
CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Page Replacement
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez

Head TAs: Maya Huizar Akash Kaukuntla
 Vedansh Goenka Joy Liu
TAs:

Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane

Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones

Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng

Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Poll: how are you?

v What’s your favorite coffee order?

2

pollev.com/cis5480

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Lecture Outline

v Page Replacement: High Level
§ FIFO
§ Reference Strings
§ Beladys

v LRU
v Thrashing
v FIFO w/ Reference bit

3

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Page Replacement

v The operating system will sometimes have to evict a page from physical
memory to make room for another page.

v If the evicted page is access again in the future, it will cause a page fault, and
the Operating System will have to go to Disk to load the page into memory
again

4

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Address Space Physical Memory disk

Frame 1
If we need page 5, we
need to evict a page

from memory!

Frame 3

Frame 2

Page 1

Page 2

Page 3

Page 4

Page 5

Unused Which Page do we evict?
1, 2 or 4

Evicting a Page

v Physical Memory is limited in size. Not All Pages can exist in memory.

5
Process A

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Page Replacement

v Disk access is very very slow (relatively speaking).
§ How can we minimize disk accesses?
§ How can we try to ensure the page we evict from memory is unlikely to be
§ used again in the future?

6

We are at this Level:

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Address Space Physical Memory disk

Frame 1

Frame 3

Frame 2

Page 1

Page 2

Page 3

Page 4

Page 5

Unused

Evicting a Page

v Physical Memory is limited in size. Not All Pages can exist in memory.

7
Process A

Previous Page Requests: Page 1, Page 4, Page 2
New Page Request: Page 5

Page 4

Page 5

Let’s go ahead and evict Page 4.

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Address Space Physical Memory disk

Frame 1

Frame 3

Frame 2

Page 1

Page 2

Page 3

Page 4

Page 5

Unused

Evicting a Page

v Physical Memory is limited in size. Not All Pages can exist in memory.

8
Process A

Previous Page Requests: Page 1, Page 4, Page 2
New Page Request: Page 5

Page 4

Page 5

Page 4

Because we didn’t choose a more
optimal page, we need to do write

another page to disk and swap.

Not good.

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Reference String

v A reference string is a string representing a sequence of virtual page accesses.
By a given process on some input.
§ E.g., 0 1 2 3 4 1 2 9 5 3 2 2 …
§ Page 0 is accessed, then 1, then 2, then 3 …

v Having the page access history, we can now optimize for which page to select
when evicting!

9

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Fault vs Eviction

v Page Fault
§ When a corresponding page is not in memory, we need to load the page from memory.

v Eviction
§ When there are too many pages in memory, and we need to evict one to make space for

another.

10

Just because there is a page fault does
not mean there is an eviction.

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

FIFO Replacement

v One way to decide which pages can be evicted is to use FIFO (First in First Out)
v If a page needs to be evicted from physical memory, then the page that has

been in memory the longest can be evicted.

11

#define MAX_PAGES 4

typedef struct page_stack {
short *stack; //array
short size;

} page_stack;

short evict(page_stack *ps){
// There's none to evict,
if(ps->size == 0) return -1;
ps->size--;
short page_num = (ps->stack)[0];
memmove(ps->stack, ps->stack + 1, ps->size);
return page_num;

}

*simplified code, doesn’t work for all edge cases

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

FIFO Replacement

v One way to decide which pages can be evicted is to use FIFO (First in First Out)
v If a page needs to be evicted from physical memory, then the page that has

been in memory the longest can be evicted.

12

void add(page_stack *ps, short page_num){
for(int i = 0; i < ps->size; i++){

if(ps->stack[i] == page_num){
 return; // In Mem.
 // No page fault

 }
}
if(ps->size == MAX_PAGES)
 evict(ps); //page eviction!
//page fault, bring into memory
(ps->stack)[ps->size] = page_num;
ps->size++; //increment size

}

short evict(page_stack *ps){
// There's none to evict
if(ps->size == 0) return -1;
ps->size--;
short page_num = (ps->stack)[0]; // write to disk
memmove(ps->stack, ps->stack + 1, ps->size);
return page_num;

