU
Page: 0x00f5e3

o 74

Virtual address Ox3eb
(0x16T5e33e8) Ox3ea: The Virtual Address is
-— ' manipulated to create the
= -\ 0x3e9: Physical Address.

Memory 0x3e8:
Management 0x3e7
unit Ox3e6

Oxffe

Oxfff

data

Note: This is a simple translation scheme. 8

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Virtual Pages and Physical Page Frames

+ Memory is divided into fixed-size units called pages

Virtual
Address Space

Physical Memory disk

Virtual Page

s« Page Frame

A paoe doesn’t veed a page frame if it is uused
Unmapped Pages

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Virtual Pages and Physical Page Frames

+ Memory is divided into fixed-size units called pages

Virtual
Address Space

Physical Memory If we need page X, we disk
need to evict a page
& Page Frame from memory!

Virtual Page

A paoe doesn’t veed a page frame if it is uused
Unmapped Pages 10

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Virtual Pages and Physical Page Frames

+ Memory is divided into fixed-size units called pages

Virtual
Address Space

Physical Memory If we need page X, we disk
need to evict a page

Virtual Page

s« Page Frame

A paoe doesn’t veed a page frame if it is uused

Unmapped Pages 11

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Virtual Pages and Physical Page Frames

+ Memory is divided into fixed-size units called pages

Virtual
Address Space

Physical Memory If we need page X, we disk
need to evict a page
& Page Frame from memory!

Virtual Page

A paoe doesn’t veed a page frame if it is uused
Unmapped Pages 12

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Virtual Pages and Physical Page Frames

+ Memory is divided into fixed-size units called pages

Virtual

Address Space Physical Memory Writing a Page to Disk disk

is an expensive task

Virtual Page Page Frame

~—— j'

. Only pages with content
are moved to disk (swap file).

Why would you write
empty pages to disk?

If the green process was allocated the page but never wrote to it,
do we still need to write the page to disk?

13

University of Pennsylvania

Page Tables

L20: Virtual Memory & Page Tables

+ Virtual addresses are converted into physical addresses via a page table.
Each process needs its own mapping so there is a page table per process

Virtual page # Valid Physical Page Frame
Ox00f5e5 0 |
0x00f5e4 1 0x00alb2

0x00f5e3 1 0x00c3d4

Ox00f5e2 0 0x00e5f6

Valid determines if the
pane 1S n physical memory

It a page is ov disk,
I+ will be fetched

CIS 4480 Fall 2025

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Page Fault Exception

+ An Exception is a transfer of control to the OS kernel in response to some
synchronous event (directly caused by what was just executed)

+ In this case, writing to a memory location that is not in physical memory

currently
User code Kernel code
In this example, a

dereference o variable that points
pointerto —— X Exception: page fault Handle page fault: to a virtual address
memory How it is handled that is mapped (but
that is depends on if this not in memory) will
mapped but Returns to running thread pgge has been trigger a page fault.
no page in handled before

memory

If you want to know what virtual address is an invalid virtual address, 0x0 is a good example.

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Types of Addresses

« Virtual Address:

= Used to refer to a location in a virtual address space
- Think the typical Stack and Heap diagram.

= Used and Created by the CPU during pointer arithmetic, etc.
+» Physical Address

= Refers to a location in physical memory

= Virtual addresses are converted to physical addresses when we preform accesses to
memory.

16

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Page Offset

+ Typically, Pages are 4096 bytes in size (212 bytes).
= |In the real world, this size is configurable (e.g. 1MB Pages....)

+» On most modern machines, memory is byte-addressable.

® Each individual byte has a unique address.

Questions Worth Pondering

How many different addresses belong to the same page?

(i.e. how many values can we access within a page)

How many bits are needed to specify a location within a page?

(i.e. what’s the lowest number of bits needed to encode an offset)
17

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Physical Memory

+ High level view:
= Each page is aligned by a multiple of 4096 (0X1000)

= |f we take an address and add 4096 (0x1000) we get the same offset but within the next
page (see below, the red corresponds to the offset, the black with the page.)

