University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Memory Allocation |
Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez
Head TAs: Maya Huizar Akash Kaukuntla
Vedansh Goenka Joy Liu

TAs:
Eric Zou Joseph Dattilo Aniket Ghorpade Shriya Sane
Zihao Zhou Eric Lee Shruti Agarwal Yemisi Jones
Connor Cummings Shreya Mukunthan Alexander Mehta Raymond Feng
Bo Sun Steven Chang Rania Souissi Rashi Agrawal

Sana Manesh

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Logistics

+» Milestone 1 is due this week, Nov 215t

= Keep your TA in the loop for when you’d like to schedule the demonstration of your work.

= Also, you may meet with TAs for Milestone 1 after Friday.
- The # of late days has to do with the most recent modification of your code.

+» Recitation 9: Led by Yemisi & Joy

D)

» No Class or Recitastion, Nov 25 and Nov 27t for Thanksgiving Break.
= Office Hours Subject to Change.
= Mine will be online, Wednesday Nov 26"

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Logistics

+~ Apply to be a TA for this course!

" https://www.cis.upenn.edu/ta-information/

+~ Here’s the timeline!
= Application due Nov 30t
= You'll hear back by Dec 4t
" |nterviews conducted Dec 8t — 10t
= Offers sometime on Dec 10t

*

+» If you have any ideas for how to make the course better, would like to make an
impact on a course, and would like to support students as they navigate
PennOS; consider applying!

https://www.cis.upenn.edu/ta-information/
https://www.cis.upenn.edu/ta-information/
https://www.cis.upenn.edu/ta-information/
https://www.cis.upenn.edu/ta-information/

University of Pennsylvania

L22: Memory Allocation

Administrivia

+ Final Exam; December 11t
= Same format as the Midterm!
= |ast course day is December 4t

" Final Exam Review December 4" @ Recitation

% PennOS Due Friday, July 25th

CIS 4480 Fall 2025

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Administrivia

« Some notes: lseek (FAT FD, offset, SEEK_SET);
= Reminder, you instead of just doing: [RMENIGEYNUPENECI I PR ¥

lseek (FAT_FD, offset, SEEK SET);

you may need to do: write(FAT_FD, contents, size);

lseek (FAT_FD, offset, SEEK SET);
write(FAT _FD, contents, size);

= With the description of setitimer (), it just says that sigalarm is delivered to the
process, not necessarily the calling thread. To make sure siglaram goes to the scheduler,
you may want to make it so that all threads (spthread or otherwise) that aren’t the
scheduler call something like: pthread sigmask (SIG BLOCK, SIGALARM)

« Which will block SIGALARM in that thread.

University of Pennsylvania L22: Memory Allocation

Administrivia

0

If you are having issues with the scheduler not running you can try running

strace —-e 'trace='all' ./bin/pennos

You may have to install strace: sudo apt install strace
This will print out every time a signal is sent to your pennos
(Usual fix is the pthread_sigmask thing on the previous slide)

CIS 4480 Fall 2025

University of Pennsylvania

Lecture Outline

» Stack & Heap w/ Free-lists
» Memory Alighnment

+» Fragmentation

» Leaks

L22: Memory Allocation

CIS 4480 Fall 2025

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Stack & Heap

+» Hopefully you are familiar with the stack and the heap,
" Quick refresher now though

% Stack:
= Where local variables & information for local functions are stored (return address, etc).
= Grows whenever you call a function. pushes a “stack frame” for each function call.

+» Heap:

= Dynamically allocated data stored here. Usually done when data needs to exist beyond the
scope it is allocated in, or the size is not known at compile time

University of Pennsylvania
>

Stack Example:

L22: Memory Allocation

Stack frame for main is
created when CPU
starts executing it

(%include <stdio.h>
#include <stdlib.h>

int sum(int n) {
int sum = 0O;
for (int 1 =
sum += 1;
}

return sum;

int main() {

—t+—> 1int sum = sum(3) ;
printf ("sum: %d\n",
return EXIT SUCCESS;

}

_

0; i < n; i++) {

sum) ;

Stack frame for
main ()

CIS 4480 Fall 2025

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Stack Example:

Stack frame for
main ()

(;include <stdio.h> ﬁ\
#include <stdlib.h>

—+>int sum(int n) {
int sum = 0O;
for (int 1 =
sum += 1;
}

return sum;

Stack frame for
sum ()

0; i < n; i++) {

int main() {
int sum = sum(3);
printf ("sum: %d\n", sum);
return EXIT SUCCESS;