}

*simplified code, doesn’t work for all edge cases

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

FIFO Replacement

v If we have 4 frames, and the reference string:
4 1 1 2 3 4 5
§ Red numbers indicate that accessing the page caused a page fault. Accessing 5 also causes

4 to be evicted from physical memory

13

short page_str[] = {4, 1, 1, 2, 3, 4, 5};

page_stack ps = {0}; // No pages in memory at start.

ps.stack = (short *) malloc(MAX_PAGES * sizeof(short));

for(short x: page_str){ // for x in page_str
 add(&ps, x);
}

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

FIFO Replacement

v If we have 4 frames, and the reference string:
4 1 1 2 3 4 5
§ Red numbers indicate that accessing the page caused a page fault. Accessing 5 also causes

4 to be evicted from physical memory
§ For those who like tables :)

14

Ref str: 4 1 1 2 3 4 5

Newest 4 1 1 2 3 3 5

4 4 1 2 2 3

4 1 1 2

Oldest 4 4 1

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Poll: how are you?

v Given the following reference string, how many page faults (not evictions)
occur when using a FIFO algorithm given no pages are in memory at the start.

v Part 2: If we didn’t have to follow a strict policy, what is the “optimal” # of
pages that could be evicted to minimize faults? How many less faults would we
have?

15

pollev.com/cis5480

1 2 3 4 1 2 5 1 2 3 4 5
#define MAX_PAGES 3

typedef struct page_stack {
short *stack; //array
short size;

} page_stack;

CIS 4480 Fall 2025L21: Page ReplacementUniversity of PennsylvaniaUniversity of Pennsylvania

pollev.com/cis5480

16

Ref str: 1 2 3 4 1 2 5 1 2 3 4 5

Newest

Oldest

Evicted

pollev.com/cis5480

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

“optimal” replacement

v If you knew the exact sequence of page accesses in advance, you could
optimize for smallest number of page faults

v Always replace the page that is furthest away from being used again in the
future
§ How do we predict the future??????
§ You can’t, but you can make a “best guess” (later in lecture)

v Optimal replacement is still a handy metric. Used for testing replacement
algorithms, see how an algorithm compares to various “optimal” possibilities.

19

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Poll: how are you?

v Given the following reference string, how many page faults occur when using a
FIFO algorithm:

v Part 2: What if we had 4 page frames, how many faults would we have?

20

pollev.com/cis5480

3 2 1 0 3 2 4 3 2 1 0 4
#define MAX_PAGES 3

typedef struct page_stack {
short *stack; //array
short size;

} page_stack;

CIS 4480 Fall 2025L21: Page ReplacementUniversity of PennsylvaniaUniversity of Pennsylvania

pollev.com/cis5480

21

Ref str: 3 2 1 0 3 2 4 3 2 1 0 4

Newest

Oldest

Evicted

pollev.com/cis5480

CIS 4480 Fall 2025L21: Page ReplacementUniversity of PennsylvaniaUniversity of Pennsylvania

pollev.com/cis5480

22

Ref str: 3 2 1 0 3 2 4 3 2 1 0 4

Newest

Oldest

Evicted

pollev.com/cis5480

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Bélády’s Anomaly

v Sometimes increasing the number of page frames in the data structure results
in an increase in the number of page faults :/

v This behavior is something that we want to avoid/minimize the possibility of.

v Some algorithms avoid this anomaly (LRU, LIFO, etc.)

25

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Lecture Outline

v Page Replacement: High Level
§ FIFO
§ Reference Strings
§ Beladys

v LRU
v Thrashing
v FIFO w/ Reference bit

26

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

LRU (Least Recently Used)

v Assumption:
§ If a page is used recently, it is likely to be used again in the future

v Use prior knowledge to predict the future (update posterior)
v Replace the page that has had the longest time since it was last used
v Sorta Reminiscent of a Priority Queue, where smaller time since last access

indicates lower priority of eviction. (But too complicated)

27

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

28

Small Example: 3 Pages of Space

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3

To Evict

1

0

4

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

29

Small Example: 3 Pages of Space

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3

To Evict

1

0

4
To make space for Page 2 – we need to evict page 4.

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

30

Small Example: 3 Pages of Space

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3

To Evict

2

1

0
To make space for Page 2 – we need to evict page 4.

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

31

Small Example: 3 Pages of Space

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3

To Evict

2

1

0

As we access 0 again,
 we move to the top of the stack

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

32

Small Example: 3 Pages of Space

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3

To Evict

0

2

1

Observation:
The ‘order’ of the values when using the LRU
is always a (non-contiguous) subsequence of

page accesses.