0x0800 Oxigoo | " EREREC Oxe800 O0xf800

Ox0000 0x1000 Oxe000 Oxf000
Page 0 Page 1 Page 14 Page 15 18

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Translating from Virtual to Physical

+ Virtual Address: Simple Limitations

= A portion of the virtual address is used to calculate the physical frame and the value of the
offset. Here’s an example if addresses == sizeof(short)

0b0000 0000 0000 0000

I
Page Page Offset

0x0800 oxigoo | R REC

Ox0000 0x1000 Oxe000 Oxf000
Page 0 Page 1 Page 14 Page 15 12

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Translating from Virtual to Physical

% Increasing the number of pages per process...

If we can have more virtual pages 0b0000 0000 0000 000D OOOO If pages stay the same size, we

per process, we can dedicate more \ J \ j don’t change the number of

. Y .)
bits to those pages. Page Page Offset bits dedicated to the offset.

v Think about how the range of pages changes .

Ox00000 0x01000 Oxfe000 oxff000
Page O Page 1 Page n-1 Page n 20

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+ In the previous example, we worked with a virtual address that dedicated 8 bits to
the page number and 12 bits to the offset within the page.

Let’s place some system limitations
= A page is 4096 bytes
" There are 128 virtual pages max per process

s @©x81111 a valid virtual address? Why or why not?

21

L20: Virtual Memory & Page Tables

Address Translation: Lookup & Combining

+ The extracted “page number” is actually used as an index into a table to

look up the corresponding physical page frame (if it exists..)

Virtual Address:

0b0111 1111 0000 0000 0001

!

\

Page Index

Virtual page # Valid

Physical Page Number

Page Offset

0 null
Ox7E 0 OxFF
Ox7F 1 OxFO

Physical Address:

~

0b1111 0000 0000 0000 0001

NS

CIS 4480 Fall 2025

23

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Lecture Outline

+ High Level Refresher

+ TLB

+ Page Table Details

» Multi-Level Page Tables
» Inverted Page Tables

24

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

MMU + TLB

+ So, does the MMU access the page table for every memory access?
" No: Looking for values in the table is not as simple as it seems. A dedicated cache makes

lookups faster (TLB) Page: 0x00f5e3 —
oot
Virtual address Physical Address 0x3eb i the TLB is missed. th
Ox16f5e33e8 : € IS missed, the
() (0x00f5e33e8) dx3ea: MMU will insert the value
-_'-\ 0x3e9: in the TLB and then try the
. f5e3 0x3e8: instruction again!
miss \ \ 0x3e7 (load/store)
MMU [
find page table entry Ox36e6
Oxffe
Oxfff

data

Note: This is a simple translation scheme. 25

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Transition Lookaside Buffer (TLB)

» A special piece of hardware memory that is quick to do lookups in. (cache)
» Stores recent virtual page to physical frame translations.

= Hardware for TLB is special, it can quickly check all entries to see if it contains a mapping.
- Hardware is expensive, so the TLB is kept relatively small usually (256 entries or so...)

» TLB prevents MMU from having to read/walk the page table on each
translation to find the mappings.

26

L20: Virtual Memory & Page Tables

This Example with the TLB

+ If this mapping exists within the TLB, this is not performed!

Virtual Address:

Ob0111 1111 0000 0000 0001

!

\

Page Index

Page Offset

Virtual page # Valid Physical Page Number
0 null

Ox7E 0 OxFF

Ox7F 1 OxFO

Physical Address:

~

NS

Ob1111 0000 0000 0000 0001

CIS 4480 Fall 2025

27

L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

This Example with the TLB

+ If this mapping exists within the TLB, this is not performed!

Virtual Address: Ob0111 1111 0000 0000 0001

It starts to look more like this. - |

Physical Address: Ob1111 0000 0000 0000 0001

28

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

TLB Locality

+ Is limited in the number of page table entries it can cache
= Dramatically smaller than you expect.