}

_ J

10

University of Pennsylvania
>

Stack Example 1:

L22: Memory Allocation

(%include <stdio.h>
#include <stdlib.h>

int sum(int n) {
int sum = 0O;

for (int 1 =
sum += 1;

0O; 1 < n; 1i++)

}

return sum;

int main() {
int sum = sum(3) ;

— printf ("sum: %d\n", sum);
return EXIT SUCCESS;

}

_

Stack frame for
main ()

sum () 's stack frame

goes away after
sum () returns.

main ()’s stack frame
is now top of the stack

and we keep executing
main ()

CIS 4480 Fall 2025

11

University of Pennsylvania

Stack Example:

L22: Memory Allocation

(%include <stdio.h>
#include <stdlib.h>

int sum(int n) {
int sum = 0O;

for (int 1 =
sum += 1;

0O; 1 < n; 1i++)

}

return sum;

int main() {
int sum = sum(3);

> printf ("sum: %d\n", sum);
return EXIT SUCCESS;

}

_

Stack frame for
main ()

Stack frame for
printf ()

CIS 4480 Fall 2025

12

University of Pennsylvania

L22: Memory Allocation

Stack

% @Grows, but has a static max size

= Can find the default size limit with the command ulimit -a

(May be a different command in different shells and/or linux versions. Works in bash on
Ubuntu though)

= Can also be found at runtime with getrlimit (3)

+» Max Size of a stack can be changed
= atruntime with setrlimit (3)

= At compilation time for some systems (not on Linux it seems)
= (or at the creation of a thread, more on threads next lecture)

CIS 4480 Fall 2025

13

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

The Heap

0

0

*

0

D)

0

The Heap is a large pool of available memory to use for Dynamic allocation

This pool of memory is kept track of with a small data structure indicating

which portions have been allocated, and which portions are currently
available.

malloc:

= searches for a large enough unused block of memory
"= marks the memory as allocated.
= Returns a pointer to the beginning of that memory

free:

= Takes in a pointer to a previously allocated address
= Marks the memory as free to use.

14

University of Pennsylvania

L22: Memory Allocation

CIS 4480 Fall 2025

Dynamic Memory Example (Naive)

+ When we allocate data on the heap
we get the guarantee that the data is

contiguous within an allocation

Heap:

(a2 e

int main() {
—> char* ptr = malloc (4*sizeof (char));
char* ptr2 = malloc(6*sizeof (int));
. .. // do stuff with ptr
free (ptr) ;

free (ptr2);
}

.

15

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Dynamic Memory Example (Naive)

M . N\
» When we allocate data on the heap fanclude cstdlib.h>
we get the guarantee that the data is int main() {
) Co . i char* ptr = malloc(4*sizeof(char));
contiguous within an allocation . char* ptr2 = malloc(6*sizeof(int));
o // do stuff with ptr
free(ptr);
free(ptr2);
}
. J

16

University of Pennsylvania
>

L22: Memory Allocation

CIS 4480 Fall 2025

Dynamic Memory Example (Naive)

+ When we allocate data on the heap
we get the guarantee that the data is

contiguous within an allocation

(a2 e

int main() {
char* ptr = malloc (4*sizeof (char));
char* ptr2 = malloc(6*sizeof (int));
— ... // do stuff with ptr
free (ptr) ;
free (ptr2);
}

.

17

University of Pennsylvania

Dynamic Memory Example (Naive)

When we allocate data on the heap

we get the guarantee that the data is

contiguous within an allocation

Heap:

How do we know how much to deallocate?

How do we mark the memory as “free”?

L22: Memory Allocation

CIS 4480 Fall 2025

int main ()
char* ptr
char* ptr2

__, free (ptr) ;
free (ptr2);

(a2 e

malloc (4*sizeof (char));
malloc (6*sizeof (int)) ;

// do stuff with ptr

When we allocate next, how do we know where we could allocate from?

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Free Lists

%~ One way that malloc can be implemented is by maintaining an implicit list of
the space available and space allocated.

