University of Pennsylvania L21: Page Replacement

Page Replacement

Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez
Head TAs: Maya Huizar Akash Kaukuntla
Vedansh Goenka Joy Liu

TAs:
Eric Zou Joseph Dattilo Aniket Ghorpade
Zihao Zhou Eric Lee Shruti Agarwal
Connor Cummings Shreya Mukunthan Alexander Mehta
Bo Sun Steven Chang Rania Souissi

Sana Manesh

Shriya Sane
Yemisi Jones
Raymond Feng
Rashi Agrawal

CIS 4480 Fall 2025

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+» What’s your favorite coffee order?

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Lecture Outline

» Page Replacement: High Level
" FIFO

= Reference Strings
= Beladys

» LRU
» Thrashing
» FIFO w/ Reference bit

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Page Replacement

%+ The operating system will sometimes have to evict a page from physical
memory to make room for another page.

» |f the evicted page is access again in the future, it will cause a page fault, and
the Operating System will have to go to Disk to load the page into memory
again

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Evicting a Page

+» Physical Memory is limited in size. Not All Pages can exist in memory.

Address Space

Physical Memory disk

Frame 1
If we need page 5, we

need to evict a page
from memory!

Frame 2

Frame 3

Which Page do we evict?
1,2o0r4

Process A

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Page Replacement

+ Disk access is very very slow (relatively speaking).
" How can we minimize disk accesses?
" How can we try to ensure the page we evict from memory is unlikely to be

" used again in the future?

LO:

1 Regs CPU registers hold words retrieved
Smaller, / 11 cach \, from the L1 cache.
faster, L1: / cache
and (SRAM) % L1 cache holds cache lines retrieved
i % from the L2 cache.
;'°::"ber o 2: / L2 cache
el (SRAM) .
storage \ L2 cache holds cache lines
devices %, retrieved from L3 cache.
L3: / L3 cache
(SRAM)
L3 cache holds cache lines
% retrieved from main memory.
Larger,
slower, La: / Main memory '
. and (DRAM)
We a re at t h I S Leve | . cheaper % Main memory holds disk blocks
. (per byte) \, retrieved from local disks.
storage |s. Local secondary storage
devices (local disks)
_ Local disks hold files
v % retrieved from disks

on remote servers.
Lé6: / Remote secondary storage

; (e.g., Web servers) :
Sryant :rﬁg_uuwcxn;mm:mz;ﬂrnmm:ﬁctmm I num;n—'l

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Evicting a Page

+» Physical Memory is limited in size. Not All Pages can exist in memory.

Address Space

Physical Memory

Frame 1

Previous Page Requests: Page 1, Page 4, Page 2

) .
New Page Request: Page 5 Let’s go ahead and evict Page 4.

Process A

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Evicting a Page

+» Physical Memory is limited in size. Not All Pages can exist in memory.

Address Space

Physical Memory

Frame 2

Frame 3

Because we didn’t choose a more
optimal page, we need to do write
another page to disk and swap.

Previous Page Requests: Page 1, Page 4, Page 2
New Page Request: Page 5 Page 4

Process A Not good.

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Reference String

+» A reference string is a string representing a sequence of virtual page accesses.
By a given process on some input.

"Fg,012341295322.

= Page O is accessed, then 1, then 2, then 3 ...

- Having the page access history, we can now optimize for which page to select
when evicting!

University of Pennsylvania

L21: Page Replacement

Fault vs Eviction

+» Page Fault

" When a corresponding page is not in memory, we need to load the page from memory.
+ Eviction

" When there are too many pages in memory, and we need to evict one to make space for
another.

Just because there is a page fault does
not mean there is an eviction.

CIS 4480 Fall 2025

10

University of Pennsylvania

FIFO Replacement

L21: Page Replacement

CIS 4480 Fall 2025

+ One way to decide which pages can be evicted is to use FIFO (First in First Out)

+» If a page needs to be evicted from physical memory, then the page that has
been in memory the longest can be evicted.

#define MAX_PAGES 4

typedef struct page stack {
short *stack; //array
short size;

} page stack;

*simplified code, doesn’t work for all edge cases

short evict(page_stack *ps){

// There's none to evict,

if(ps->size == @) return -1;

ps->size--;

short page num = (ps->stack)[0];

memmove (ps->stack, ps->stack + 1, ps->size);
return page_num;

11

University of Pennsylvania

FIFO Replacement

L21: Page Replacement

+ One way to decide which pages can be evicted is to use FIFO (First in First Out)

If a page needs to be evicted from physical memory, then the page that has
been in memory the longest can be evicted.

