University of Pennsylvania L23: Memory Allocation

Memory Allocation I

Computer Operating Systems, Fall 2025

Instructors: Joel Ramirez
Head TAs: Maya Huizar Akash Kaukuntla
Vedansh Goenka Joy Liu

TAs:
Eric Zou Joseph Dattilo Aniket Ghorpade
Zihao Zhou Eric Lee Shruti Agarwal
Connor Cummings Shreya Mukunthan Alexander Mehta
Bo Sun Steven Chang Rania Souissi

Sana Manesh

Shriya Sane
Yemisi Jones
Raymond Feng
Rashi Agrawal

CIS 4480, Fall 2025

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+» How is PennOS Going? How’s life? Any Questions about Memory Allocation?

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Administrivia

+» Milestone 1 is due this week, Nov 215t

= Keep your TA in the loop for when you’d like to schedule the demonstration of your work.

= Also, you may meet with TAs for Milestone 1 after Friday.
- The # of late days has to do with the most recent modification of your code.

+~ Recitation 9: Led by Yemisi & Joy
"= Today, Same time same place!

R

» No Class or Recitation, Nov 25t and Nov 27t for Thanksgiving Break.
= Office Hours Subject to Change.
= Mine will be online, Wednesday Nov 26"

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Administrivia

+~ Apply to be a TA for this course!

" https://www.cis.upenn.edu/ta-information/

+ Here’s the timeline!
= Application due Nov 30t
= You'll hear back by Dec 4t
" |nterviews conducted Dec 8t — 10t
= Offers sometime on Dec 10t

- If you have any ideas for how to make the course better, would like to make an
impact on a course, and would like to support students as they navigate
PennOS; consider applying!

https://www.cis.upenn.edu/ta-information/
https://www.cis.upenn.edu/ta-information/
https://www.cis.upenn.edu/ta-information/
https://www.cis.upenn.edu/ta-information/

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Administrivia

+ Final Exam; December 11t
= Same format as the Midterm!
= |ast course day is December 4t

" Final Exam Review December 4" @ Recitation
- I'll be there!

+ Penn OS Due Friday, December 5t
" |’ll release the expected PennOS Final Demo, very soon!
+ Final Grades due after Winter Break.

= So even though the course is “over”, there’s still wiggle room at the end.

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Administrivia

+» Some notes:
= DO NOT mmap the entire File System. Only mmap the Allocation Table, the rest of the file
system needs to be handled with Iseek/write.
- Do not keep the contents of the file in memory, it should be stored in the file
- If your PennFat is killed with kill -9, your file contents should still be saved in disk

= Advice for using gdb to debug

- handle SIGUSR1 noprint nostop
Makes it so that gdb doesn’t report every time SIGUSR1 goes and interrupts you

= (more on next slide)

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Administrivia

« Some notes: lseek (FAT FD, offset, SEEK_SET);
= Reminder, you instead of just doing: [RMENIGEYNUPENECI I PR ¥

lseek (FAT_FD, offset, SEEK SET);

you may need to do: write(FAT_FD, contents, size);

lseek (FAT_FD, offset, SEEK SET);
write(FAT _FD, contents, size);

= With the description of setitimer (), it just says that sigalarm is delivered to the
process, not necessarily the calling thread. To make sure siglaram goes to the scheduler,
you may want to make it so that all threads (spthread or otherwise) that aren’t the
scheduler call something like: pthread sigmask (SIG BLOCK, SIGALARM)

« Which will block SIGALARM in that thread.

University of Pennsylvania L23: Memory Allocation

Administrivia

0

If you are having issues with the scheduler not running you can try running

strace —-e 'trace='all' ./bin/pennos

You may have to install strace: sudo apt install strace
This will print out every time a signal is sent to your pennos
(Usual fix is the pthread_sigmask thing on the previous slide)

CIS 4480, Fall 2025

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Lecture Outline

+ Garbage collection
+ Arena Allocation
» Buddy Algorithm
» Slab/Slub Allocator

10

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Memory Leaks

» The most common Memory Pitfall
+ What happens if we allocate something, but don’t delete it?