+» TLB takes advantage of temporal locality to decide which pages should be
stored inside of it

= Pages that are accessed more often are more likely to be accessed soon in the future

- The things you need more often you probably keep on your desk and closer to you...when’s
there’s no more space you choose something to evict...or sometimes you just throw everything
off your desk (The TLB’s equivalent would be called a TLB Flush)

29

University of Pennsylvania
>

MMU + TLB

L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

+ So, does the MMU access the page table for every memory access?
" No: Looking for values in the table is not as simple as it seems. A dedicated cache makes

lookups faster (TLB)

Virtual address

(0x16T5e33e8)

Lo ——

miss \ \f5e3

Physical Address 0x3ea:
(0x00f5e33e8) ' MMU will insert the value in

-\ 0x3e9: the TLB and then try the
0x3e8: instruction again!

Page: 0x00f5e3

If the TLB is missed, the

0x3eb

MMU | find page table entry

Looks at the\ ? W\ Finds

page tables w

Ox3e7 (load/store)
0x3eb The address must be
: : resolved by the TLB!
the mappings
Oxffe
Oxfff
data

Note: This is a simple translation scheme.

30

L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

University of Pennsylvania

TLB: More Details

% Entries in the TLB need to store:
" The virtual page -> physical frame mapping

= Dirty & Permission bits

*

- TLB Entries need to be kept n’sync with the page table
= |f a TLB entry is updated, the page table must be synced to have the updated dirty bit

value
= |f a page is evicted from the page table, but is in the TLB, then that entry must be removed
from the TLB (If not, it will access invalid memory because it will resolve the address)

D)

D)

+» To maintain process isolation, one of two things

= When we switch executing processes, the TLB is cleared
= TLB entries could also contain an ASID tag to enforce isolation (Adress Space ldentifier) N

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

TLB: More Details

+» To maintain process isolation, one of two things
= When we switch executing processes, the TLB is cleared

= TLB entries also contain a ASID tag to enforce isolation
5 Page: 0x00f5e3

Virtual address 0x3eb
Process 1 (0x16f5e33e8) Ox3ea:
| 0x3e8:
The TLB is full of mappings for Ox3e7
Process 1
And is honestly doing a great job 0x3eb
mapping everything!
Oxffe
Oxfff
data -

University of Pennsylvania
>

L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

TLB: More Details

+» To maintain process isolation, one of two things
= When we switch executing processes, the TLB is cleared

= TLB entries also contain an ASID tag to enforce isolation

Process 2

This is here for legacy
reasons. Most, if not all
architectures support
some ASID mechanism.

a

Virtual address 0x3eb
(0x16f5e33e8) Ox3ea:
The TLB is full of the old mappings! 0x3es:
Ox3e7
If Process 2 sends the same VA, then 0x3ebh

it’ll get data belonging to another

process!

Oxffe

Page: 0x00f5e3

So, when switching from one process to another, fs
you might need to flush all the entries in the TLB 2

L

data

33

CIS 4480 Fall 2025

University of Pennsylvania

L20: Virtual Memory & Page Tables

TLB: More Details

+» To maintain process isolation, one of two things

= When we switch executing processes, the TLB is cleared

= TLB entries also contain an ASID tag to enforce isolation

Process 2

After flushing all
entries in the TLB,
the system must
begin repopulating
it with the correct
entries for process
2 from the page
table.

L ——

A —

Virtual address

(0x343123431)

miss \ \xxxx

MMU | find page table entry

Looks at the \ \

page tables ?M

data

Page:

OXOOXXXX

0x434

0x433:

0x432:

Ox431:

0x430

Ox42f

0x001

0x000

34

L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

University of Pennsylvania

TLB: More Details

% Entries in the TLB need to store:
" The virtual page -> physical frame mapping

= Dirty & Permission bits

*

- TLB Entries need to be kept n’sync with the page table
= |f a TLB entry is updated, the page table must be synced to have the updated dirty bit

value
= |f a page is evicted from the page table, but is in the TLB, then that entry must be removed
from the TLB (If not, it will access invalid memory because it will resolve the address)

D)

D)

+» To maintain process isolation, one of two things

= When we switch executing processes, the TLB is cleared
= TLB entries also contain a PID tag to enforce isolation N

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

TLB: More Details

+ Like Caches, CPU’s usually have more than 1 TLB.