+» Before each chunk of allocated/free memory, we’ll also have this metadata:

(// this is simplified
// not what malloc really does
struct alloc_info {
alloc info* prev;
alloc info* next;
bool allocated;
size t size;

¥

. J

19

CIS 4480 Fall 2025

University of Pennsylvania

L22: Memory Allocation

Dynamic Memory Example

int main() {

free (ptr) ;
free (ptr2);
}

U

(g g

char* ptr = malloc (4*sizeof (char));

char* ptr2 = malloc(6*sizeof (int)):; \AO*"kO 506“65
// do stuff with ptr

This diagram is

+ free list —->|"*

NULL,
NULL,
false,
1000

The metadata is at
the la@@mmvl@ of the
chunk of memory

20

CIS 4480 Fall 2025

University of Pennsylvania
>

Dynamic Memory Example

L22: Memory Allocation

Free chunnks can

be split to
(#include <stdlib.h> B ﬁ“()cﬂl’l’@ lﬁ[()cks O'F
int main() { SPGCi'ﬁC Si/z'/@
—4+5 char* ptr = malloc(4*sizeof (char));
char* ptr2 = malloc(6*sizeof (int)); V\/\a“()c @@‘{'5 A
.. // d tuff with pt . .
AN JOTEE MR R sointer o just
S (pEE2) § after the
}
N J metadata
S v A
& free_list // header header
R — < l
{ .
malloc 4 NULL, { free list
return 0% 0%..., : :
value NULL, points o first
true, false,
4 . free chunk

}

21

CIS 4480 Fall 2025

University of Pennsylvania
>

L22: Memory Allocation

Dynamic Memory Example

(2o

int main() {

free (ptr) ;
free (ptr2);
}

char* ptr = malloc(4*sizeof (char));
—+> char* ptr2 = malloc(6*sizeof (int));
// do stuff with ptr

J

///,:r:r--"""!‘ N

+ free 1list ,/ ader
J | N —"1

malloc / {

return
value

}

{ {

NULL, 0%..., Ox...,
0x..., 0x..., NULL,
true, true, false,
4 24 924

) }

22

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Dynamic Memory Example

(#include <stdlib.h> R
int main() {
char* ptr = malloc (4*sizeof (char));
char* ptr2 = malloc(6*sizeof (int));
. .. // do stuff with ptr
—1*> free(ptr);
free (ptr2);
}
. J
header header header

& free_list —

NULL, 0%..., 0x...,
0x..., 0x..., NULL,
false, true, false,
4 24 924

23

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Dynamic Memory Example

(g g

int main() {
char* ptr = malloc(4*sizeof (char));
char* ptr2 = malloc(6*sizeof (int));
... // do stuff with ptr
free (ptr) ;
—1*> free(ptr2?);
}

. J

+ free list——™* | header header
B ____ii_/// ESS——
1 1 1

({ {

NULL, 0%..., 0x...,
0x..., 0x..., NULL,
false, false, false,
4 24 924

} } }

24

University of Pennsylvania
>

L22: Memory Allocation

Dynamic Memory Example

(g g

int main() {

char* ptr = malloc (4*sizeof (char));
char* ptr2 = malloc(6*sizeof (int));
... // do stuff with ptr
free (ptr) ;
free (ptr2);

7
0’0

Owce a block has been
freed, we can try to
“coalesce” 1+ with
their neighbors

The first free
couldn’+ be coalesced,
only neighbor was
allocated

free list——™"

1

{
NULL,
0x...,
false,
1000

CIS 4480 Fall 2025

25

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Heap

+ malloc () and £free () are not system calls, they are implemented as part
of the C std library

" malloc () and £ree () will sometimes internally invoke system calls to expand the heap
if needed

" |nstead, these functions just manipulate memory already given to the process, marking
some as free and some as allocated

% System calls used bymalloc () and £free ():
" brk () and sbrk ()

« Used to grow/shrink the data segment of memory
" mmap (), munmap ()

- creates / or destroys a mapping in virtual address space

26

University of Pennsylvania

Memory Allocation Has a Cost

%+ There is a reason we had “Unnecessary Memory Allocation” in the style guide.
» Memory Allocation is not an O(1) operation

+ It takes time to:
= Search for a block size that is big enough
= Coalesce / free memory
= Grow the heap if needed

" |n multithreaded applications, locks need to be acquired!

L22: Memory Allocation CIS 4480 Fall 2025

27

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+ How many memory allocations occur in each piece of code?
= Assume vector resizes will double capacity

= std::vectoris an arraylist in C++
std::list is a linked list in C++

int main() {
vector nums {4, 8};
nums.push_back(5);
nums.push_back(9);

int main() {
list nums {4, 8};
nums.push_back(5);
nums.push_back(9);

nums.push back(5);
nums.push back(9);

nums.push _back(5);
nums.push _back(0);

28

University of Pennsylvania

L22: Memory Allocation

CIS 4480 Fall 2025

Minimizing Allocations

+~ As we saw previously, memory allocations require time, sometimes a lot of
time to compute.