" That block of memory cannot be reallocated, even if we don’t use it anymore, until it is
delete-d

D)

*

Garbage Collection

= Automatically “frees” anything once the program has lost all references to it
= Affects performance, but avoid memory leaks
= Java and other “high level” languages

RAIl (Resource Acquisition Is Initialization)
" C++ and Rust have this, it is VERY GOOD

D)

*

11

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Garbage Collection

+» When memory is automatically deallocated for us, so we do not need to
explicitly free memory

+» Very common in higher level languages:
= Java, C#, Python, Javascript, Ruby, Lisp, Erlang, Racket, Haskell, Scala, Dart, etc.

+» Big difference between these languages and languages like C / C++ / Rust:

= Many of these languages are not run directly on your hardware.

= Java (for example) runs on the JVM (Java Virtual Machine) which then runs on your
computer

= Garbage collection requires some help from the “runtime” environment” and/or the
compiler to keep track of pointers, memory allocations etc and decide when to free them

12

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Garbage Collection

%+ With the aid of the runtime and compiler we can keep track of all memory
allocation and represent it as a directed graph
= Each allocation is a node in the graph
= Each pointer is an edge in the graph
= |f an object contains a pointer to another object we draw an edge from that node to the

other.
The Heap Q
Q 13

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Garbage Collection

= Each allocation is a node in the graph Nodes that are “reachable” from a root are safe
, , _ if it can’t be reached from a root, then it is garbage
= Each pointer is an edge in the graph

= |f an object contains a pointer to another object we draw an edge from that node to the
other.

+ The roots of the graph are the pointers on a Stack Frame (Local Variables)

The Stack The Heap /‘\
Var my obj ;U R

Var other

14

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Garbage Collection

= Each allocation is a node in the graph Nodes that are “reachable” from a root are safe
, , _ if it can’t be reached from a root, then it is garbage
= Each pointer is an edge in the graph

= |f an object contains a pointer to another object we draw an edge from that node to the
other.

+ The roots of the graph are the pointers on a Stack Frame (Local Variables)

The Stack The Heap m
Var my obj ;U R

Var other

15

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Garbage Collection

= Each allocation is a node in the graph Nodes that are “reachable” from a root are safe
, , _ if it can’t be reached from a root, then it is garbage
= Each pointer is an edge in the graph

= |f an object contains a pointer to another object we draw an edge from that node to the
other.

+ The roots of the graph are the pointers on a Stack Frame (Local Variables)

The Stack The Heap m
Var my obj ;U R

Var other

16

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Garbage Collection

= Each allocation is a node in the graph Nodes that are “reachable” from a root are safe
, , _ if it can’t be reached from a root, then it is garbage
= Each pointer is an edge in the graph

= |f an object contains a pointer to another object we draw an edge from that node to the
other.

+ The roots of the graph are the pointers on a Stack Frame (Local Variables)

The Stack The Heap m
Var my obj ;U R

Var other

17

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Lecture Outline

+ Garbage collection
» Arena Allocation
» Buddy Algorithm
» Slab/Slub Allocator

18

L23: Memory Allocation CIS 4480, Fall 2025

University of Pennsylvania

Arena Allocator

% In some instances, we want to allocate a lot of items and limit those
allocations to one scope. We call our allocator a “arena allocator”. It allocates

things within the same "arena"/region/pool of the same scope

+ For example, Consider we start with:

>

start ptr ——»
end ptr — '

1024 bytes
= Note that there is a little bit more metadata than just these two pointers

%+ Then we allocate 4 bytes

Alloc’d

start ptr ——»

end_ptr~_//f '
1024 bytes 19

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Arena Allocator: Alloc

+~ For example, Consider we start with:

start ptr ——

end ptr

|
1024 bytes
= Note that there is no metadata, just these two pointers

%+ Then we allocate 4 bytes

start ptr ———j Allecd

end ptr \j)
- Y

1020 bytes

%+ Then we allocate 16 bytes
end ptr Y
\ / 1008 bytes

*Alignment could be a thing that affects how we allocate things, but we are leaving that out 20

University of Pennsylvania

Arena Allocator: Free

%+ Once we are done with our temporaries, we free the all allocations, and we

can then use it again as if “fresh”

L23: Memory Allocation

start ptr ——

end ptr

" | ooks the same as when we started!