+ AlLevel 1TLB
= Faster (hardware can check all entries in parallel)
= Smaller ~64 or 128 entries

= Usually (howadays) two Level 1 TLBs
- One for data

« One for instructions

« A Level 2 TLB

= Faster than looking up in a Page Table
but slower than a level 1 TLB lookup

m ~512 entries

= Usually contains addresses for both instructions & data. 36

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Lecture Outline

+ High Level & Address Translation Refresher
« TLB

+ Page Table Details

» Multi-Level Page Tables

» Inverted Page Tables

37

University of Pennsylvania

Previous View of a page table

+~ One page table per process

+ Is just a big array of page table entries

+» One entry per page

L20: Virtual Memory & Page Tables

" on a modern 64-bit machine, that is 2°2 (4,503,599,627,370,496) entries

Virtual page # Valid Physical Page Frame

0 0 ---- //page hasn’t been used yet
1 1 0

2 1 1

3 0 1

CIS 4480 Fall 2025

38

University of Pennsylvania

Page Table Entry: Valid Bit & Reference Bit

« Valid:

L20: Virtual Memory & Page Tables

= 1 bit, True/False whether the page is in physical memory

= |ff bitis O, then it is not present in memory and a page fault occurs

+ Reference:

= Used by the MMU to determine eviction; helps measure the age of a page

" More on this next lecture!

Virtual page # | Valid | Frame # Reference | dirty permissions
0 0

1 1 0 11 1 R/W

2 1 1 01 0 R/X

3 0 1

CIS 4480 Fall 2025

39

University of Pennsylvania L20: Virtual Memory & Page Tables

Page Table Entry: Dirty & Permission Bits

+ Dirty:
= 1 bit whether the page has been written to

= |f page is dirty and needs to be evicted from physical memory,
then the data must be written back to the swap file

+ Permissions:

= At |least three bits to determine permissions to that memory
= Can it be Read, Written or eXecuted?

Virtual page # | Valid | Frame # dirty permissions
0 0

1 1 0 1 R/W

2 1 1 0 R/X

3 0 1

CIS 4480 Fall 2025

40

University of Pennsylvania

Page Table Entry

L20: Virtual Memory & Page Tables

CIS 4480 Fall 2025

+» A page table entry stores more than a valid bit and the physical page number

(and more than what | have here)

Valid: True/False whether the page is in physical memory

Frame #: the location of the page in physical memory iffitis in it

Dirty: whether the page was written to or not
Permissions: whether the page can be used for Reading, Writing or eXecuting.

And much more...

Virtual page # | Valid | Frame # dirty permissions
0 0

1 1 0 1 R/W

2 1 1 0 R/X

3 0 1

41

University of Pennsylvania

A Big Array

L20: Virtual Memory & Page Tables

CIS 4480 Fall 2025

+» We can view the page table as being an array that we can index into using the
Virtual page number

» With 2°? virtual pages per process, that is 2°2 entries per page table... It would
help to keep page table entries small

Ask Yourself

« Question: What could we remove to make the entries smaller?

Virtual page # | Valid | Frame # Reference | dirty permissions
0 0

1 1 0 11 1 R/W

2 1 1 01 0 R/X

3 0 1

42

University of Pennsylvania

L20: Virtual Memory & Page Tables

Optimization: Remove Virtual Page #

CIS 4480 Fall 2025

%+ The Virtual page # can be removed since it is implicitly the index into our Page

Table

Valid

Frame #

Reference | dirty permissions
0 _—
1 0 11 1 R/W
1 1 01 0 R/X
0 1

43

University of Pennsylvania L20: Virtual Memory & Page Tables

Page Tables in Reality

CIS 4480 Fall 2025

+~ Page Table Entries are simply numerical values, where specific bits encode

information such as the physical address, access permissions, etc...