Lots of ways to reason about this…try to
find a way that makes more sense to you.

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

pollev.com/cis5480

v Now, using the same Reference String with LRU, let’s try to fill this table out…
v If we use 4 frames, how many page faults will there be?

33

pollev.com/cis5480

Ref str: 4 0 1 2 0 3 0 4 2 3 0 3

Newest

Oldest

Victim

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

LRU Implementation

v Couple of Possibilities
§ we would need to timestamp each memory access and keep a sorted list of these pages

• High overhead, timestamps can be tricky to manage :/
§ Keep a counter that is incremented for each memory access

• Look through the table to find the lowest counter value on eviction
• Looking through the table can be slow
• Should you weigh time of access more when it’s more recent? (e.g. 3,3,3,3,3,3,3,3,3,1,1)

§ Whenever a page is accessed find it in the stack of active pages and move it to the bottom

43

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

LRU Approximation: Reference Bit & Clock

v It is expensive to do bookkeeping every time a page is accessed. Minimize the
bookkeeping if possible

v When we access a page, we can update the reference bit for that PTE to show
that it was accessed recently
§ This is done automatically by hardware, when accessing memory.
§ Setting a bit to 1 is much quicker than managing time stamps and re-organizing a stack

v We could check the reference bit at some clock interval to see if the page was
used at all in the last interval period

44

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

LRU Approximation: Aging

v Each page gets an 8-bit “counter”.
v On clock interval and for every page:

§ shift the counter to the right by 1 bit (>> 1)
§ write the reference bit into the MSB of the counter.
§ Current reference bit is reset to 0

v If we read the counter as an unsigned integer, then a larger value means the
counter was accessed more recently
§ Right shifting allows us to take into consideration time since the last access as we
v essentially divide the value by 2 if there were no accesses.

45

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

0 0 0 0 0 0 0 0

Aging Illustration

v Timeline

v Counter:

v Ref Bit: 0

46

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

47

0 0 0 0 0 0 0 0

Aging Illustration

v Timeline

v Counter:

v Ref Bit: 1

page access

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

1 0 0 0 0 0 0 0

48

interval

Aging Illustration

v Timeline

v Counter:

v Ref Bit: 0

page access

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

1 0 0 0 0 0 0 0

49

Page
access

interval

Aging Illustration

v Timeline

v Counter:

v Ref Bit: 0

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

1 0 0 0 0 0 0 0

Page
access

interval

50

Aging Illustration

v Timeline

v Counter:

v Ref Bit: 1

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

1 0 0 0 0 0 0 0

Page
access

interval

51

Aging Illustration

v Timeline

v Counter:

v Ref Bit: 1

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

counter = (uint8_t) counter >>1
counter = counter | (ref <<7)

1 0 0 0 0 0 0 0

Page
access

interval

52

Aging Illustration

v Timeline

v Counter:

v Ref Bit: 1

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

1 1 0 0 0 0 0 0

Page
access

interval

53

Aging Illustration

v Timeline

v Counter:

v Ref Bit: 0

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

1 1 0 0 0 0 0 0

Page
access

interval

54

Aging Illustration

v Timeline

v Counter:

v Ref Bit: 0

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

0 1 1 0 0 0 0 0

No page
access

interval

55

Aging Illustration

v Timeline

v Counter:

v Ref Bit: 0

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Aging: Analysis

v Analysis
§ Low overhead on clock tick and memory access
§ Still must search page table for entry to remove/update
§ Insufficient information to handle some ties

• Only one bit information per clock cycle
• Information past a certain clock cycle is lost