1024'bytes

R That iS the API (temp_allocator t alloc

for (many iterations)

{

init_allocator();

& Examp|e usage: int *ptr = allocate(t alloc, 4 bytes);

// to this scope

\J

clear allocs(t alloc);

image *img = allocate(t alloc, 1024 bytes);
// a bunch of other allocations local

~

J

" |nstead of being scoped to a function, an arena allocator can also be scoped to an “object”

or the lifetime of some “task”

CIS 4480, Fall 2025

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Arena Allocator: Growing

+ This simple arena allocator we are showing can also be called a “bump
allocator” since to allocate we just “bump” the pointer

*

D)

- All the memory for an arena allocator is allocated before hand, typically there

is a good guess for the memory that a given scope will need, so we can just
allocate that many pages or bytes

D)

*

+~ If we want to handle growing an arena allocator, it may handle multiple
“arenas” and simply allocate a new arena whenever one is requested.

= Can allocate new pages by using mmap() to create “anonymous” mappings (anonymous =
pages aren’t mapped to a file)

22

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

@ Poll Everywhere discuss

+ How fast is our arena allocator at allocating things on average? At freeing
things?

+ What does the internal and external fragmentation look like with our arena
allocator?

+ Why can’t we use this as a replacement for malloc maintaining lists of
allocated & freed memory?

23

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Lecture Outline

+ Garbage collection
+ Arena Allocation
» Buddy Algorithm
» Slab/Slub Allocator

25

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm

» Keep in mind that there is some “maximum” amount of memory and we
partition memory into sizes that are powers of 2.

= Power of 2 allows for compact allocation tracking and makes coalescing memory quick.
= Usually with the smallest unit being 1 page, 4096 bytes.

+ Modified implementation of the buddy system is one of many things used by
the Linux kernel and the others (like a version of malloc called jemalloc)

" Linux Kernel uses the buddy algorithm to allocate physical pages to the kernel

26

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm walkthrough

0 1 2 3 4 5 6 7 3 9 (10 | 11 | 12 | 13 | 14 | 15

2% pages

+ We start with the full pool of memory, in this example, 24
pages (usually a higher cap than this, this is for example)

+ What happens if someone asks to allocate 1 page?

27

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm walkthrough

0 1 2 3 4 5 6 7 3 9 (10 | 11 | 12 | 13 | 14 | 15

23 pages 23 pages

+ What happens if someone asks to allocate 1 page?
= Split page chunks into half until we have enough

28

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm walkthrough

0 1 2 3 4 5 6 7 3 9 (10 | 11 | 12 | 13 | 14 | 15

22 pages 22 pages 23 pages

+ What happens if someone asks to allocate 1 page?
= Split page chunks into half until we have enough

29

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm walkthrough

0 1 2 3 4 5 6 7 3 9 (10 | 11 | 12 | 13 | 14 | 15

21 pages | 2! pages 22 pages 23 pages

+ What happens if someone asks to allocate 1 page?
= Split page chunks into half until we have enough

30

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm walkthrough

0 1 2 3 4 5 6 7 3 9 (10 | 11 | 12 | 13 | 14 | 15

1 1 | 2! pages 22 pages 23 pages

+ What happens if someone asks to allocate 1 page?
= Split page chunks into half until we have enough

31

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm walkthrough

o|1|2|3|4|5|6 |7 |8 |9 |10|11|12|13]| 14| 15
1 | 2! pages 22 pages 23 pages
+ What happens if someone asks to allocate 1 page?
= Split page chunks into half until we have enough

+» Can mark the one page as being used by allocation A

32

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm walkthrough

0 1 2 3 4 5 6 7 8 9 10 (11 [12 | 13 | 14 | 15
1 | 2! pages 22 pages 23 pages

» Now someone requests 2 pages, what happens?