+ Frame # — 8 Bits
s Valid - 1 bit '0b0000000000000000
+ Reference — 2 bits
» Dirty — 1 bit

ST '0b0000000000000000
' '0b0000000000000000
Table Address I@b@@@@@@@@QQQQQQQQI

(Where the table starts)

If you want to know: Table Locations are stored in specialized registers. I’'m not going to talk about it though.

Index N

Index 2

Index 1
Index O

44

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Arm v7 Page Table Entry
» Page Table Entry

= Arm calls them “Descriptors” (not sure why)
Y ©

Small page

>

« Armv7 is a 32 bit architecture...

+ “Small Page Base Address” is a 4KB page

= Bits 31-12, indicated the Physical Frame Number Executable Page?

) . . 5

+ nG (NOt G Iobal) Can we execute |nstruct!ons stored at this frame~
XN = Execute Never; 1 Bit

= 2 bits

" |s this memory shared by everyone? Process Specific?

+ AP (Access Permisions)
= 2 bits
= Read/Write?

For those interested: this is an example of a second level descriptor, necessary to create 4kb pages in ARMv?7. 45

>

>

L)

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Still really big :(

» Removing the page number saves us 52 bits from the input, but we still end up
with ~30 bits (4 bytes) per entry

+ One page table takes up 2°2* 4 = 2>4 bytes ®

» How can we make this better?

46

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Lecture Outline

+ High Level & Address Translation Refresher
« TLB

» Page Table Details

» Multi-Level Page Tables

» Inverted Page Tables

47

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Multi Level Page Table: x86 Linux Implementation

» On a 64-bit address, we keep the bottom 12 bits for the page offset, and the
upper 52 for the page number.

+~ We can split the page number into 4 groups of 9 bits

Reserved G offset U offset M offset PTE offset Page Offset
16 bits 9 bits 9 bits 9 bits 9 bits 12 bits
0000000000000000 000000000 000000000 000000000 000000000 000000000000
\ J
|

Each of these groups of bits are an index into a table.

48

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Diagram
+~ High level view Mid level tables PTE’s (Page Table Entries)
Third tables
Top level table —
: \ \
N
\\ >~
Each Iuntermediary Table has 512 (29) entries
a9

University of Pennsylvania

L20: Virtual Memory & Page Tables

Looking up an address

» First index into top level table using the top 9-bit chunk
M offset

Reserved
16 bits

We already know the location
of the top-level page table—
so we use the G Offset to
index directly into it.
Top level table

G offset
9 bits

Third tables

U offset PTE offset Page Offset

12 bits
0000000000000000 101001010 100000010 111011010 001101011 000101011011

Mid level tables

CIS 4480 Fall 2025

50

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Looking up an address

» First index into top level table using the top 9-bit chunk

Reserved G offset U offset M offset PTE offset Page Offset
16 bits 9 bits 9 bits 9 bits 9 bits 12 bits

0000000000000000 101001010 100000010 111011010 001101011 000101011011

Mid level tables PTE’s
Third tables
Top level table
\
AN
\
N
51

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Looking up an address

» First index into top level table using the top 9-bit chunk

Reserved G offset U offset M offset PTE offset Page Offset
16 bits 9 bits 9 bits 9 bits 9 bits 12 bits

0000000000000000 101001010 100000010 111011010 001101011 000101011011

Mid level tables PTE’s
Third tables
Top level table

\

AN

\
\ —
o
52

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Looking up an address

» First index into top level table using the top 9-bit chunk

Reserved G offset U offset M offset PTE offset Page Offset
16 bits 9 bits 9 bits 9 bits 9 bits 12 bits

0000000000000000 101001010 100000010 111011010 001101011 000101011011

Mid level tables PTE’s
Third tables
Top level table
\
AN
\
\ ~. Frame Number
Ty
53

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Why 9 bits?