7
0‘0

}

void add(page_stack *ps, short page num){

for(int i = 0; 1 < ps->size; i++){
if(ps->stack[i] == page num){
return; // In Mem.
// No page fault

}

}

if(ps->size == MAX_ PAGES)
evict(ps); //page eviction!

//page fault, bring into memory

(ps->stack)[ps->size] = page_num;

ps->size++; //increment size

short evict(page_stack *ps){

// There's none to evict
if(ps->size == 0) return -1;
ps->size--;

short page num = (ps->stack)[0]; // write to disk

memmove(ps->stack, ps->stack + 1, ps->size);
return page_num;

*simplified code, doesn’t work for all edge cases

CIS 4480 Fall 2025

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

FIFO Replacement

+» If we have 4 frames, and the reference string:
4112345

= Red numbers indicate that accessing the page caused a page fault. Accessing 5 also causes
4 to be evicted from physical memory

short page str[] = {4, 1, 1, 2, 3, 4, 5};

page_stack ps = {0}; // No pages in memory at start.
ps.stack = (short *) malloc(MAX_PAGES * sizeof(short));
for(short x: page str){ // for x in page str

add(&ps, X);
}

13

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

FIFO Replacement

+» If we have 4 frames, and the reference string:
4112345

= Red numbers indicate that accessing the page caused a page fault. Accessing 5 also causes
4 to be evicted from physical memory

" For those who like tables :)

Ref str: | 4 1 1 2 3 4 5

Newest 4 1 1 2 3 3 5
4 4 1 2 2 3

4 1 1 2

Oldest 4 4 1

14

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

%+ Given the following reference string, how many page faults (not evictions)
occur when using a FIFO algorithm given no pages are in memory at the start.

#define MAX_PAGES 3

123412512345

typedef struct page_stack {
short xstack; //array
short size;

} page_stack;

- Part 2: If we didn’t have to follow a strict policy, what is the “optimal” # of
pages that could be evicted to minimize faults? How many less faults would we
have?

15

University of Pemisylivamita L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

Ref str: 1 2 3 4 1 2 5 1 2 3 4 5

Newest

Oldest

Evicted

16

L21: Page Replacement CIS 4480 Fall 2025

University of Pennsylvania

“optimal” replacement

- If you knew the exact sequence of page accesses in advance, you could
optimize for smallest number of page faults

» Always replace the page that is furthest away from being used again in the
future

" You can’t, but you can make a “best guess” (later in lecture)

» Optimal replacement is still a handy metric. Used for testing replacement
algorithms, see how an algorithm compares to various “optimal” possibilities.

19

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+» Given the following reference string, how many page faults occur when using a
FIFO algorithm:

#define MAX_PAGES 3
321032432104 typedef struct page_stack {

short xstack; //array

short size;
} page_stack;

+» Part 2: What if we had 4 page frames, how many faults would we have?

20

University of Pemisylivamita L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

Ref str: 3 2 1 0 3 2 4 3 2 1 0 4

Newest

Oldest

Evicted

21

University of Pemisylivamita L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

Ref str: 3 2 1 0 3 2 4 3 2 1 0 4

Newest

Oldest

Evicted

22

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Bélady’s Anomaly

+» Sometimes increasing the number of page frames in the data structure results
in an increase in the number of page faults :/

% This behavior is something that we want to avoid/minimize the possibility of.

+ Some algorithms avoid this anomaly (LRU, LIFO, etc.)

25

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Lecture Outline

» Page Replacement: High Level
" FIFO

= Reference Strings
= Beladys

» LRU
» Thrashing
» FIFO w/ Reference bit

26

L21: Page Replacement CIS 4480 Fall 2025

University of Pennsylvania

LRU (Least Recently Used)

+ Assumption:
" |f a page is used recently, it is likely to be used again in the future

» Use prior knowledge to predict the future (update posterior)
+ Replace the page that has had the longest time since it was last used

+» Sorta Reminiscent of a Priority Queue, where smaller time since last access
indicates lower priority of eviction. (But too complicated)

27

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Small Example: 3 Pages of Space

4,0,1,2,0,3,0,4,2,3,0,3

To Evict

28

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Small Example: 3 Pages of Space

4,0,1,2,0,3,0,4,2,3,0,3

To make space for Page 2 — we need to evict page 4.