33

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm walkthrough

o|1|2|3|4|5|6|7|8]9|10[11]12]|13]14] 15
1 21 pages 22 pages 23 pages
A B
+» Now someone requests 2 pages, what happens?

+ We can claim the 2!-page chunk and mark it as being used
by allocation B

34

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm walkthrough

0 1 2 3 4 5 6 7 8 9 10 (11 [12 | 13 | 14 | 15
1 21 pages 22 pages 23 pages
A B

» Now someone requests 3 pages, what happens?

35

University of Pennsylvania L23: Memory Allocation

Buddy Algorithm walkthrough

23 pages

+» Now someone requests 3 pages, what happens?

+» Buddy ONLY deals with powers of 2, this gets rounded up
to 22 pages (4 pages)

+» We can claim the 22-page chunk and mark it as being used
by allocation C

CIS 4480, Fall 2025

36

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm walkthrough

0 1 2 3 4 5 6 7 3 9 (10 | 11 | 12 | 13 | 14 | 15

1 2!pages 22 pages 23 pages
A D B C

+ Last allocation: someone allocates 1 page, what happens?

+ We can claim the 1-page chunk and mark it as being used
by allocation D

37

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm walkthrough

0 1 2 3 4 5 6 7 3 9 (10 | 11 | 12 | 13 | 14 | 15

1 2!pages 22 pages 23 pages
A D B C

+ Let’s walk through the freeing process

+ First, allocation D is done and frees its page

38

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm walkthrough

o|1|2|3|4|5|6|7|8]9|10[11]12]|13]14] 15
| 21 pages 22 pages 23 pages
A B C
+ Let’s walk through the freeing process

+ First, allocation D is done and frees its page

+» To free the page, we just mark it as no longer being
allocated. Nothing we can coalesce (yet)

39

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm walkthrough

0 1 2 3 4 5 6 7 3 9 (10 | 11 | 12 | 13 | 14 | 15

1 Bl 2! pages 22 pages 23 pages
B C

+ Let’s walk through the freeing process

+» Second, allocation A is done and frees its page

+» To start, we just mark it as no longer being allocated.

40

University of Pennsylvania L23: Memory Allocation

Buddy Algorithm walkthrough

0 1 2 3 4 5 6 7 3 9 (10 |11 |12 | 13 | 14

15

1 1 BPAEED 22 pages 23 pages

B C
» Let’s walk through the freeing process

+» Second, allocation A is done and frees its page

+» To start, we just mark it as no longer being allocated.
+ Then we can coalesce!

» Each “chunk” has a “buddy”, the buddy being the its
“twin” created while spitting chunks in half.

» |f both buddies are free, they can be combined ©

CIS 4480, Fall 2025

41

University of Pennsylvania L23: Memory Allocation

Buddy Algorithm walkthrough

0 1 2 3 4 5 6 7 3 9 (10 |11 |12 | 13 | 14

15

2! pages [WANET-LS 22 pages 23 pages

B C
» Let’s walk through the freeing process

+» Second, allocation A is done and frees its page

+» To start, we just mark it as no longer being allocated.
+ Then we can coalesce!

» Each “chunk” has a “buddy”, the buddy being the its
“twin” created while spitting chunks in half.

» |f both buddies are free, they can be combined ©

CIS 4480, Fall 2025

42

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm walkthrough

0 1 2 3 4 5 6 7 3 9 (10 | 11 | 12 | 13 | 14 | 15

21 pages | 74 LIl 22 pages 23 pages
B C

+ Let’s walk through the freeing process

+ Third, allocation Cis done and frees its pages

43

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm walkthrough

0 1 2 3 4 5 6 7 3 9 (10 | 11 | 12 | 13 | 14 | 15

21 pages | 74 LIl 22 pages 23 pages
B

+ Let’s walk through the freeing process

+ Third, allocation Cis done and frees its pages

% Can’t coalesce since its buddy is not completely free

44

University of Pennsylvania

L23: Memory Allocation

Buddy Algorithm walkthrough

0

1

2

3

5

6 7 3

10

11

12

13

14

15

21 pages

21 pages

22 pages

23 pages

\/
0’0

Let’s walk through the freeing process

+ lastly, allocation B is done and frees its pages

CIS 4480, Fall 2025

45

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm walkthrough

0 1 2 3 4 5 6 7 3 9 (10 | 11 | 12 | 13 | 14 | 15

22 pages 22 pages 23 pages

+ Let’s walk through the freeing process

+ lastly, allocation B is done and frees its pages

+ Its buddy is free so we can coalesce!