+ Why is each index into a level of the page table 9 bits?
" 9 bits = 2° =512 entries in each Intermediary Table

+~ Each entry is just a pointer to the next level table

= A pointer on a 64-bit machine is 8 bytes
= A page table entry is also at max 8 bytes

+» 27 entries * 23 bytes per entry = 212 bytes (size of a page!)

= This means each level into the page table itself is the size of the page. Makes maintaining
the page table itself convenient since the page table itself lies in memory.

54

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Analysis

» Most of the pages that are theoretically available to a process go unused. Multi
Level Page Tables take advantage of this, most pointers in the table are NULL

= A lot less space needed than our first idea of a page table

» Lazily allocate page table entries for pages as they are needed
= E.g.only allocate them once they are needed

+» Take advantage of temporal locality: if a particular memory location is

referenced, it is likely that it and nearby memory locations will be accessed
soon

= |’|| revisit the idea of locality later

55

University of Pennsylvania

L20: Virtual Memory & Page Tables

CIS 4480 Fall 2025

Analysis pt. 2

+» Take advantage of temporal locality: if a particular memory location is
referenced, it is likely that it and nearby memory locations will be accessed
soon

= |f pages near each other in memory are accessed, they will in the same nodes in the tree!
Not every page access requires the creation of a mid-level node

= |’|| revisit the idea of locality later

<+ What was once just one memory access to lookup page frame is now four
memory accesses ®

" This can be very expensive time-wise
" There is hardware (TLB) that helps a lot with this ©

56

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

discuss

Reserved G offset U offset M offset PTE offset Page Offset
16 bits 9 bits 9 bits 9 bits 9 bits 12 bits

0000000000000000 000000000 000000000 000000000 000000000 000000000000

We know there is a single global G Table containing 2° entries.

Each entry in the G table points to the base address of a U Intermediary Table, and
this structure continues down through additional levels.

If every entry at every level is valid, what is the maximum amount of memory that
the page table will occupy?

57

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Lecture Outline

+ High Level & Address Translation Refresher
« TLB

» Page Table Details

» Multi-Level Page Tables

» More Next time! ©

60

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

More Lore

+» Read why Linus doesn’t like Inverted Page Tables
= (strong language)

61

https://yarchive.net/comp/powerpc_page_tables.html
https://yarchive.net/comp/powerpc_page_tables.html

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+ In the previous example, we worked with a virtual address that dedicated 8 bits to
the page number and 12 bits to the offset within the page.

Let’s place some system limitations
= A page is 4096 bytes
" There are 128 virtual pages max per process

s @©x81111 a valid virtual address? Why or why not?

% 0Ox111 is a valid offset!
%+ 0x81 represents value 129 (this would be page 130...)

. Remember: Just because you have n bits doesn't mean all 2" possible values

correspond to valid page numbers (or more precisely, to valid page table entries).
62

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

discuss

Reserved G offset U offset M offset PTE offset Page Offset
16 bits 9 bits 9 bits 9 bits 9 bits 12 bits

0000000000000000 000000000 000000000 000000000 000000000 000000000000

We know there is a single global G Table containing 2° entries.

Each entry in the G table points to the base address of a U Intermediary Table, and
this structure continues down through additional levels.

If every entry at every level is valid, what is the maximum amount of memory that

the page table will occupy?
Bytes per entry

The total number of entriesis 8 * (29 + (29 * 2 9) + (29 29 %9 9) + (29 29 %2 9%9 9))

G Entries M Entries

U Entries PTE Entries

63

University of Pennsylvania L20: Virtual Memory & Page Tables CIS 4480 Fall 2025

Poll Yourselves At Home

Reserved G offset U offset M offset PTE offset Page Offset
16 bits 9 bits 9 bits 9 bits 9 bits 12 bits

0000000000000000 000000000 000000000 000000000 000000000 000000000000

We know there is a single global G Table containing 2° entries.

Each entry in the G table points to the base address of a U Intermediary Table, and
this structure continues down through additional levels.

If every entry at every level is valid, what is the maximum amount of memory that
the page table will occupy?

The total number of entries is ~ 55083 1656960 Bytes — 5 Tera bytes

64

