
Recitation 0
Welcome, everybody!

Recitation Logistics
● Turn in your worksheets! This is how we grade recitation participation

○ Due every Thursday at 11:59 pm.

● No need to submit the original file, - can just upload a copy of your
answers on blank paper, especially since we make you draw out answers
sometimes

Today’s Topics
● Environment Setup
● Intro to GDB
● Intro to Valgrind
● Processes
● Fork & Exec
● Wait
● Alarm

Environment Setup - Any Questions?
● Docker Setup

○ Installation
○ Container

● Git Repo Setup
○ SSH Key
○ Clone the repo

● VSCode
○ Installation
○ Extension
○ Entering the project

GDB (Debugger)

GNU (GNU’s Not Unix) Project Debugger

● You can can examine the program as it is executing!
● Supports a variety of languages

○ (e.g. asm, C, C++, D, Fortran, Go, Rust, etc.)
● Your best friend for this course!

“But can I use print statements?”

● Using print statement can be tedious.
● Requires the use of many to find where the bug is.
● Unable to examine the state of the program after it crashes.
● printf(“here\n”); can only take you so far.

What is GDB?

Using GDB
Use -g or -g3 flag in Makefile
for compiling (the provided
Makefile has this)

Type in your shell:

a) gdb pokemon_buggy

b) <enter>, then run

start Start from beginning and stop there

run Start and run program from
beginning

continue Run until program exits*

step Run until next line*

bt Shows call stack

b [fname:]function
b [fname:]linenum

Sets breakpoint at beginning of
function or at line

print var Prints var

* = or until next breakpoint

Exercise 1: GDB
● Download files from website
● Run make, then debug via gdb

Valgrind

● Your handy debugging tool for memory mismanagement

● It runs your program, and looks for any memory errors during execution

● It will only catch errors it encounters in runtime! Pay attention to code
coverage - ensure all* lines of code are run in a valgrind session

*or at the very least, the most critical lines

Valgrind

Valgrind Errors
● Memory leaks: memory that hasn’t been freed by the time the program

exits

● Invalid read/write: accessing unallocated (or deallocated) memory

● Uninitialized bytes: Using memory that was allocated but never had any
values put into them

● Can run in terminal: valgrind ./program <program arguments>

● Useful valgrind arguments (put between valgrind and ./program)

● --trace-children=<yes|no> (default: no)

● --track-origins=<yes|no> (default: no)

● --leak-check=<no|summary|yes|full> (default: summary)

○ full option gives you the most info

How to Run Valgrind

Processes

Processes
● Process: One instance of a running (or ready to run) program

● Two ways to visualize processes

Processes
● Process: One instance of a running (or ready to run) program

● Two ways to visualize processes

Processes as separate lines of execution

Processes
● Process: One instance of a running (or ready to run) program

● Two ways to visualize processes

ORProcesses as separate lines of execution Processes as separate memory environments

 P1 P2

Processes
● Process: One instance of a running (or ready to run) program

● Two ways to visualize processes

ORProcesses as separate lines of execution Processes as separate memory environments

this visual will be more useful later in the semester

 P1 P2

Exercise 2a: Processes
Which process(es) have access to file.txt?

A. Parent
B. Child
C. Both
D. Neither

#include <fcntl.h>
#include <stdlib.h>

int main() {
 pid_t child = fork();
 int fd = open("file.txt", O_WRONLY);
 if (fd == -1) {
 exit(EXIT_FAILURE);
 }
 write(fd, "this is parent or child.", 25);
 close(fd);
 return 0;
}

Exercise 2b: Processes
If the parent closes the file, can the child still

write to file.txt? Explain you answer.
#include <fcntl.h>
#include <stdlib.h>

int main() {
 pid_t child = fork();
 int fd = open("file.txt", O_WRONLY);
 if (fd == -1) {
 exit(EXIT_FAILURE);
 }
 write(fd, "this is parent or child.", 25);
 close(fd);
 return 0;
}

Fork

● “The only function that returns twice”

● Generally invoked when we want to run a different program without
terminating the current program

● Clones the process that called fork()
○ Memory environment: stack, heap, read-only memory, registers, etc.
○ File descriptor table
○ Signal handlers & mask

● Child starts running the line immediately following fork()

Fork

Exec

Exec(ve)
● Replaces the current process with another

execve(char *pathname, char *argv[], char *envp[]);
○ pathname = string containing path to binary file to be executed
○ argv = array of strings containing arguments to run the next program

■ Argv[0] == pathname
○ envp = list of environment variables

■ Just set this parameter to NULL

● What’s replaced?

