Recitation 0

Welcome, everybody!

Recitation Logistics

e Turninyour worksheets! This is how we grade recitation participation
o Due every Thursday at 11:59 pm.

e No need to submit the original file, - can just upload a copy of your
answers on blank paper, especially since we make you draw out answers
sometimes

Today’s Topics

Environment Setup
Intro to GDB

Intro to Valgrind
Processes

Fork & Exec

Wait

Alarm

Environment Setup - Any Questions?

e Docker Setup

o Installation
o Container

e Git Repo Setup

o SSH Key
o Clone the repo
e VSCode

o Installation
o Extension
o Entering the project

GDB (Debugger)

What is GDB?

GNU (GNU'’s Not Unix) Project Debugger

e You can can examine the program as it is executing!
e Supports a variety of languages

o (e.g.asm, C, C++, D, Fortran, Go, Rust, etc.)
e Your best friend for this course!

“But can | use print statements?”

e Using print statement can be tedious.

e Requires the use of many to find where the bug is.

e Unable to examine the state of the program after it crashes.
e printf(“here\n”); can only take you so far.

Using GDB

Use -g or -g3 ﬂag in Makefile start Start from beginning and stop there
for compiling (the provided run Start and run program from
Makefile has this) beginning
Type in your shell: continue Run until program exits*
step Run until next line*
a) gdb pokemon_buggy
bt Shows call stack
b) <enter>, then run
) b [fname:]function Sets breakpoint at beginning of
b [fname:]linenum function or at line
print var Prints var

* = or until next breakpoint
s

Exercise 1: GDB

e Download files from website
e Run make, then debug via gdb

Valgrind

Valgrind

e Your handy debugging tool for memory mismanagement
e |t runsyour program, and looks for any memory errors during execution

e |t will only catch errors it encounters in runtime! Pay attention to code
coverage - ensure all* lines of code are run in a valgrind session

*or at the very least, the most critical lines

Valgrind Errors

e Memory leaks: memory that hasn't been freed by the time the program
exits

e Invalid read/write: accessing unallocated (or deallocated) memory

e Uninitialized bytes: Using memory that was allocated but never had any
values put into them

How to Run Valgrind

e (Canruninterminal: valgrind ./program <program arguments>

e Useful valgrind arguments (put between valgrind and . /program)

e --trace-children=<yes|no> (default: no)
e --track-origins=<yes |no> (default: no)
e --leak-check=<no|summary|yes|full> (default: summary)

o full option gives you the most info

Processes

Processes

e Process: One instance of a running (or ready to run) program

e Two ways to visualize processes

Processes

e Process: One instance of a running (or ready to run) program

e Two ways to visualize processes

T — ; :
P2 —
Hims-
1oz Cankesck SV"“‘(’\'\

Processes as separate lines of execution

Processes

e Process: One instance of a running (or ready to run) program

e [WO ways to visualize processes
Pl a3 : P
P
. -~ —
:" = Cankexk SV"“‘(’\'\

Processes as separate lines of execution Processes as separate memory environments

Processes

e Process: One instance of a running (or ready to run) program

e Two ways to visualize processes

P s 2 g ®
R —
hms—
1oz Cankesck SV"“‘(’\'\

Processes as separate lines of execution OR

this visual will be more useful later in the semester

P1 P2

Processes as separate memory environments

Exercise 2a: Processes

Which process(es) have access to file. txt? [EilaN LIRS R A M
#include <stdlib.h>

A. Parent : :
. int main() {
B. Child pid_t child = fork();
C. Both int fd = open("file.txt", O _WRONLY);
D. Neither if (fd == -1) {

exit (EXIT_FAILURE);

}
write(fd, "this is parent or child.", 25);

close(fd);
return 0;

Exercise 2b: Processes

If the parent closes the file, can the child still JESTITEEIRS <A

. . . #include <stdlib.h>
write to file.txt? Explain you answer.

int main() {
pid_t child = fork();
int fd = open("file.txt", O_WRONLY);
if (fd == -1) {

exit(EXIT_FAILURE);
}

write(fd, "this is parent or child."
close(fd);
return 0;