R/

+ If performance is our goal, we should minimize the number of allocations we
make.

« This can include

= Making references instead of copies

= Using functions Iike(vector: :reserve(size t new capacilty) J
* In C++

- Java arraylist lets you specify capacity in the constructor.
= Using move semantics

30

University of Pennsylvania

Lecture Outline

» Stack & Heap w/ Free-lists
+» Memory Alignment

+» Fragmentation

» Leaks

L22: Memory Allocation

CIS 4480 Fall 2025

31

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

@ Poll Everywhere pollev.com/cis5480
. . . . (.) . .)
<+ What do you think sizeof(alloc_info) is on // this is simplified
. . - o // not what malloc really does
our 64-bit machines? (how many bytes is it) struct alloc_info |
] . alloc info* prev;
+~ Assume size_t is 4 bytes. alloc info* next;
bool allocated;
size t size;
. }; J

32

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Memory Alignment

» In memory, data isn’t always just crammed together.

» Hardware likes it so that if we are dealing with a 4-byte type, then that variable
is stored at an address that is a multiple of 4 bytes.
= Same with types that are 8, 2, 1-byte etc.

+~ This isn’t always the case, but our software and hardware tries to make this
the case.

33

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Back to Poll:

(// this is simplified
// not what malloc really does
struct alloc_info {
alloc info* prev;
alloc info* next;
bool allocated;
size t size;

¥

\. V,

+ How big is this struct?

34

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Back to Poll: (Naive answer)

(.
o ol i P, // this is simplified
» How blg s this struct: // not what malloc really does

struct alloc_info {
alloc info* prev;

u prev alloc info* next;
bool allocated;
" next size t size;
" allocated QL)
" gjze

35

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Back to Poll: (Fragmentation answer)

(.
o ol i P, // this is simplified
» How blg s this struct: // not what malloc really does

struct alloc_info {
alloc info* prev;
" prev alloc info* next;
bool allocated;
size t size;

" allocated Ok)

" next

® gjze

36

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Fragmentation: Struct Size

% Cstructs will also try to be a multiple of its biggest member.
So in our example, we want to make sure that the struct size is a multiple of 8

(// this is simplified
// not what malloc really does
struct alloc_info {

alloc info* prev;

alloc info* next;

bool allocated;

size t size;

¥

. J

« @Given this struct foo: what is the size of the struct?

rstruct foo {

What is the optimal size of the struct we could have bool allocated:
if we rearranged the fields and still respected alighment? E;if%égflze’

uintle t bleg;
bi

_ J 37

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Calculating Offsets and Packing Structs

offsetof(struct mystruct, struct _member)

+» The macro offsetof expands to an integral constant expression, the value of
which is the offset, in bytes, from the beginning of the struct of specified type
to its specified member, including padding bits if any.

struct _ attribute_ ((packed)) mystruct {
char a;

int c;
char b;

« Using the attribute packed allows you to pack structs tightly together without
any padding in GNU C.

» There are other ways to do this as well, such as #pragma pack(1)

38

https://en.cppreference.com/w/cpp/language/objects.html

University of Pennsylvania

Lecture Outline

» Stack & Heap w/ Free-lists
» Memory Alighnment

+» Fragmentation

» Leaks

L22: Memory Allocation

CIS 4480 Fall 2025

39

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Fragmentation

» Fragmentation: when storage is used inefficiently, which can hurt performance
and ability to allocate things.

Specifically, when there is something that prevents "unused” memory from
otherwise being used

» External Fragmentation: when free memory is spread out over small portions
that cannot be coalesced into a bigger block that can be used for allocation

40

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

External Fragmentation Example

(#include <stdlib.h> R
int main() {
char* ptr = malloc (4*sizeof (char));
char* ptr2 = malloc(6*sizeof (int));
... // do stuff with ptr
—1*> free(ptr);
ptr = malloc (2*sizeof (char));
}
_ J