To Evict

29

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Small Example: 3 Pages of Space

4,0,1,2,0,3,0,4,2,3,0,3

To make space for Page 2 — we need to evict page 4.

To Evict

30

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Small Example: 3 Pages of Space

4,0,1,2,0,3,0,4,2,3,0,3

As we access 0 again,
1 we move to the top of the stack

To Evict

31

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Small Example: 3 Pages of Space

4,0,1,2,0,3,0,4,2,3,0,3

0) Observation:
The ‘order’ of the values when using the LRU

is always a (non-contiguous) subsequence of
) page accesses.

Lots of ways to reason about this...try to
1 find a way that makes more sense to you.

To Evict

32

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+» Now, using the same Reference String with LRU, let’s try to fill this table out...
+» If we use 4 frames, how many page faults will there be?

Ref str: 4 0 1 2 0 3 0 4 2 3 0 3

Newest

Oldest

Victim

33

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

LRU Implementation

+» Couple of Possibilities
= we would need to timestamp each memory access and keep a sorted list of these pages
- High overhead, timestamps can be tricky to manage :/
= Keep a counter that is incremented for each memory access
- Look through the table to find the lowest counter value on eviction
- Looking through the table can be slow
 Should you weigh time of access more when it’'s more recent? (e.g. 3,3,3,3,3,3,3,3,3,1,1)

= Whenever a page is accessed find it in the stack of active pages and move it to the bottom

43

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

LRU Approximation: Reference Bit & Clock

- It is expensive to do bookkeeping every time a page is accessed. Minimize the
bookkeeping if possible

+ When we access a page, we can update the reference bit for that PTE to show
that it was accessed recently
" This is done automatically by hardware, when accessing memory.

= Setting a bit to 1 is much quicker than managing time stamps and re-organizing a stack

» We could check the reference bit at some clock interval to see if the page was
used at all in the last interval period

44

L21: Page Replacement CIS 4480 Fall 2025

University of Pennsylvania

LRU Approximation: Aging

+» Each page gets an 8-bit “counter”.
% On clock interval and for every page:

= shift the counter to the right by 1 bit (>>1)
" write the reference bit into the MSB of the counter.

® Current reference bitisresetto O

+» If we read the counter as an unsigned integer, then a larger value means the

counter was accessed more recently
= Right shifting allows us to take into consideration time since the last access as we
+» essentially divide the value by 2 if there were no accesses.

>

45

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Aging lllustration

« Timeline

« Counter:

+ Ref Bit: 0

46

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Aging lllustration

+ Timeline

el

page access

+ Counter:

+~ RefBit: 1

47

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Aging lllustration

+ Timeline

I T
ol

interval
page access

+ Counter:

+» Ref Bit: 0

48

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Aging lllustration

+ Timeline

I T
o

Page interval
access

+ Counter:

+» Ref Bit: 0

49

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Aging lllustration

+ Timeline

TR

Page interval
access

+ Counter:

» Ref Bit: 1

50

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Aging lllustration

+ Timeline

I T
o b

Page interval
access

+ Counter:

+ Ref Bit: 1

51

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Aging lllustration

+ Timeline

o b

Page interval
access

+ Counter:

1 0 0 0 0 0 0 0

counter = (uint8 t) counter>>1
counter = counter | (ref<<7)

+» Ref Bit: 1

52

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Aging lllustration

+ Timeline

I
orrme

Page interval
access

+ Counter:

+ Ref Bit: 0

53

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Aging lllustration

+ Timeline

I T
om0

Page interval
access

+ Counter:

+ Ref Bit: 0

54

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Aging lllustration

+ Timeline

borrme b

interval No page
access
+ Counter:
0 1 1 0 0 0 0 0

+ Ref Bit: 0

55

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Aging: Analysis

% Analysis
" |Low overhead on clock tick and memory access
= Still must search page table for entry to remove/update

" |nsufficient information to handle some ties

- Only one bit information per clock cycle
- Information past a certain clock cycle is lost

56

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Lecture Outline

» Page Replacement: High Level
" FIFO

= Reference Strings
= Beladys

» LRU
» Thrashing
» FIFO w/ Reference bit

57

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Thrashing

+ This is not specific to LRU, but it is easiest to demonstrate with LRU

+ When the physical memory of a computer is overcommitted, causing almost
constant page faults (which are slow)