56

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Lecture Outline

v Page Replacement: High Level
§ FIFO
§ Reference Strings
§ Beladys

v LRU
v Thrashing
v FIFO w/ Reference bit

57

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Thrashing

v This is not specific to LRU, but it is easiest to demonstrate with LRU

v When the physical memory of a computer is overcommitted, causing almost
constant page faults (which are slow)
§ Overcommitment most commonly happens when there are too many processes, and thus

too much memory needed
§ Can also happen with a few processes, if the process needs too much memory

58

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Thrashing

v Consider the following example with three page frames and LRU

59

LRU Ref str: 0 1 2 3 0 1 2 3 0 1 2 3

Recent 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2

To Evict 0 1 2 3 0 1 2 3 0 1

Evicted 0 1 2 3 0 1 2 3 0

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Thrashing

v It is good to have more processes running, then we can have better
utilization of CPU.
§ While one process waits on something, another can run
§ More on CPU Utilization later

v As we use more processes running at once, more memory is needed, can
cause thrashing :/

60

CPU
util.

Degree of multiprogramming

Perfect multithreading/multiprocessing
is a balance between

Memory Speed/Size vs CPU Speed

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

FIFO Analysis

v Remember FIFO? The first page replacement algorithm we covered?
§ Evict the page that has been in physical memory the longest

v Analysis:
§ Low overhead. No need to do any work on each memory access, instead just need to do

something when loading a new page into memory & evicting an existing page
§ Not the best at predicting which pages are used in the future :/

v Could we modify FIFO to better suit our needs?

61

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Second Chance

v Second chance algorithm is very similar to FIFO
§ Still have a FIFO queue
§ When we take the first page of the queue, instead of immediately evicting it, we instead

check to see if the reference bit is 1 (was used in the last time interval)
§ If so, move it to the end of the queue
§ Repeat until we find a value that does not have the reference bit set (if all pages have

reference bit as 1, then we eventually get back to the first page we looked at)

62

A
1

B
1

C
0

D
1 0

E

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Second Chance Example

v If we need to evict a page: start at the front

v Reference bit is 1, so set to 0 and move to end

63

A
1

B
1

C
0

D
1 0

E

head

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Second Chance Example

v If we need to evict a page: start at the front

v Reference bit is 1, so move to end

64

B
1

C
0

D
1

E
0 0

A

head

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Second Chance Example

v If we need to evict a page: start at the front

v Reference bit is 1, so move to end

65

C
0

D
1

E
0

A
0 0

B

head

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Second Chance Example

v If we need to evict a page: start at the front

v Found a page with reference bit = 0, evict Page C!

66

FREE D
1

E
0

A
0 0

B

head

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Second Chance Clock

v Optimization on the second chance algorithm
v Have the queue be circular, thus the cost to moving something to the “end” is

minimal

67

A
0

B
1

C
0

D
1

E
0

head

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Second Chance Clock

v Optimization on the second chance algorithm
v Have the queue be circular, thus the cost to moving something to the “end” is

minimal

68

A
0

B
1

C
0

D
1

E
0

head

Can also be modified to prefer to
evict clean pages instead of dirty

pages

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Linux Two-List Clock Page Replacement Algorithm

v Maintains two lists: Active list and Inactive list
v Eviction Priority:

§ Chose a page from the inactive list first

v Page Access Behavior:
§ If a page has not been referenced recently, move it to the inactive list

v If a page is referenced:
§ Set its reference flag to true
§ It will be moved to the active list on the next access
§ Two accesses are required for a page to become active

v Decay Mechanism:
§ If the second access doesn’t happen, the reference flag is reset periodically
§ After two timeouts without activity, the page is moved to the inactive list

69

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Linux Diagram

70

PG_active = 0
PG_reference = 0

PG_active = 1
PG_reference = 0

PG_active = 0
PG_reference = 1

PG_active = 1
PG_reference = 1

Inactive Active

Used

Timeout Timeout UsedUsed

This is sort of like a 2-bit
counter for reference bits.
We keep pages in two clock lists.

Reality is more
complicated than this

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Linux Diagram

71

PG_active = 0
PG_reference = 0

PG_active = 1
PG_reference = 0

PG_active = 0
PG_reference = 1

PG_active = 1
PG_reference = 1

Inactive Active

Used

Timeout Timeout UsedUsed

Refill

Refill

Linux will want to keep a good ratio of
inactive to active, so that there are always
some pages that are considered “more ok”

Active should be ~2/3 of pages at most

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Now, let’s tie it all together.

