Recitation 1

== \Welcome back, everybody!

Today’s Topics

e Signals
e File Descriptors
e Redirection and Pipes

Signals

Software interrupt - a notification sent to a process

An example of inter-process communication
o Whatis another example of inter-process communication?

From the OS: some sort of exception has occurred

From another process: used to coordinate activity or as notification
Interrupts - i.e. Ctrl-C, Ctrl-Z pressed

Examples: SIGINT (interrupt), SIGTSTP (terminal stop), SIGTERM
(graceful termination request), SIGKILL (force kill), SIGCHLD (child
terminated/stopped), ...

Default dispositions + modifying that behavior

e Signal dispositions = what they do when the signal is received.

o Some, i.e. SIGTSTP: stops the process
o Some, i.e. SIGCHLD: ignored by default
o Some, i.e. SIGSEGV: segfault — core dump

e What if we don't like the default behavior?
e Sigaction allows us to override most signals (not SIGKILL, SIGSTOP)
with i.e. SIG_IGN, SIG_DFL or self defined signal handlers.

What if we don’t want a signal?

e Couldignore ...

What if we want it later?

o critical section (pause signal for now so not malformed!)?
o Reaping without waiting (penn-shell extra challenge)?

e Block and set signal to pending (sigprocmask)
o How do we reset? Sigprocmask again in i.e. parent, with original mask

e |dlingin pennos ... sigsuspend doesn’t return until new signal
outside of the suspended set returns.

Activity: Responses to Signals

In each scenario, determine whether the signal was blocked, ignored, used default
handling, or used a handler function (non-default)

1. In penn-shredder, | hit Ctrl+Z. In response, penn-shredder stopped, and now I'm back in the
host shell.

Activity: Responses to Signals

In each scenario, determine whether the signal was blocked, ignored, used default
handling, or used a handler function (non-default)

1. In penn-shredder, | hit Ctrl+Z. In response, penn-shredder stopped, and now I'm back in the
host shell. Default Action (Ctrl-Z = SIGTSTP)

2. Inpenn-shell, I hit Ctrl+Z. In response, penn-shell reprompted.

Activity: Responses to Signals

In each scenario, determine whether the signal was blocked, ignored, used default
handling, or used a handler function (non-default)

1. In penn-shredder, | hit Ctrl+Z. In response, penn-shredder stopped, and now I'm back in the
host shell. Default Action (Ctrl-Z = SIGTSTP)

2. In penn-shell, | hit Ctrl+Z. In response, penn-shell reprompted. Signal Handler Function

3. The parent process takes terminal control from its child and gives it to itself. The parent
process was not stopped by SIGTTIN or SIGTTOU, and continues as normal.

Activity: Responses to Signals

In each scenario, determine whether the signal was blocked, ignored, used default
handling, or used a handler function (non-default)

1. In penn-shredder, | hit Ctrl+Z. In response, penn-shredder stopped, and now I'm back in the
host shell. Default Action

2. In penn-shell, | hit Ctrl+Z. In response, penn-shell reprompted. Signal Handler Function

3. The parent process takes terminal control from its child and gives it to itself. The parent
process was not stopped by SIGTTIN or SIGTTOU, and continues as normal. Signal Ignored

4. A process received a signal, and its signal handler called vec_push. While in the middle of
executing vec_push, it received the same signal. Once the first call to vec_push returned, the
signal handler ran vec_push again.