" Overcommitment most commonly happens when there are too many processes, and thus
too much memory needed

® Can also happen with a few processes, if the process needs too much memory

58

University of Pennsylvania

Thrashing

+» Consider the following example with three page frames and LRU

L21: Page Replacement

LRU Ref str: 2 3 0 1 2 3 0 1 2 3
Recent 2 3 0 1 2 3 0 1 2 3
1 2 3 0 1 2 3 0 1 2

To Evict 0 1 2 3 0 1 2 3 0 1
Evicted 0 1 2 3 0 1 2 3 0

CIS 4480 Fall 2025

59

University of Pennsylvania

L21: Page Replacement

CIS 4480 Fall 2025

Thrashing

/

+ It is good to have more processes running, then we can have better
utilization of CPU.

" While one process waits on something, another can run
® More on CPU Utilization later

+» As we use more processes running at once, more memory is needed, can
cause thrashing :/

A Perfect multithreading/multiprocessing
is a balance between

CP'LlJ Memory Speed/Size vs CPU Speed

util.

>

Degree of multiprogramming 60

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

FIFO Analysis

+» Remember FIFO? The first page replacement algorithm we covered?

" Evict the page that has been in physical memory the longest

+ Analysis:

" |ow overhead. No need to do any work on each memory access, instead just need to do
something when loading a new page into memory & evicting an existing page

= Not the best at predicting which pages are used in the future :/

+ Could we modify FIFO to better suit our needs?

61

University of Pennsylvania L21: Page Replacement

CIS 4480 Fall 2025

Second Chance

+» Second chance algorithm is very similar to FIFO

Still have a FIFO queue

When we take the first page of the queue, instead of immediately evicting it, we instead
check to see if the reference bit is 1 (was used in the last time interval)

If so, move it to the end of the queue

Repeat until we find a value that does not have the reference bit set (if all pages have
reference bit as 1, then we eventually get back to the first page we looked at)

el o
> > B

62

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Second Chance Example

» |If we need to evict a page: start at the front

» Reference bitis 1, so set to 0 and move to end

head

el o
> > B

63

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Second Chance Example

» |If we need to evict a page: start at the front

» Reference bitis 1, so move to end

head

o o &
g g >

64

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Second Chance Example

» |If we need to evict a page: start at the front

» Reference bitis 1, so move to end

head

o o o &
g g >

65

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Second Chance Example

» |If we need to evict a page: start at the front

» Found a page with reference bit =0, evict Page C!

head

o o o
g g >

66

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Second Chance Clock

» Optimization on the second chance algorithm

» Have the queue be circular, thus the cost to moving something to the “end” is
minimal

67

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Second Chance Clock

+» Optimization on the second chance algorithm

+» Have the queue be circular, thus the cost to moving something to the “end” is
minimal

Can also be modified to prefer to
evict clean pages instead of dirty
pages

68

University of Pennsylvania L21: Page Replacement

Linux Two-List Clock Page Replacement Algorithm

+~ Maintains two lists: Active list and Inactive list
+ Eviction Priority:
" Chose a page from the inactive list first
+ Page Access Behavior:
= |f a page has not been referenced recently, move it to the inactive list
+ If a page is referenced:
= Set its reference flag to true

" |t will be moved to the active list on the next access
" Two accesses are required for a page to become active

>

» Decay Mechanism:

" |f the second access doesn’t happen, the reference flag is reset periodically
= After two timeouts without activity, the page is moved to the inactive list

CIS 4480 Fall 2025

69

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Linux Diagram

Inactive Active
This is sort of like a 2-bit
PG_active =0 connter for referevce bits, PG_active = 1
PG_reference =0 We keep pages in two clock lists, PG_reference =0
A A
I I
0 0
0 0
Used : Timeout Timeout : Used

0 0
I Used I

PG_active =0 Reality is more PG_active=1

PG_reference =1 complicated than this PG_reference =1

70

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

. . Linux will want to keep a good ratio of
LinuX Dlagram inactive to active, so that there are always
some pages that are considered "more ok"

Inactive Active

PG_active=0 Refill PG_active =1
PG_reference =0 PG_reference =0

A A S A
1 S 1
l \\\ I
1 ~ 1
Used I Timeout Timeout | Used
1 ~ 1
1 \\\ 1
1
o [
PG active=0 PG active=1
= «--------------- =
PG_reference =1 Refill PG_reference =1

Active should be ~2/3 of pages at most !