¢ free list——fi header
B S

({ {

NULL, 0%..., 0x...,
0x..., 0x..., NULL,
false, true, false,
4 24 996

} } }

41

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

External Fragmentation Example

(#include <stdlib.h> R
int main() {
char* ptr = malloc (4*sizeof (char));
char* ptr2 = malloc(6*sizeof (int));
. .. // do stuff with ptr
free (ptr) ;
1, ptr = malloc(2*sizeof (char));
}
_ J

oo f ree l i S t header header header

NULL, 0x...,
0x..., 0x...,
true, false,
2 2

42

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

External Fragmentation Example

- .) . .
#include <stdlib.h> After some more series of allocations

. _ and frees (not shown), we get this:
int main() {

char* ptr = malloc (4*sizeof (char));
char* ptr2 = malloc(6*sizeof (int)):; Let’s saymalloc (4) gets called
// do stuff with ptr (trying to allocate 4 bytes)

free (ptr); what happens?
ptr = malloc (2*sizeof (char));

U J

» free list header it header

There are 4 bytes of free space, but they aren’t next to { {
each other and can’t be coalesced into something that 0x..., 0x...,
can be used. 0x..., 0x...,
false, false,
Heap would need to grow to make space (if possible) 2 2
} }

Goes without saying not to scale.. 43

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Internal Fragmentation

» Internal Fragmentation: When more space is allocated for something than is
actually used. This fragmentation happens “internally” within an allocated
portion, instead of “external” to one.

» What if someone calls malloc(4096 * (char*)) and only uses the first
char*?

= Can be thought of internal fragmentation, not the allocator's fault though (in this use case)
» What if we allocate a struct that has empty space to meet alignment
requirements?

» Sometimes we call malloc() and more space is allocated than needed.

= if we allocate for 7 bytes, 8 may actually be allocated. Computer may want addresses to be
aligned to a multiple of a power of 2

44

University of Pennsylvania

L22: Memory Allocation

CIS 4480 Fall 2025

First Fit

+ There may be multiple free blocks that can be chosen for allocation.

+ The allocation policy we used in our examples is First Fit: find the first block of
memory that is big enough

= Start at the front of the free list, iterate till we find something big enough
= Usually the simplest to implement

45

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Best Fit

+ Best Fit: another approach where instead you look for the portion of memory
that is the “best” or “tightest” fit

+ |f allocating for 4 bytes of memory, search for the smallest block thatis >=4
bytes.

46

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Worst Fit

+ Worst Fit: another approach where instead you look for the portion of
memory that is the “worst” fit (opposite of best fit)

+ |f allocating for 4 bytes of memory, search for the largest block that is >=4
bytes.

47

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

@ Poll Everywhere

discuss

+» What is the approximate runtime of the algorithms? (e.g. O(N log(N))). What is
the best/worst case?

" First Fit
® Best Fit
" Worst Fit

+ Letssaywecallmalloc (4 bytes). Which block is allocated in this example

if we choose:
" First Fit

= Best fit

= Worst fit

| o . /
size =8 size = 16 size = 1024 48

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

@ Poll Everywhere discuss

» |t turns out that over long periods of time, worst fit can work better than best
fit. Why is this the case?

University of Pennsylvania

Lecture Outline

» Stack & Heap w/ Free-lists
» Memory Alighnment

+» Fragmentation

+ Leaks

L22: Memory Allocation

CIS 4480 Fall 2025

54

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Memory Leaks

«» How do we feel about them? Good? Bad?

55

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Memory Leaks

%+ The most common Memory Pitfall
+ What happens if we allocate something, but don’t delete it?

" That block of memory cannot be reallocated, even if we don’t use it anymore, until it is
free-d

" |s this a problem?

56

CIS 4480 Fall 2025

L22: Memory Allocation

University of Pennsylvania

Memory Leaks

%+ The most common Memory Pitfall

+ What happens if we allocate something, but don’t delete it?
" That block of memory cannot be reallocated, even if we don’t use it anymore, until it is
free-d
" |s this a problem?

+ If this happens enough, we run out of heap space and program may slow
down and eventually crash

57

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Memory Leaks

%+ The most common Memory Pitfall
+ What happens if we allocate something, but don’t delete it?

" That block of memory cannot be reallocated, even if we don’t use it anymore, until it is
free-d

= |s this a problem?

+» What if itis a short lived program or we are about to exit the process? Do we
still need to free?

= Eh....... The OS will clean up all of memory when our process exits

- And by “clean up”, this means removing Page Table Entries for that process and allocating them
for someone else.

58

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

Memory Leaks

» The most common Memory Pitfall
+ What happens if we allocate something, but don’t delete it?

