
Recitation 1
Welcome back, everybody!

● Signals
● File Descriptors
● Redirection and Pipes

Today’s Topics

Signals

● Software interrupt - a notification sent to a process
● An example of inter-process communication

○ What is another example of inter-process communication?

● From the OS: some sort of exception has occurred
● From another process: used to coordinate activity or as notification
● Interrupts - i.e. Ctrl-C, Ctrl-Z pressed
● Examples: SIGINT (interrupt), SIGTSTP (terminal stop), SIGTERM

(graceful termination request), SIGKILL (force kill), SIGCHLD (child
terminated/stopped), …

Signals

● Signal dispositions = what they do when the signal is received.
○ Some, i.e. SIGTSTP: stops the process
○ Some, i.e. SIGCHLD: ignored by default
○ Some, i.e. SIGSEGV: segfault → core dump

● What if we don’t like the default behavior?
● Sigaction allows us to override most signals (not SIGKILL, SIGSTOP)

with i.e. SIG_IGN, SIG_DFL or self defined signal handlers.

Default dispositions + modifying that behavior

● Could ignore …
● What if we want it later?

○ critical section (pause signal for now so not malformed!)?
○ Reaping without waiting (penn-shell extra challenge)?

● Block and set signal to pending (sigprocmask)
○ How do we reset? Sigprocmask again in i.e. parent, with original mask

● Idling in pennos … sigsuspend doesn’t return until new signal
outside of the suspended set returns.

What if we don’t want a signal?

Activity: Responses to Signals
In each scenario, determine whether the signal was blocked, ignored, used default
handling, or used a handler function (non-default)

1. In penn-shredder, I hit Ctrl+Z. In response, penn-shredder stopped, and now I’m back in the
host shell.

Activity: Responses to Signals
In each scenario, determine whether the signal was blocked, ignored, used default
handling, or used a handler function (non-default)

1. In penn-shredder, I hit Ctrl+Z. In response, penn-shredder stopped, and now I’m back in the
host shell. Default Action (Ctrl-Z = SIGTSTP)

2. In penn-shell, I hit Ctrl+Z. In response, penn-shell reprompted.

Activity: Responses to Signals
In each scenario, determine whether the signal was blocked, ignored, used default
handling, or used a handler function (non-default)

1. In penn-shredder, I hit Ctrl+Z. In response, penn-shredder stopped, and now I’m back in the
host shell. Default Action (Ctrl-Z = SIGTSTP)

2. In penn-shell, I hit Ctrl+Z. In response, penn-shell reprompted. Signal Handler Function

3. The parent process takes terminal control from its child and gives it to itself. The parent
process was not stopped by SIGTTIN or SIGTTOU, and continues as normal.

Activity: Responses to Signals
In each scenario, determine whether the signal was blocked, ignored, used default
handling, or used a handler function (non-default)

1. In penn-shredder, I hit Ctrl+Z. In response, penn-shredder stopped, and now I’m back in the
host shell. Default Action

2. In penn-shell, I hit Ctrl+Z. In response, penn-shell reprompted. Signal Handler Function

3. The parent process takes terminal control from its child and gives it to itself. The parent
process was not stopped by SIGTTIN or SIGTTOU, and continues as normal. Signal Ignored

4. A process received a signal, and its signal handler called vec_push. While in the middle of
executing vec_push, it received the same signal. Once the first call to vec_push returned, the
signal handler ran vec_push again.

Activity: Responses to Signals
In each scenario, determine whether the signal was blocked, ignored, used default
handling, or used a handler function (non-default)

1. In penn-shredder, I hit Ctrl+Z. In response, penn-shredder stopped, and now I’m back in the
host shell. Default Action

2. In penn-shell, I hit Ctrl+Z. In response, penn-shell reprompted. Signal Handler Function

3. The parent process takes terminal control from its child and gives it to itself. The parent
process was not stopped by SIGTTIN or SIGTTOU, and continues as normal. Signal Ignored

4. A process received a signal, and its signal handler called vec_push. While in the middle of
executing vec_push, it received the same signal. Once the first call to vec_push returned, the
signal handler ran vec_push again. Signal Blocked, then Unblocked

File Descriptors/File Descriptor Table

● Each process has its own file descriptor table managed by the OS
● A file descriptor (type int) is an index into a processes FD table
● Children made via fork inherit an identical FD table from their

parent
○ Those files are not closed nor are they modified in any way. They are the exact

same files referred to by the parent.

● Files opened exclusively in a process after a fork do not modify the
FD table of another process, child or parent.

Process-Level File Descriptor Tables (FDT)

open(), close(), read(), write()

File Descriptor Table for Process 1

0 1 2 3

Terminal

fork()

EX: Process-Level File Descriptor Tables (FDT)

File Descriptor Table for Process 1

Terminal

fork()
File Descriptor Table for Process 2

0 1 2 3
0 1 2 3

File Descriptor Table for Process 1

Terminal

close(4);

File Descriptor Table for Process 2
0 1 2 3

0 1 2 3

File Descriptor Table for Process 1

Terminal

close(4);

File Descriptor Table for Process 2
0 1 2

0 1 2 3

System-Wide Open File Table (OFT)
● Each entry in the process-level FD Table has a pointer to an entry in

the system-wide open file table mainted by the kernel!