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Now, let’s tie it all together.

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Virtual Memory in the Context of Forking

» Behind the scenes the kernel, TLB, & MMU all work together to enforce
isolation.

+» When we fork, the child inherits the virtual address space of the parent
explaining how all the pointers and addresses don’t change.

= But, do the mappings need to change? Do we need to make a copy of everything within
the memory of the parent? The heap, stack, text, etc?

» Usually, when you fork it is followed by what call?

" Think about in the context of Shredder, Penn-Shell, etc...
" You usually call execvp! (How is this important?)

73

University of Pennsylvania

L21: Page Replacement CIS 4480 Fall 2025

Fork and Virtual Memory

int main(){
int x = 3;
int* ptr = &x;

printf("[Before Fork]\t x = %d\n", x);
printf("[Before Fork]\t ptr = %p\n", ptr);

if ('For‘k() == @) {h
printf("[Child]\t\t x = %d\n", x);
printf("[Child]\t\t ptr = %p\n", ptr);
return EXIT_SUCCESS;

}

waitpid(pid, NULL, ©);

printf("[Parent]\t x = %d\n", Xx);

printf("[Parent]\t ptr = %p\n", ptr);

return EXIT_SUCCESS;

Shared by Parent and Child

Virtual Addr

Values

0x00

0x00

0x00

Oxffffeed402b28

ox03

0x00

0x00

oxff

oxff

Oxee

ox40

ox2b

Oxffffee402b20

ox28

Page P 0x00
0x00

0x00

ox03

0x00

0x00

oxff

oxff

Oxee

ox40

TLB + MMU ox2b

ox28

At this point, two processes have been spawned that share
the same virtual address space.

But what should we do about their mappings?

Remember, we want to enforce isolation. Changes made
by one process shouldn’t be viewable by another. An easy
solution is to give each individual mappings and then copy

over their contents!
74

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

. . Page P 0x00
Separate Mappings + Copied Pages
0x00
0x03
Shared by Parent and Child 0x00
int main(){ Virtual Addr Values ox00
int x = 3; x00 oxff
int* ptr = &x; X OxFF
0x00
printf("[Before Fork]\t x = %d\n", x); Ox00 Oxee
intf("[Before Fork]\t ptr = %p\n", ptr); ' | 0x40
printf("[Before Fork]\t ptr = %p\n", ptr) O rrroca0ab8 03 Update Mappings! X
ox2b
if (fork() == 0) { <G 0x00 \
printf("[Child]\t\t ptr = %p\n", ptr);
return EXIT_SUCCESS; oxff Page C 000
} oxff
waitpid(pid, NULL, ©); — 0x@0
printf("[Parent]\t x = %d\n", x); 0x00
printf("[Parent]\t ptr = %p\n", ptr); 0x40 ox03
ox2b
return EXIT_SUCCESS; . 0x00
oxff
oxff
Oxee
But what’s wrong with this? Too much overhead from the start! X0
ox2b
0x28 75

University of Pennsylvania

Sharing Pages and Tables...

int main(){
int x = 3;
int* ptr = &x;

printf("[Before Fork]\t x = %d\n", x);
printf("[Before Fork]\t ptr = %p\n", ptr);

if ('For‘k() == @) {h
printf("[Child]\t\t x = %d\n", x);
printf("[Child]\t\t ptr = %p\n", ptr);
return EXIT_SUCCESS;

}

waitpid(pid, NULL, ©);

printf("[Parent]\t x = %d\n", x);

printf("[Parent]\t ptr = %p\n", ptr);

return EXIT_SUCCESS;

L21: Page Replacement

Shared by Parent and Child

Virtual Addr

Values

0x00

0x00

0x00

Oxffffeed402b28

ox03

0x00

0x00

oxff

oxff

Oxee

ox40

ox2b

Oxffffee402b20

ox28

TLB + MMU

Page P

CIS 4480 Fall 2025

0x00

0x00

0x00

ox03

0x00

0x00

oxff

oxff

Oxee

ox40

ox2b

ox28

Remember, we want to enforce isolation. Changes made
by one process shouldn’t be viewable by another. But take

a look at the code here. Do either of them make changes?