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Virtual Memory in the Context of Forking

v Behind the scenes the kernel, TLB, & MMU all work together to enforce
isolation.

v When we fork, the child inherits the virtual address space of the parent
explaining how all the pointers and addresses don’t change.
§ But, do the mappings need to change? Do we need to make a copy of everything within

the memory of the parent? The heap, stack, text, etc?

v Usually, when you fork it is followed by what call?
§ Think about in the context of Shredder, Penn-Shell, etc…
§ You usually call execvp! (How is this important?)

73

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

int main(){
 int x = 3;
 int* ptr = &x;

 printf("[Before Fork]\t x = %d\n", x);
 printf("[Before Fork]\t ptr = %p\n", ptr);

 if (fork() == 0) {
 printf("[Child]\t\t x = %d\n", x);
 printf("[Child]\t\t ptr = %p\n", ptr);
 return EXIT_SUCCESS;
 }
 waitpid(pid, NULL, 0);
 printf("[Parent]\t x = %d\n", x);
 printf("[Parent]\t ptr = %p\n", ptr);

 return EXIT_SUCCESS;
}

Fork and Virtual Memory

74

0x00

0x00

0x00

0xffffee402b28 0x03

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0xffffee402b20 0x28

Virtual Addr Values

Shared by Parent and Child

0x00

0x00

0x00

0x03

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0x28

Page P

TLB + MMU

At this point, two processes have been spawned that share
the same virtual address space.

But what should we do about their mappings?

Remember, we want to enforce isolation. Changes made
by one process shouldn’t be viewable by another. An easy
solution is to give each individual mappings and then copy

over their contents!

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

int main(){
 int x = 3;
 int* ptr = &x;

 printf("[Before Fork]\t x = %d\n", x);
 printf("[Before Fork]\t ptr = %p\n", ptr);

 if (fork() == 0) {
 printf("[Child]\t\t x = %d\n", x);
 printf("[Child]\t\t ptr = %p\n", ptr);
 return EXIT_SUCCESS;
 }
 waitpid(pid, NULL, 0);
 printf("[Parent]\t x = %d\n", x);
 printf("[Parent]\t ptr = %p\n", ptr);

 return EXIT_SUCCESS;
}

Separate Mappings + Copied Pages

75

0x00

0x00

0x00

0xffffee402b28 0x03

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0xffffee402b20 0x28

Virtual Addr Values

Shared by Parent and Child

0x00

0x00

0x00

0x03

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0x28

Page P

TLB + MMU

0x00

0x00

0x00

0x03

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0x28

Page C

Copy Values

Update Mappings!

Isolation Enforced!

But what’s wrong with this? Too much overhead from the start!

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

int main(){
 int x = 3;
 int* ptr = &x;

 printf("[Before Fork]\t x = %d\n", x);
 printf("[Before Fork]\t ptr = %p\n", ptr);

 if (fork() == 0) {
 printf("[Child]\t\t x = %d\n", x);
 printf("[Child]\t\t ptr = %p\n", ptr);
 return EXIT_SUCCESS;
 }
 waitpid(pid, NULL, 0);
 printf("[Parent]\t x = %d\n", x);
 printf("[Parent]\t ptr = %p\n", ptr);

 return EXIT_SUCCESS;
}

Sharing Pages and Tables…

76

0x00

0x00

0x00

0xffffee402b28 0x03

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0xffffee402b20 0x28

Virtual Addr Values

Shared by Parent and Child

0x00

0x00

0x00

0x03

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0x28

Page P

TLB + MMU

Remember, we want to enforce isolation. Changes made
by one process shouldn’t be viewable by another. But take
a look at the code here. Do either of them make changes?