● As we open up more files, using open(),
we receive an FD for that file AND an
entry is made in both the process-level
FD table and the system-wide open file
table (OFT)

File Descriptor Table for Process 1

0 1 2 3

hi.txt

/dev/tty/dev/tty/dev/tty hi.txt

1

0

Read

ptr ptr ptr ptr

fork() EX 1

File Descriptor Table for Process 1

0 1 2 3

hi.txt

/dev/tty/dev/tty/dev/tty hi.txt

2

0

Read

ptr ptr ptr ptr

fork()
File Descriptor Table for Process 2

0 1 2 3

ptr ptr ptr ptr

222

Note:

In this class, the 2 main ways multiple entries from process-level FDTs
point to the same entry in the system-wide Open File Table (OFT) are

1.Fork()
2.Dup2()

File Descriptor Table for Process 1

/dev/tty/dev/tty

File Descriptor Table for Process 2

0 1

ptr ptr

22

0 1

ptr ptr

fork()

EX 2

File Descriptor Table for Process 1

/dev/tty/dev/tty

File Descriptor Table for Process 2

0 1

ptr ptr

22

0 1

ptr ptr
open(“hi.txt”, O_WRONLY); open(“hi.txt”, O_WRONLY);

File Descriptor Table for Process 1

0 1 2

hi.txt

hi.txt/dev/tty/dev/tty hi.txt

1

0

Write

ptr ptr ptr

File Descriptor Table for Process 2

0 1 2

ptr ptr ptr

122

File Descriptor Table for Process 1

0 1 2 3

hi.txt

/dev/tty/dev/tty/dev/tty hi.txt

2

0

Read

ptr ptr ptr ptr

File Descriptor Table for Process 2

0 1 2 3

ptr ptr ptr ptr

222

close(3);

EX 3

File Descriptor Table for Process 1

0 1 2

hi.txt

/dev/tty/dev/tty/dev/tty hi.txt

1

0

Read

ptr ptr ptr

File Descriptor Table for Process 2

0 1 2 3

ptr ptr ptr ptr

222

close(3);

1. Remove pointer
2. Decrement reference
count

File Descriptor Table for Process 1

0 1 2 3

hi.txt

/dev/tty/dev/tty/dev/tty hi.txt

2

0

Read

ptr ptr ptr ptr

File Descriptor Table for Process 2

0 1 2 3

ptr ptr ptr ptr

222

read(3, buf, 10);

EX 4

File Descriptor Table for Process 1

0 1 2 3

hi.txt

/dev/tty/dev/tty/dev/tty hi.txt

2

10

Read

ptr ptr ptr ptr

File Descriptor Table for Process 2

0 1 2 3

ptr ptr ptr ptr

222

read(3, buf, 10);

File Descriptor Table for Process 1

0 1 2 3

hi.txt

/dev/tty/dev/tty/dev/tty hi.txt

2

10

Read

ptr ptr ptr ptr

File Descriptor Table for Process 2

0 1 2 3

ptr ptr ptr ptr

222

read(3, buf, 10);

File Descriptor Table for Process 1

0 1 2 3

hi.txt

/dev/tty/dev/tty/dev/tty hi.txt

2

20

Read

ptr ptr ptr ptr

File Descriptor Table for Process 2

0 1 2 3

ptr ptr ptr ptr

222

read(3, buf, 10);

File Descriptor Table for Process 1

0 1 2

hi.txt

hi.txt/dev/tty/dev/tty hi.txt

1

0

Write

ptr ptr ptr

File Descriptor Table for Process 2

0 1 2

ptr ptr ptr

122

EX 5

read(2, buf, 10);
read(2, buf, 10);

File Descriptor Table for Process 1

0 1 2

hi.txt

hi.txt/dev/tty/dev/tty hi.txt

1

10

Write

ptr ptr ptr

File Descriptor Table for Process 2

0 1 2

ptr ptr ptr

122

read(2, buf, 10);
read(2, buf, 10);

10

Redirection

Dup2

● We can manipulate the File Table so that a FD Table entry is
associated with another file.

● int dup2(int oldfd, int newfd);
○ The file descriptor newfd is adjusted so that it now refers to the

same open file pointed to by oldfd.
○ (newfd is closed silently)

EX: Dup2

… 3 4 …

hi.txt bye.txt

dup2(3, 4);
dup2(int oldfd, int newfd)

EX: Dup2

… 3 4 …

hi.txt bye.txt

dup2(3, 4);

file descriptor newfd is adjusted so that it now refers to the same open file as oldfd

dup2(int oldfd, int newfd)

EX: Dup2

… 3 4 …

hi.txt

dup2(3, 4);

file descriptor newfd is adjusted so that it now refers to the same open file as oldfd

dup2(int oldfd, int newfd)

EX: Dup2

… 3 4 …

hi.txt

dup2(3, 4);

file descriptor newfd is adjusted so that it now refers to the same open file as oldfd

dup2(int oldfd, int newfd)

dup2(int oldfd, int newfd)

dup2(3, 4);

Pipes

Pipelines
What is a pipe?

- Kernel buffer with two file descriptors - one for each end
- Push from/pull from buffer from write and read end respectively

Pipelined functions: i.e. cat log | grep brains | wc -l
- What does this do? Output log → grep for lines that start with “brains” →

count number of such matching lines

Pipelines
But how does this happen?

For an N-stage pipeline:
1) Fork N children, create N-1 pipes
2) In each child i:

a) Dup2 pipes from input/output to STDIN_FILENO and STDOUT_FILENO
b) Close pipes
c) Execvp command

3) Cleanup in parent

Pipe Visualization

Pipelines Check-In
● Consider the following pipelined command:

sleep 1 | sleep 20 | sleep 100

How long does it take to finish?

Pipelines
● Consider the following pipelined command:

sleep 1 | sleep 20 | sleep 100

How long does it take to finish?
100 seconds

Why?

Pipelines Check-In

Pipelines
● Consider the following pipelined command:

sleep 1 | sleep 20 | sleep 100

How long does it take to finish?
100 seconds

Why?
Pipelined processes run in parallel

Pipelines Check-In