76

University of Pennsylvania

Sharing Pages and Tables...

int main(){

int x = 3;
int* ptr = &x;

printf("[Before Fork]\t x = %d\n", x);
printf("[Before Fork]\t ptr = %p\n", ptr);

if ('For‘k() == @) {h
printf("[Child]\t\t x = %d\n", x);
printf("[Child]\t\t ptr = %p\n", ptr);
return EXIT_SUCCESS;

}

waitpid(pid, NULL, ©);

printf("[Parent]\t x = %d\n", x);

printf("[Parent]\t ptr = %p\n", ptr);

return EXIT_SUCCESS;

L21: Page Replacement

Shared by Parent and Child

Virtual Addr

Values

0x00

0x00

0x00

Oxffffeed402b28

ox03

0x00

\

0x00

oxff

oxff

Oxee

ox40

ox2b

Oxffffee402b20

ox28

TLB + MMU ox2b

CIS 4480 Fall 2025

Page P 0x00
0x00

0x00

ox03

0x00

0x00

oxff

oxff

Oxee

these are loads. ox40

ox28

If either process changes the values at these locations, you
want to ensure the other process can not see them.

However, if all the processes do is read from them, then

they can share identical mappings. No problem!

However, we need to make sure to mark each page as

read only! (Why?)

77

University of Pennsylvania

Copy-On-Write

int main(){

int x = 3;
int* ptr = &x;

printf("[Before Fork]\t x = %d\n", x);
printf("[Before Fork]\t ptr = %p\n", ptr);

if (fork() == 0) {
X+, - mm—
printf("[Child]\t\t x = %d\n", x);
printf("[Child]\t\t ptr = %p\n", ptr);
return EXIT_SUCCESS;

}

X==5

waitpid(pid, NULL, ©);

printf("[Parent]\t x = %d\n", x);

printf("[Parent]\t ptr = %p\n", ptr);

return EXIT_SUCCESS;

L21: Page Replacement CIS 4480 Fall 2025

Shared by Parent and Child

Virtual Addr

Values

0x00

0x00

0x00

Oxffffeed402b28

ox03

0x00

0x00

oxff

oxff

Oxee

ox40

ox2b

Oxffffee402b20

ox28

Page P 0x00
0x00

0x00

ox03

0x00

0x00

oxff

oxff

Oxee

ox40

TLB + MMU ox2b

ox28

Now, we’ve changed the program to write to the pages.
Can we still keep the previous design? Yes.

When we fork the process, do not copy the entire pages
from the start. However, mark the pages as read only.

This would require updating the entries in the table...

However, now when a process attempts to write to the

page the kernel will receive a fault from the MMU!78

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

[]

Copy-On-Write Page P12
0x00
0x00

: 0x03
Shared by Parent and Child X
0x00
int main(){ Virtual Addr Values 0x00
int x = 3; %00 oxFf
int* ptr = &x; X Fault! X
0x00 oxff
printf("[Before Fork]\t x = %d\n", x); 0x00 Oxee
printf("[Before Fork]\t ptr = %p\n", ptr);
oxffffeed02b28 ox03 X++ 0x40
if (fork() == 0) { 0x00 "‘~.-* ox2b
: TLB + MMU Copy Values
X+'!', h. ox00 py 0x28
printf("[Child]\t\t x = %d\n", x);
printf("[Child]\t\t ptr = %p\n", ptr); oxtt Page C| exoe
return EXIT_SUCCESS; oxff)
} — The kernel can decide oxe0
X--; 0x00
waitpid(pid, NULL, 0); 0x40 how to ha.ndle th.e ox03
printf("[Parent]\t x = %d\n", x); ox2b fault. In this case it
. n) n . . 0x00
printf("[Parent]\t ptr = Zpin®, ptr); oxffffeed02b20 ox28 copies the page and P
return EXIT_SUCCESS; updates the PTE. e
}
oxff
Oxee
Ox40
ox2b
ox28 79

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

[]