Activity: Responses to Signals

In each scenario, determine whether the signal was blocked, ignored, used default
handling, or used a handler function (non-default)

1. In penn-shredder, | hit Ctrl+Z. In response, penn-shredder stopped, and now I'm back in the
host shell. Default Action

2. In penn-shell, | hit Ctrl+Z. In response, penn-shell reprompted. Signal Handler Function

3. The parent process takes terminal control from its child and gives it to itself. The parent
process was not stopped by SIGTTIN or SIGTTOU, and continues as normal. Signal Ignored

4. A process received a signal, and its signal handler called vec_push. While in the middle of
executing vec_push, it received the same signal. Once the first call to vec_push returned, the
signal handler ran vec_push again. Signal Blocked, then Unblocked

File Descriptors/File Descriptor Table

Process-Level File Descriptor Tables (FDT)

e Each process has its own file descriptor table managed by the OS
e Afile descriptor (type int) is an index into a processes FD table
e Children made via fork inherit an identical FD table from their

parent
o Those files are not closed nor are they modified in any way. They are the exact
same files referred to by the parent.

e Files opened exclusively in a process after a fork do not modify the
FD table of another process, child or parent.

open(), close(), read(), write()

:int open(const char* pathname, int flags, /* mode_t perm */) |

:int close(int fd)

N\

[ssize_t read(int fd, void *buf, size t count);

[ssize_t write(int fd, void *buf, size_t count);

EX: Process-Level File Descriptor Tables (FDT)

File Descriptor Table for Process 1 fork()

0 1 2 3 -

shell-soln.c
- TR
r

Terminal

File Descriptor Table for Process 1

0

1

2

3

Terminal

>
/%2 3

fork()
File Descriptor Table for Process 2

shell-soln.c

70

close(4);

File Descriptor Table for Process 1
File Descriptor Table for Process 2

0 1 2 3

0 1 2 3

shell-soln.c

TR

Terminal

close(4);

File Descriptor Table for Process 1
File Descriptor Table for Process 2

0 1 2

0 1 2 3

shell-soln.c

TR

Terminal

System-Wide Open File Table (OFT)

e Each entryin the process-level FD Table has a pointer to an entry in
the system-wide open file table mainted by the kernel!

e As we open up more files, using open(),

Process 100

File Descriptor Table we receive an FD for that file AND an
o1 |2]3[a]s]. entry is made in both the process-level
ptr | ptr | ptr | ptr | ptr | ptr

——— /7 N\ FD table and the system-wide open file

/ / table (OFT)

mode Read mode Write mode | Write mode |
cursor 0 cursor 0 cursor 0 cursor
(offset position) (offset position) (offset position) (offset position)
reference count 1 reference count il reference count 1 reference count

File Name (path) file_a.txt File Name (path) file_a.txt File Name (path) File_b.txt File Name (path)

vnode (FileSys Info) vnode (FileSys Info)

vnode (FileSys Info) vnode (FileSys Info)

File Descriptor Table for Process 1

fork
0 1 2 3 0
<>
ptr ptr ptr ptr
mode Read mode Write mode Write mode Read
cursor 0 cursor 0 cursor 0 cursor 0
(offset position) (offset position) (offset position) (offset position)
reference count 1 reference count 1 reference count 1 reference count 1
File Name (path) /devitty File Name (path) /devitty File Name (path) /devitty File Name (path) hi.txt
vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info)

vvvvvvvvvv

hi.txt

EX1

File Descriptor Table for Process 1

File Descriptor Table for Process 2

fork
0 1 2 3 0 0 1 2 3
<>
ptr ptr ptr ptr ptr ptr ptr ptr
mode Read mode Write mode Write mode Read
cursor 0 cursor 0 cursor 0 cursor 0
(offset position) (offset position) (offset position) (offset position)
reference count 2 reference count 2 reference count 2 reference count 2
File Name (path) /devitty File Name (path) /devitty File Name (path) /devitty File Name (path) hi.txt
vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info)

hi.txt

Note:

In this class, the 2 main ways multiple entries from process-level FDTs
point to the same entry in the system-wide Open File Table (OFT) are

1.Fork()
2.Dup2()

File Descriptor Table for Process 1

File Descriptor Table for Process 2

0

ptr

ptr

0 1 fork()
ptr ptr
mode Read mode Write
cursor 0 cursor 0
(offset position) (offset position)
reference count 2 reference count 2
File Name (path) /devitty File Name (path) /devitty

vnode (FileSys Info)

vnode (FileSys Info)