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

int main(){
 int x = 3;
 int* ptr = &x;

 printf("[Before Fork]\t x = %d\n", x);
 printf("[Before Fork]\t ptr = %p\n", ptr);

 if (fork() == 0) {
 printf("[Child]\t\t x = %d\n", x);
 printf("[Child]\t\t ptr = %p\n", ptr);
 return EXIT_SUCCESS;
 }
 waitpid(pid, NULL, 0);
 printf("[Parent]\t x = %d\n", x);
 printf("[Parent]\t ptr = %p\n", ptr);

 return EXIT_SUCCESS;
}

Sharing Pages and Tables…

77

0x00

0x00

0x00

0xffffee402b28 0x03

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0xffffee402b20 0x28

Virtual Addr Values

Shared by Parent and Child

0x00

0x00

0x00

0x03

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0x28

Page P

TLB + MMU

If either process changes the values at these locations, you
want to ensure the other process can not see them.

However, if all the processes do is read from them, then
they can share identical mappings. No problem!

However, we need to make sure to mark each page as
read only! (Why?)

these are loads.

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

int main(){
 int x = 3;
 int* ptr = &x;

 printf("[Before Fork]\t x = %d\n", x);
 printf("[Before Fork]\t ptr = %p\n", ptr);

 if (fork() == 0) {

x++;
 printf("[Child]\t\t x = %d\n", x);
 printf("[Child]\t\t ptr = %p\n", ptr);
 return EXIT_SUCCESS;
 }

x--;
 waitpid(pid, NULL, 0);
 printf("[Parent]\t x = %d\n", x);
 printf("[Parent]\t ptr = %p\n", ptr);

 return EXIT_SUCCESS;
}

Copy-On-Write

78

0x00

0x00

0x00

0xffffee402b28 0x03

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0xffffee402b20 0x28

Virtual Addr Values

Shared by Parent and Child

0x00

0x00

0x00

0x03

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0x28

Page P

TLB + MMU

Now, we’ve changed the program to write to the pages.
Can we still keep the previous design? Yes.

When we fork the process, do not copy the entire pages
from the start. However, mark the pages as read only.

This would require updating the entries in the table…

However, now when a process attempts to write to the
page the kernel will receive a fault from the MMU!

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

int main(){
 int x = 3;
 int* ptr = &x;

 printf("[Before Fork]\t x = %d\n", x);
 printf("[Before Fork]\t ptr = %p\n", ptr);

 if (fork() == 0) {
x++;

 printf("[Child]\t\t x = %d\n", x);
 printf("[Child]\t\t ptr = %p\n", ptr);
 return EXIT_SUCCESS;
 }

x--;
 waitpid(pid, NULL, 0);
 printf("[Parent]\t x = %d\n", x);
 printf("[Parent]\t ptr = %p\n", ptr);

 return EXIT_SUCCESS;
}

Copy-On-Write

79

0x00

0x00

0x00

0xffffee402b28 0x03

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0xffffee402b20 0x28

Virtual Addr Values

Shared by Parent and Child

0x00

0x00

0x00

0x03

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0x28

Page P

TLB + MMU

x++

Fault!

The kernel can decide
how to handle the
fault. In this case it

copies the page and
updates the PTE.

0x00

0x00

0x00

0x03

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0x28

Page C

Copy Values

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Copy-On-Write

80

0x00

0x00

0x00

0xffffee402b28 0x03

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0xffffee402b20 0x28

Virtual Addr Values

Shared by Parent and Child

0x00

0x00

0x00

0x03

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0x28

Page P

TLB + MMU

x++

The kernel can decide
how to handle the
fault. In this case it

copies the page and
updates the PTE.

0x00

0x00

0x00

0x03

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0x28

Page C

int main(){
 int x = 3;
 int* ptr = &x;

 printf("[Before Fork]\t x = %d\n", x);
 printf("[Before Fork]\t ptr = %p\n", ptr);

 if (fork() == 0) {
x++;

 printf("[Child]\t\t x = %d\n", x);
 printf("[Child]\t\t ptr = %p\n", ptr);
 return EXIT_SUCCESS;
 }

x--;
 waitpid(pid, NULL, 0);
 printf("[Parent]\t x = %d\n", x);
 printf("[Parent]\t ptr = %p\n", ptr);

 return EXIT_SUCCESS;
}

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Copy-On-Write

81

0x00

0x00

0x00

0xffffee402b28 0x03

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0xffffee402b20 0x28

Virtual Addr Values

Shared by Parent and Child

0x00

0x00

0x00

0x02

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0x28

Page P

TLB + MMUx++

Now, the child maps
to a new page and

the parent has Write
perm to page P.