Copy-On-Write Page P12
0x00
0x00

. 0x03
Shared by Parent and Child
0x00
int main(){ Virtual Addr Values 0x00
int x = 3; %00 oxFf
int* ptr = &x; X X
ox00 oxff
printf("[Before Fork]\t x = %d\n", x); 0x00 Oxee
printf("[Before Fork]\t ptr = %p\n", ptr);
oxffffeed02b28 ox03 X++ 0x40
if (fork() == 0) { 0x00 "‘~.-* ox2b
. TLB + MMU
X++; 4—. 0x00 ox28
printf("[Child]\t\t x = %d\n", x);
printf("[Child]\t\t ptr = %p\n", ptr); oxtt Page C| exoe
return EXIT_SUCCESS; oxff)
} — The kernel can decide oxe0
X--; 0x00
waitpid(pid, NULL, 0); 0x40 how to ha.ndle th.e ox03
printf("[Parent]\t x = %d\n", x); ox2b fault. In this case it
. n) n . . 0x00
printf("[Parent]\t ptr = Zpin®, ptr); oxffffeed02b20 ox28 copies the page and P
return EXIT_SUCCESS; updates the PTE. e
}
oxff
Oxee
Ox40
ox2b
0x28 80

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Copy-On-Write age p [5

0x00
0x00
. 0x02
Shared by Parent and Child
0x00
int main(){ Virtual Addr Values) 0x00
int x = 3; No fault now.,
int* ptr = &x; ox00 oxff
0x00 oxff
printf("[Before Fork]\t x = %d\n", x); 0x00 oxee

printf("[Before Fork]\t ptr = %p\n", ptr);

oxffffeed02b28 ox03 X-- Ox40
if (fork() == @) { 0x00 \ LB + MMU ex2b

X++; X++
> 0x00 ox28
printf("[Child]\t\t x = %d\n", x);
printf("[Child]\t\t ptr = %p\n", ptr); oxtt Page C| exoe
return EXIT_SUCCESS; oxff)
} Now, the child maps oxee
X- - < m— Oxee t d 0x00
waitpid(pid, NULL, 0); 0x40 O a new page an. oxod
printf("[Parent]\t x = %d\n", x); ox2b the parent has Write
intf("[P t]\t ptr = %p\n", ptr); 0x00
printf("[Parent]\t ptr pAn®, ptr) oxffffee402b20 0x28 perm to page P. .
return EXIT_SUCCESS; OxFf
}
oxff
Oxee
Ox40
ox2b

0x28 81

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Copy-On-Write

» All pages unchanged as the parent and child have identical state after the fork.
» When we fork, the appropriate mappings are set to read only.

= We then use the MMU to enforce these permissions by triggering a Fault.
» The kernel handles the fault appropriately, in our case, by updating the page

table entries and copying the page over for the process that performed the
write.

= Note: This is done on a page by page basis. Just because a process writes to a singular page
doesn’t mean it’s time to copy over the entire page table and all the pages mapped.

» Greatly reduces the overhead! Now if you execvp after forking, there aren’t
any pages that are “wasted” as none were allocated for you nor any copied
for you.

82

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

Virtual Memory

» And that’s the majority of Virtual Memory...

» Super Optional Reading: ARMv7 Documentation
= Chapter B3 Virtual Memory System Architecture (VMSA)
= Qutlines the hardware design and how it should be used with software...

= ARMVG6 has a simpler design...check it out for some light reading.

+ See the RISC-V Address Translation Process...

83

https://developer.arm.com/documentation/ddi0406/latest/
https://riscv.github.io/riscv-isa-manual/snapshot/privileged/
https://riscv.github.io/riscv-isa-manual/snapshot/privileged/
https://riscv.github.io/riscv-isa-manual/snapshot/privileged/

University of Pemisylivamita L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+» Given the following reference string, how many page faults occur when using a
FIFO algorithm

+ 123412512345
+ FIFO

Ref 1 2 3 4 1 2 5 1 2 3 4 5
str:

Newest 1 (2 3 4 1 2 |5 5 5 3 4 4
1 2 3 4 1 |2 2 2 5 3 3

Oldest 1 2 3 4 |1 1 1 2 5 5

Evicted 1 2 3 |4 1 2

Q Faults, 6 Evictions! 84

University of Pemisylivamita L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+» Given the following reference string, how many page faults occur when using a
FIFO algorithm

+123412512345
+» Theoretical optimal?