Fork

e “The only function that returns twice”

e Generally invoked when we want to run a different program without
terminating the current program

e C(Clones the process that called fork()

o Memory environment: stack, heap, read-only memory, registers, etc.
o File descriptor table
o Signal handlers & mask

e Child starts running the line immediately following fork()

Exec(ve)

e Replaces the current process with another

execve (char *pathname, char *argv[], char *envp[])
o pathname = string containing path to binary file to be executed
o argv = array of strings containing arguments to run the next program
m Argv[0] == pathname
o envp = list of environment variables
m Just set this parameter to NULL

e What's replaced?

e What's unchanged?

Exec(ve)

e Replaces the current process with another

execve (char *pathname, char *argv[], char *envp[])
o pathname = string containing path to binary file to be executed
o argv = array of strings containing arguments to run the next program
m Argv[0] == pathname
o envp = list of environment variables
m Just set this parameter to NULL

e What's replaced? Memory layout (stack, heap globals, loaded code,
registers), signal handlers
e What's unchanged?

Exec(ve)

e Replaces the current process with another

execve (char *pathname, char *argv[], char *envp[])
o pathname = string containing path to binary file to be executed
o argv = array of strings containing arguments to run the next program
m Argv[0] == pathname
o envp = list of environment variables
m Just set this parameter to NULL

e What's replaced? Memory layout (stack, heap globals, loaded code,

registers), signal handlers
e What's unchanged? List of open file descriptors, kernel, PID

Wait

e Parent waits for its child to finish - will block until it receives a signal indicating
that the child finished running

o Can also query how the child finished: was it natural, or was it from a signal?
e A process can only wait on its child (no sibling or grandchild waiting allowed!)

e wait_pid() is more expressive than wait()
o Waitpid allows you to specify which child you're waiting for
o Waitpid also allows you to indicate the “type of waiting” you want
m Block wait
m Nonblocking wait (with no hang)

Fork, Exec, Wait

e Commonly, the three work together!

e Fork + Exec = start a completely new task as a child of current process
o i.e.if Google Chrome was a running process, then you open a new tab

e Fork + Exec + Wait = indicates the current process should not run until

newly created task has completed
o i.e.your shell!

Exercise 3a: The Process “Family Tree”

Here are two diagrams, where each Diagram 1
labeled box represents a process. PO is the

Diagram 2

“original process” that forks P1. Arrows
show the parent-child relationship. The

|FO 8
order of processes spawning from first to i \
last is: PO, P1, P2, P3.
[7] I S

Using either C code, psuedocode, or a

written description, describe how you

would fork 3 processes to achieve diagram # prcow Shows - ?‘*3”*
1 and diagram 2. ew\d

[Po]
y
P
73

Exercise 3b: Choose Your Own Fork

Let's say | have 3 independent tasks: T1, Diagram 1

T2, and T3.

Diagram 2

e P1willexecT1
e P2willexecT2

|FO 8
e P3willexecT3 i \
All 3 tasks require I/0 calls to be made. LEI @
2

PO must wait until T1, T2, and T3 have
finished.

Which diagram will result in the faster & ACCOW Showds

runtime? Explain your answer.

s

ew\a

[Po]
y
P
73

o . o o int main(void){
Exercise 4: Waltmg int level 1 = fork();
if (level 1 9) {
int level 2a = fork();

1. Draw a diagram of all processes i lﬁ?‘;‘t’iiif): 0} {
. . . i ;
and clearly indicate all parent-child } el {
relationships. wait(NULL);
printf("B");
}
else {
2. Which of the following are possible int level 2b = fork();
outputs? Select all that apply: if (level 2b == 0) {
a. BOACODO i
b. DOCAOBO y o (e
c. DOAOBOC iy
d. CADOOBO , Pramerens
e. ABCDO000

printf("e");
return (0);

Alarm

e Will send a SIGALRM signal after a set number of seconds unless
cancelled

Question: Which command will cancel an alarm?

a. alarm(-1);
b. alarm(0)

e SIGALRM default disposition: terminate process receiving the signal
o But can change the default behavior using signal handlers, or block it with a mask