● What’s unchanged?

Exec(ve)
● Replaces the current process with another

execve(char *pathname, char *argv[], char *envp[]);
○ pathname = string containing path to binary file to be executed
○ argv = array of strings containing arguments to run the next program

■ Argv[0] == pathname
○ envp = list of environment variables

■ Just set this parameter to NULL

● What’s replaced? Memory layout (stack, heap globals, loaded code,
registers), signal handlers

● What’s unchanged?

Exec(ve)
● Replaces the current process with another

execve(char *pathname, char *argv[], char *envp[]);
○ pathname = string containing path to binary file to be executed
○ argv = array of strings containing arguments to run the next program

■ Argv[0] == pathname
○ envp = list of environment variables

■ Just set this parameter to NULL

● What’s replaced? Memory layout (stack, heap globals, loaded code,
registers), signal handlers

● What’s unchanged? List of open file descriptors, kernel, PID

Wait

Wait
● Parent waits for its child to finish - will block until it receives a signal indicating

that the child finished running
○ Can also query how the child finished: was it natural, or was it from a signal?

● A process can only wait on its child (no sibling or grandchild waiting allowed!)

● wait_pid() is more expressive than wait()
○ Waitpid allows you to specify which child you’re waiting for
○ Waitpid also allows you to indicate the “type of waiting” you want

■ Block wait
■ Nonblocking wait (with no hang)

Fork, Exec, Wait
● Commonly, the three work together!

● Fork + Exec = start a completely new task as a child of current process
○ i.e. if Google Chrome was a running process, then you open a new tab

● Fork + Exec + Wait = indicates the current process should not run until
newly created task has completed

○ i.e. your shell!

Exercise 3a: The Process “Family Tree”

Here are two diagrams, where each
labeled box represents a process. P0 is the
“original process” that forks P1. Arrows
show the parent-child relationship. The
order of processes spawning from first to
last is: P0, P1, P2, P3.

Using either C code, psuedocode, or a
written description, describe how you
would fork 3 processes to achieve diagram
1 and diagram 2.

Diagram 1 Diagram 2

Exercise 3b: Choose Your Own Fork

Let’s say I have 3 independent tasks: T1,
T2, and T3.

● P1 will exec T1
● P2 will exec T2
● P3 will exec T3

All 3 tasks require I/O calls to be made.

P0 must wait until T1, T2, and T3 have
finished.

Which diagram will result in the faster
runtime? Explain your answer.

Diagram 1 Diagram 2

Exercise 4: Waiting
1. Draw a diagram of all processes

and clearly indicate all parent-child
relationships.

2. Which of the following are possible
outputs? Select all that apply:
a. B0AC0D0
b. D0CA0B0
c. D0A0B0C
d. CAD00B0
e. ABCD000

int main(void){
 int level_1 = fork();
 if (level_1 == 0) {
 int level_2a = fork();
 if (level_2a == 0) {
 printf("A");
 } else {
 wait(NULL);
 printf("B");
 }
 } else {
 int level_2b = fork();
 if (level_2b == 0) {
 printf("C");
 exit(0);
 }
 printf("D");
 }
 printf("0");
 return (0);
}

Alarm

Alarm
● Will send a SIGALRM signal after a set number of seconds unless

cancelled

Question: Which command will cancel an alarm?

a. alarm(-1);
b. alarm(0)

● SIGALRM default disposition: terminate process receiving the signal
○ But can change the default behavior using signal handlers, or block it with a mask