46

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm walkthrough

0 1 2 3 4 5 6 7 3 9 (10 | 11 | 12 | 13 | 14 | 15

23 pages 23 pages

» Let’s walk through the freeing process

+ lastly, allocation B is done and frees its pages

+ Its buddy is free so we can coalesce!
+ The newly coalesced chunk can be further coalesced!

47

CIS 4480, Fall 2025

University of Pennsylvania L23: Memory Allocation

Buddy Algorithm walkthrough

0 1 2 3 4 5 6 7 3 9 (10 |11 |12 | 13 | 14

15

2% pages

+ Let’s walk through the freeing process
» lastly, allocation B is done and frees its pages
+ Its buddy is free so we can coalesce!

+ The newly coalesced chunk can be further coalesced!
+ The newly coalesced chunk can be further coalesced!

48

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm Implementation

» Buddy Algorithm can be maintained with a binary search tree
= Each node carries

whether it is split,
allocated, or free e

49

University of Pennsylvania

Buddy Algorithm Implementation

L23: Memory Allocation

CIS 4480, Fall 2025

% Since Buddy has a known max size, we can represent the tree in an array or
bitmap. (example shows up to 22 for space on the slide)

22 | 21| 21

20

20

20

20

21

21

20 | 20

20

20

(alternate way to show the array, may
make the connection between array and

tree easier to see).

Indexes go Left -> Right, top to bottom

50

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Buddy Algorithm Implementation

+ The tree (array representation) is useful for coalescing, but we can make
algorithm faster by keeping track of several free lists, roughly one list per size
= Quicker lookup for memory allocation

= Coalescing is still fast since we can maintain a bitmap and easily find the location of a
“buddy”.

20 —| block » block
21 » block
22

23 — | block

51

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

+ How does the fragmentation for the buddy algorithm look?

52

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Lecture Outline

+ Garbage collection
+ Arena Allocation

» Buddy Algorithm

» Slab/Slub Allocator

54

University of Pennsylvania

L23: Memory Allocation

CIS 4480, Fall 2025

Slab Allocator*

<+ What if we restrict the APl to a single size that can be allocated or freed?

R/

+ First, you need to allocate the slab itself which you will allocate from

= When you create it, you specify a name and some other information

" The thing we care about is that you specify the size of the objects that the slab allocator
will allocate space for

- e.g. (sizeof struct dirent), if you’d like to create an array of entries for the user.

// Internal to the 0S, you can’t call it yourself
struct kmem cache*kmem cache alloc (const char* name, unsigned int size,

struct kmem cache args* args, unsigned int flags);

+» We are simplifying this allocator a good bit (it takes in a constructor/destructor
for those objects it will allocate for you)

University of Pennsylvania
>

L23: Memory Allocation

Slab Allocator High Level

% In the context of a slab allocator
= QObject: the thing we want to allocate, some fixed size memory that we want to allocate

. struct inode, struct dentry, file table entries, struct pcb, (penn os queues...)

= slab: a set of pages containing the “objects”

= A cache maintains lists of slabs noting which slabs are full/empty/partially in use

struct kmem_cache* s

CIS 4480, Fall 2025

object object object object object object object object
X o //
partia object object object object object object object object object
/V
empty — |

full

object

object

object

object

object

object

object

object

object

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Slab Allocator High Level

+ There can be multiple slabs that are partial/empty free

struct kmem_cache* s

N\

object object object object object object object object

N partial / _,| object object object object object object
object object object object object object
empty ...
full

57

CIS 4480, Fall 2025

University of Pennsylvania L23: Memory Allocation

Slab Allocator High Level: Alloc

» Each slab maintains a pointer to an element that is free in the slab.
(This pointer is stored in some metadata somewhere.)