T

EX 2

File Descriptor Table for Process 1

File Descriptor Table for Process 2

0

1

ptr

ptr

0 1 open(“hi.txt”, O_WRONLY);
ptr ptr
mode Read mode Write
cursor 0 cursor 0
(offset position) (offset position)
reference count 2 reference count 2
File Name (path) /devitty File Name (path) /devitty

vnode (FileSys Info)

vnode (FileSys Info)

T

open(“hi.txt”, O_WRONLY);

File Descriptor Table for Process 1

File Descriptor Table for Process 2

0 1 2 0 1 2
mode Read mode Write mode Write mode Write
cursor 0 cursor 0 cursor 0 cursor 0
(offset position) (offset position) (offset position) (offset position)
reference count 2 reference count 2 reference count 1 reference count 1
File Name (path) /devitty File Name (path) /devitty File Name (path) hi.txt File Name (path) hi.txt

vnode (FileSys Info)

vnode (FileSys Info)

vnode (FileSys Info)

vnode (FileSys Info)

l

,,,,,,,,,,

hi.txt

0 1 2 3 0 1 2 3
mode Read mode Write mode Write mode Read
cursor 0 cursor 0 cursor 0 cursor 0

(offset position) (offset position) (offset position) (offset position)

reference count 2 reference count 2 reference count 2 reference count 2

File Name (path) /devitty File Name (path) /devitty File Name (path) /devitty File Name (path) hi.txt
vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info)

,,,,,,,,,,

hi.txt

EX 3

File Descriptor Table for Process 1

close(3);

File Descriptor Table for Process 2

0 1 2 1. Remove pointer 0 1 2 3
2. Decrement reference
ptr ptr count ptr

o/

mode Read mode Write mode Write mode Read
cursor 0 cursor 0 cursor 0 cursor 0
(offset position) (offset position) (offset position) (offset position)
reference count 2 reference count 2 reference count 2 reference count 1
File Name (path) /devitty File Name (path) /devitty File Name (path) /devitty File Name (path) hi.txt
vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info)

hi.txt

File Descriptor Table for Process 1

read(3, buf, 10);

File Descriptor Table for Process 2

0 1 2 3 0 1 2 3
mode Read mode Write mode Write mode Read
cursor 0 cursor 0 cursor 0 cursor 0

(offset position) (offset position) (offset position) (offset position)

reference count 2 reference count 2 reference count 2 reference count 2

File Name (path) /devitty File Name (path) /devitty File Name (path) /devitty File Name (path) hi.txt
vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info)

,,,,,,,,,,

hi.txt

EX 4

File Descriptor Table for Process 1

read(3, buf, 10);

File Descriptor Table for Process 2

0 1 2 3 0 1 2 3
mode Read mode Write mode Write mode Read
cursor 0 cursor 0 cursor 0 cursor 10

(offset position) (offset position) (offset position) (offset position)

reference count 2 reference count 2 reference count 2 reference count 2

File Name (path) /devitty File Name (path) /devitty File Name (path) /devitty File Name (path) hi.txt
vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info)

hi.txt

File Descriptor Table for Process 1

File Descriptor Table for Process 2

read(3, buf, 10);

0 1 2 3 0 1 2 3
ptr ptr ptr ptr ptr ptr ptr ptr
mode Read mode Write mode Write mode Read
cursor 0 cursor 0 cursor 0 cursor 10
(offset position) (offset position) (offset position) (offset position)
reference count 2 reference count 2 reference count 2 reference count 2
File Name (path) /devitty File Name (path) /devitty File Name (path) /devitty File Name (path) hi.txt

vnode (FileSys Info)

vnode (FileSys Info)

vnode (FileSys Info)

vnode (FileSys Info)

hi.txt

File Descriptor Table for Process 1

File Descriptor Table for Process 2

read(3, buf, 10);