0x00

0x00

0x00

0x04

0x00

0x00

0xff

0xff

0xee

0x40

0x2b

0x28

Page C

x--

No fault now…
int main(){
 int x = 3;
 int* ptr = &x;

 printf("[Before Fork]\t x = %d\n", x);
 printf("[Before Fork]\t ptr = %p\n", ptr);

 if (fork() == 0) {
x++;

 printf("[Child]\t\t x = %d\n", x);
 printf("[Child]\t\t ptr = %p\n", ptr);
 return EXIT_SUCCESS;
 }

x--;
 waitpid(pid, NULL, 0);
 printf("[Parent]\t x = %d\n", x);
 printf("[Parent]\t ptr = %p\n", ptr);

 return EXIT_SUCCESS;
}

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Copy-On-Write

v All pages unchanged as the parent and child have identical state after the fork.
v When we fork, the appropriate mappings are set to read only.

§ We then use the MMU to enforce these permissions by triggering a Fault.

v The kernel handles the fault appropriately, in our case, by updating the page
table entries and copying the page over for the process that performed the
write.
§ Note: This is done on a page by page basis. Just because a process writes to a singular page

doesn’t mean it’s time to copy over the entire page table and all the pages mapped.

v Greatly reduces the overhead! Now if you execvp after forking, there aren’t
any pages that are “wasted” as none were allocated for you nor any copied
for you.

82

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Virtual Memory

v And that’s the majority of Virtual Memory…

v Super Optional Reading: ARMv7 Documentation
§ Chapter B3 Virtual Memory System Architecture (VMSA)
§ Outlines the hardware design and how it should be used with software…
§ ARMv6 has a simpler design…check it out for some light reading.

v See the RISC-V Address Translation Process…

83

https://developer.arm.com/documentation/ddi0406/latest/
https://riscv.github.io/riscv-isa-manual/snapshot/privileged/
https://riscv.github.io/riscv-isa-manual/snapshot/privileged/
https://riscv.github.io/riscv-isa-manual/snapshot/privileged/

CIS 4480 Fall 2025L21: Page ReplacementUniversity of PennsylvaniaUniversity of Pennsylvania

pollev.com/cis5480

v Given the following reference string, how many page faults occur when using a
FIFO algorithm

v 1 2 3 4 1 2 5 1 2 3 4 5
v FIFO

84

pollev.com/cis5480

Ref
str:

1 2 3 4 1 2 5 1 2 3 4 5

Newest 1 2 3 4 1 2 5 5 5 3 4 4

1 2 3 4 1 2 2 2 5 3 3

Oldest 1 2 3 4 1 1 1 2 5 5

Evicted 1 2 3 4 1 2

9 Faults, 6 Evictions!

CIS 4480 Fall 2025L21: Page ReplacementUniversity of PennsylvaniaUniversity of Pennsylvania

pollev.com/cis5480

v Given the following reference string, how many page faults occur when using a
FIFO algorithm

v 1 2 3 4 1 2 5 1 2 3 4 5
v Theoretical optimal?

85

pollev.com/cis5480

Ref
str:

1 2 3 4 1 2 5 1 2 3 4 5

Newest 1 2 3 4 4 4 5 5 5 3 4 4

1 2 2 2 2 2 2 2 5 3 3

Oldest 1 1 1 1 1 1 1 2 5 5

Evicted 3 4 1 2

7 Faults, 4 Evictions!

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Poll: how are you?

v Given the following reference string, how many page faults occur when using a
FIFO algorithm:

v Three Page Frames

86

pollev.com/cis5480

3 2 1 0 3 2 4 3 2 1 0 4

Ref Str 3 2 1 0 3 2 4 3 2 1 0 4

Newest 3 2 1 0 3 2 4 4 4 1 0 0

3 2 1 0 3 2 2 2 4 1 1

Oldest 3 2 1 0 3 3 3 2 4 4

Victim 3 2 1 0 3 2

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

Poll: how are you?