" That block of memory cannot be reallocated, even if we don’t use it anymore, until it is
free-d

D)

*

Garbage Collection

= Automatically “frees” anything once the program has lost all references to it
= Affects performance, but avoid memory leaks
= Java and other “high level” languages

RAIl (Resource Acquisition Is Initialization)
" C++ and Rust have this, it is VERY GOOD

D)

*

59

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

RAII

% In C++, Rust and other languages we have RAIl
= Resource Acquisition is Initialization

= What this really means is that in addition to a “constructor” for an object there exists a
“destructor” that cleans up the object

" The destructor is called for you when the object falls out of scope
The destructor will free the underlying memory the vector allocated!

= Can still cause issues, but makes it easier than C’s explicit calls to free()

int main() { int main() {
vector nums {4, 8}; if (..) A
nums.push_back(5); vector nums {4, 8};
nums.push_back(9); nums.push_back(9);

nums.push_back(5); // nums.~vector()
nums.push_back(9); }
// nums.~vector() implicit destructor call }

60

University of Pennsylvania

L22: Memory Allocation

Safety C Example

Here is an example in C where is the issue?

int main(int argc,

CIS 4480 Fall 2025

char** argv)

int* ptr = malloc(sizeof (int));

assert (ptr != NULL);
*ptr = 5;

// do stuff with ptr
free (ptr);

printf ("%d\n", *ptr);

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

C++ Safety

%+ Here is an example in C++ where is the issue?

- .
#include <iostream>
#include <vector>

using namespace std;

int main(int argc, char** argv) {
vector<int> v {3, 4, 5};
int* first = &v.front();
cout << *first << endl; // print (*first)

v.push back(6) ;

cout << v.size() << endl; // print(v.size())
cout << *first << endl; // print (*first)

62

L22: Memory Allocation CIS 4480 Fall 2025

University of Pennsylvania

C++ Safety

Here is an example in C++ where is the issue?

\/
0’0

- .
#include <iostream>
#include <vector>

namespace std;

int* foo () {
vector<int> v {3, 4, 5};
return &v[0];
}
int main(int argc, char** argv) {
int* first = foo();

cout << *first << endl; // print (*first)

University of Pennsylvania

More Next Time ©

0

Next Time

Garbage Collection
Arena Allocators
Slab Allocators
Buddy Allocators

L22: Memory Allocation

CIS 4480 Fall 2025

64

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

@ Poll Eve rywhere pollev.com/cis5480

+ How many memory allocations occur in each piece of code?
= Assume vector resizes will double capacity

= std::vectoris an arraylist in C++
std::list is a linked list in C++

int main() {
vector nums {4, 8};
nums.push_back(5);
nums.push_back(9);

int main() {
list nums {4, 8};
nums.push_back(5);
nums.push_back(9);

nums.push back(5);
nums.push back(9);

nums.push _back(5);
nums.push _back(0);

65

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

@ Poll Everywhere

discuss

+» What is the approximate runtime of the algorithms? (e.g. O(N log(N))). What is
the best/worst case?

" First Fit best: O(1), worst: O(n)
= Best Fit best: O(n), worst: O(n)
= Worst Fit best: O(n), worst: O(n)

» Letssay we callmalloc (4 bytes). Which block is allocated in this example
if we choose:

= First Fit 8 byte chunk

= Bestfit 8 byte chunk
= Worst fit 1024 byte chunk

ree it = T

| o . /
size =8 size = 16 size = 1024 66

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

@ Poll Everywhere discuss

% It turns out that over long periods of time, worst fit can work better than best
fit. Why is this the case?

+» Less small “leftover” fragments, fragments are bigger and easier to reuse

+ In the previous example, if we allocate for size 6...

4 1 pal
/

I I
. size =16 size =1024
Size=8

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

@ Poll Everywhere discuss

% It turns out that over long periods of time, worst fit can work better than best
fit. Why is this the case?

+» Less small “leftover” fragments, fragments are bigger and easier to reuse

+ In the previous example, if we allocate for size 6...

= Best fit would allocate the size 8 free chunk leaving a size 2 chunk that is unlikely to be
usable

4 1 pal
/

I ||
size =16 size = 1024

size=8

University of Pennsylvania L22: Memory Allocation CIS 4480 Fall 2025

@ Poll Everywhere discuss

% It turns out that over long periods of time, worst fit can work better than best
fit. Why is this the case?

+» Less small “leftover” fragments, fragments are bigger and easier to reuse

+ In the previous example, if we allocate for size 6...

= Worst fit would use 1024, splitting it into 6 and 1018. 8 chunk is still usable and 1018 is still
usable.

4 1 pal
/

I ||
size =16 size = 1024

size=8