Ref 1 2 3 4 1 2 5 1 2 3 4 5
str:

Newest 1 12 3 4 4 4 |5 5 5 3 2 4
1 2 2 2 2 |2 2 2 5 3 3

Oldest 1 1 1 1 |1 1 1 2 5 5

Evicted 3 4 1 2

7 Faults, 4 Evictions! 85

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+» Given the following reference string, how many page faults occur when using a
FIFO algorithm:

3210324321204

%+ Three Page Frames

Ref Str 3 |2 1 0 3 2 |4 3 2 1 0 4

Newest 3 |2 1 0 3 2 |4 4 4 1 0 0

Oldest 3 2 1 0O |3 3 3 2 4 4

Victim 3 2 1 0 3 2

86

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+» Given the following reference string, how many page faults occur when using a
FIFO algorithm:

3210324321204

«» Four Page Frames

R il 3 (2 |1 |o |3 2 14 (3 |2 |1 |o |a

Newest 3 |2 1 0 0 0 |4 3 2 1 0 4
3 |2 |1 |1 1 o |4 |3 |2 |1 o

3 |2 |2 2 |1 o |4 |3 |2 |1

Oldest 3 |3 3 |2 1 o |4 |3 |2
Victim 3 2 1 0 4 3

87

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+» Now, using the same Reference String with LRU, let’s try to fill this table out...
+» If we use 4 frames, how many page faults will there be?

Ref str: 4 0 1 2 0 3 0 4 2 3 0 3

Newest 2 0 1 2 0 3 0 2 2 3 0 3

Oldest 4 4 1 1 2 3 0 4 4

Victim 4 1

6 Faults, 2 evictions! .

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+» Now, using the same Reference String with LRU, let’s try to fill this table out...

+» If we use 4 frames, how many page faults will there be?
= 6 Faults!

+» Easier for me to think about this in terms of subsequences

/N VN

4, o0, 1, 2, o, 3, 0, 4, 2, 3, 0, 3

At the start, we have 4 faults as the first four pages in the reference string are unique!

The current subsequence is 4, 0, 1, 2

89

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+» Now, using the same Reference String with LRU, let’s try to fill this table out...

+» If we use 4 frames, how many page faults will there be?
= 6 Faults!

+» Easier for me to think about this in terms of subsequences

AV AYA

4, o0, 1, 2, o, 3, 0, 4, 2, 3, 0, 3

Now, we see a zero. A zero is already in our substring, so there’s no faults/evictions necessary. We
remove the previous zero from the subsequence. And the “new” zero leads the sequence now.

90

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+» Now, using the same Reference String with LRU, let’s try to fill this table out...

+» If we use 4 frames, how many page faults will there be?
= 6 Faults!

+» Easier for me to think about this in terms of subsequences

AV AYA

4, o0, 1, 2, o, 3, 0, 4, 2, 3, 0, 3

With our subsquence being the maximum length and with a new page in view, we perform our first
eviction. The last value in the sequence is always the one to be removed using LRU.

91

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+» Now, using the same Reference String with LRU, let’s try to fill this table out...

+» If we use 4 frames, how many page faults will there be?
= 6 Faults!

+» Easier for me to think about this in terms of subsequences

AVAYA

X
4, o0, 1, 2, o, 3, 0, 4, 2, 3, 0, 3

With our subsquence being the maximum length and with a new page in view, we perform our first
eviction. The last value in the sequence is always the one to be removed using LRU.

92

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

» Now, using the same Reference String with LRU, let’s try to fill this table out...

» |If we use 4 frames, how many page faults will there be?
= 6 Faults!

» Easier for me to think about this in terms of subsequences

X VAV
2, 0, 3

4’ @I 1’ ’ QI 4’ 2’ 3’ 0’ 3

We see another zero, we know what to do.

93

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

» Now, using the same Reference String with LRU, let’s try to fill this table out...

» |If we use 4 frames, how many page faults will there be?
= 6 Faults!

» Easier for me to think about this in terms of subsequences

7 N

X
4r 0: 11 21 @r 3; 141 21 31 013

We perform our second eviction!

94

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+» Now, using the same Reference String with LRU, let’s try to fill this table out...

+» If we use 4 frames, how many page faults will there be?
= 6 Faults!

+» Easier for me to think about this in terms of subsequences

X X
4r 0: 11 21 @r 3; 141 21 31 013

We see another two, no eviction or fault necessary as it was already in the subsequence.

95

University of Pennsylvania L21: Page Replacement CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+» Now, using the same Reference String with LRU, let’s try to fill this table out...

+» If we use 4 frames, how many page faults will there be?
= 6 Faults!

+» Easier for me to think about this in terms of subsequences

X X
4r 0: 11 21 @r 3;

Same thing with the three...

Now, we see that the rest of the pages are already in the sequence so there’s no need to continue
this.

2 Evictions (With 2 corresponding faults) and the initial 4 faults. o