v Given the following reference string, how many page faults occur when using a
FIFO algorithm:

v Four Page Frames

87

pollev.com/cis5480

3 2 1 0 3 2 4 3 2 1 0 4

Ref str: 3 2 1 0 3 2 4 3 2 1 0 4

Newest 3 2 1 0 0 0 4 3 2 1 0 4

3 2 1 1 1 0 4 3 2 1 0

3 2 2 2 1 0 4 3 2 1

Oldest 3 3 3 2 1 0 4 3 2

Victim 3 2 1 0 4 3

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

pollev.com/cis5480

v Now, using the same Reference String with LRU, let’s try to fill this table out…
v If we use 4 frames, how many page faults will there be?

88

pollev.com/cis5480

Ref str: 4 0 1 2 0 3 0 4 2 3 0 3

Newest 4 0 1 2 0 3 0 4 2 3 0 3

4 0 1 2 0 3 0 4 2 3 0

4 0 1 2 2 3 0 4 2 2

Oldest 4 4 1 1 2 3 0 4 4

Victim 4 1

6 Faults, 2 evictions!

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

pollev.com/cis5480

v Now, using the same Reference String with LRU, let’s try to fill this table out…
v If we use 4 frames, how many page faults will there be?

§ 6 Faults!

v Easier for me to think about this in terms of subsequences

89

pollev.com/cis5480

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3

At the start, we have 4 faults as the first four pages in the reference string are unique!

The current subsequence is 4, 0, 1, 2

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

pollev.com/cis5480

v Now, using the same Reference String with LRU, let’s try to fill this table out…
v If we use 4 frames, how many page faults will there be?

§ 6 Faults!

v Easier for me to think about this in terms of subsequences

90

pollev.com/cis5480

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3

Now, we see a zero. A zero is already in our substring, so there’s no faults/evictions necessary. We
remove the previous zero from the subsequence. And the “new” zero leads the sequence now.

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

pollev.com/cis5480

v Now, using the same Reference String with LRU, let’s try to fill this table out…
v If we use 4 frames, how many page faults will there be?

§ 6 Faults!

v Easier for me to think about this in terms of subsequences

91

pollev.com/cis5480

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3
With our subsquence being the maximum length and with a new page in view, we perform our first

eviction. The last value in the sequence is always the one to be removed using LRU.

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

pollev.com/cis5480

v Now, using the same Reference String with LRU, let’s try to fill this table out…
v If we use 4 frames, how many page faults will there be?

§ 6 Faults!

v Easier for me to think about this in terms of subsequences

92

pollev.com/cis5480

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3
With our subsquence being the maximum length and with a new page in view, we perform our first

eviction. The last value in the sequence is always the one to be removed using LRU.

X

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

pollev.com/cis5480

v Now, using the same Reference String with LRU, let’s try to fill this table out…
v If we use 4 frames, how many page faults will there be?

§ 6 Faults!

v Easier for me to think about this in terms of subsequences

93

pollev.com/cis5480

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3
We see another zero, we know what to do.

X

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

pollev.com/cis5480

v Now, using the same Reference String with LRU, let’s try to fill this table out…
v If we use 4 frames, how many page faults will there be?

§ 6 Faults!

v Easier for me to think about this in terms of subsequences

94

pollev.com/cis5480

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3
We perform our second eviction!

X X

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

pollev.com/cis5480

v Now, using the same Reference String with LRU, let’s try to fill this table out…
v If we use 4 frames, how many page faults will there be?

§ 6 Faults!

v Easier for me to think about this in terms of subsequences

95

pollev.com/cis5480

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3
We see another two, no eviction or fault necessary as it was already in the subsequence.

X X

CIS 4480 Fall 2025L21: Page ReplacementUniversity of Pennsylvania

pollev.com/cis5480

v Now, using the same Reference String with LRU, let’s try to fill this table out…
v If we use 4 frames, how many page faults will there be?

§ 6 Faults!

v Easier for me to think about this in terms of subsequences

96

pollev.com/cis5480

4, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3
Same thing with the three…

Now, we see that the rest of the pages are already in the sequence so there’s no need to continue
this.

2 Evictions (With 2 corresponding faults) and the initial 4 faults.

X X