- Each free object contains a pointer to the next free object in the slab
+ When we allocate from the cache, we get a pointer to the first element that is

free
D

il —

struct kmem cache* s objea\ object object object Iobject %bject

/

\ freelist \ v
b partial — |

empty ...
full 58

CIS 4480, Fall 2025

University of Pennsylvania L23: Memory Allocation

Slab Allocator High Level: Alloc

+~ Each slab maintains a pointer to an element that is free in the slab.
(This pointer is stored in some metadata somewhere.)

+ Each free object contains a pointer to the next free object in the slab

>

+ When we allocate from the cache, we get a pointer to the first element that is
free

struct kmem_cache* s ERe ERe

\ freelist \

b partial — |

Update freelist pointer to point
to the next free object in the list

New

allocation!
empty ...
full 59

University of Pennsylvania

L23: Memory Allocation

Slab Allocator High Level: Free

+ When we want to free something, we are given the pointer to that object
So we can do math on the address to calculate the page (and thus which slab it

goes to)

» From there we can just “push it to the front of the free list”

struct kmem_cache* s

N\

CIS 4480, Fall 2025

object object object object

b partial — |

empty ...
full

To free

60

University of Pennsylvania

L23: Memory Allocation

Slab Allocator High Level: Free

CIS 4480, Fall 2025

+ When we want to free something, we are given the pointer to that object

So we can do math on the address to calculate the page (and thus which slab it

goes to)

» From there we can just “push it to the front of the free list”

N

struct kmem_cache* s

N\

b partial — |

freelist ‘

empty ...
full

_ —
-

object

?
object object object
N\

DN

To free

61

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

@ Poll Everywhere pollev.com/cis5480

< What is the runtime for slab?

+» How does the fragmentation look?

62

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Slab Allocator Analysis

+ Slab allocator is pretty fast, O(1) ish, but can slow down when it needs to
allocate a new slab (if they are all full, we need to grow and allocate pages)

+ Slab allocator is very useful for minimizing overhead for allocating and freeing.

%+ Can be minimal internal and external fragmentation (gets more complicated
when you account for alignment and buddy algo requirements)

63

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

Slab Allocator Usage

» Used on top of the buddy algorithm in the kernel.

" This allows us to use the buddy algorithm still, but can quickly allocate smaller sized
“objects” within the slabs of memory returned by the buddy algorithm

» General Memory allocators may use something like this, allocate many slabs of
various sizes and try to mostly use those for allocation

" The generic “kmalloc” (kernel malloc) is backed by the slab allocator.
When it asks for N bytes it allocates from a slab that will best fit that allocation size.

. cat /proc/slabinfo

"= Has everything we want

64

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

And, that’s about it!

65

University of Pennsylvania L23: Memory Allocation CIS 4480, Fall 2025

@ Poll Everywhere discuss

+ How fast is our arena allocator at allocating things on average? At freeing

ings?
thmgs ' Very Fast, constant time for each
+ What does the internal and external fragmentation look like with our

allocator? Minimal/none for both © Since we know how big each allocation is, we
can allocate the exact size requested (no internal) and chunk our

memory so that there is minimal space between each allocated chunk
+ Why can’t we use this as a replacement for malloc maintaining lists of

allocated & freed memory?

Malloc manages things that are freed individually that may be allocated
for varying lengths of time. This allocator assumes everything can be
allocated together.

66

L23: Memory Allocation CIS 4480, Fall 2025

University of Pennsylvania

Buddy Algorithm

+» A bit restrictive in the interface, must be a power of 2

" |nternal fragmentation can be a lot ®
= |f someone needs 2% +1 pages, buddy algorithm will allocate 2° pages, 2% - 1 pages of
fragmentation

» External fragmentation is generally kept pretty small

» Small allocations don’t really work for this (It is a page allocator...)

67