0 1 2 3 0 1 2 3
ptr ptr ptr ptr ptr ptr ptr ptr
mode Read mode Write mode Write mode Read
cursor 0 cursor 0 cursor 0 cursor 20
(offset position) (offset position) (offset position) (offset position)
reference count 2 reference count 2 reference count 2 reference count 2
File Name (path) /devitty File Name (path) /devitty File Name (path) /devitty File Name (path) hi.txt

vnode (FileSys Info)

vnode (FileSys Info)

vnode (FileSys Info)

vnode (FileSys Info)

hi.txt

File Descriptor Table for Process 1

0 1 2

read(2, buf, 10);

File Descriptor Table for Process 2

0

1 2

r ptr

ptr ptr ptr ptr pt

read(2, buf, 10);

mode Read mode Write mode Write mode Write
cursor 0 cursor 0 cursor 0 cursor 0
(offset position) (offset position) (offset position) (offset position)
reference count 2 reference count 2 reference count 1 reference count 1
File Name (path) /devitty File Name (path) /devitty File Name (path) hi.txt File Name (path) hi.txt
vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info)

vvvvvvvvvv

hi.txt

EX5

File Descriptor Table for Process 1

0 1 2

read(2, buf, 10);

File Descriptor Table for Process 2

0

1 2

r ptr

ptr ptr ptr ptr pt

read(2, buf, 10);

mode Read mode Write mode Write mode Write
cursor 0 cursor 0 cursor 10 cursor 10
(offset position) (offset position) (offset position) (offset position)
reference count 2 reference count 2 reference count 1 reference count 1
File Name (path) /devitty File Name (path) /devitty File Name (path) hi.txt File Name (path) hi.txt
vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info) vnode (FileSys Info)

,,,,,,,,,,

hi.txt

Redirection

Dup?2

e We can manipulate the File Table so that a FD Table entry is
associated with another file.
e int dup2(int oldfd, int newfd);
o The file descriptor newfd is adjusted so that it now refers to the
same open file pointed to by oldfd.
o (newfd is closed silently)

EX: Dup2

dupZ2(int oldfd, int newfd)
dup2(3, 4);

3 4

hi.txt bye.txt

EX: Dup2

dupZ2(int oldfd, int newfd)
dup2(3, 4);

3 4

ST ST

hi.txt bye.txt

file descriptor newfd is adjusted so that it now refers to the same open file as oldfd

EX: Dup2

dupZ2(int oldfd, int newfd)
dup2(3, 4);

3 4

ST

hi.txt

file descriptor newfd is adjusted so that it now refers to the same open file as oldfd

EX: Dup2

dupZ2(int oldfd, int newfd)
dup2(3, 4);

3 4

TR

hi.txt

YA

dup2(int oldfd, int newfd)

/A

dup2(3, 4);

file descriptor newfd is adjusted so that it now refers to the same open file as oldfd

Pipelines

What is a pipe?
- Kernel buffer with two file descriptors - one for each end
- Push from/pull from buffer from write and read end respectively

Pipelined functions: i.e. cat log | grep brains | wc -l
- What does this do? Output log — grep for lines that start with “brains” —
count number of such matching lines

Pipelines
But how does this happen?

For an N-stage pipeline:
1) Fork N children, create N-1 pipes

2) In each childi:

a) Dup2 pipes from input/output to STDIN_FILENO and STDOUT_FILENO
b) Close pipes
c¢) Execvp command

3) Cleanup in parent

Pipe Visualization

Process 100

File Descriptor Table
0 1 2 3 4

in | out [err | rpipe | wpipe

int pipefd[2];
int pipe(pipefd);

AN

v
mode mode Read mode Write mode |
cursor cursor 0 cursor 0 cursor
reference count ... reference count 1 reference count 1 reference count
File Name File Name pipe File Name pipe File Name

buffer

Pipelines Check-In

e Consider the following pipelined command:
sleep 1 | sleep 20 | sleep 100

How long does it take to finish?

Pipelines Check-In

e Consider the following pipelined command:
sleep 1 | sleep 20 | sleep 100

How long does it take to finish?
100 seconds

Why?

Pipelines Check-In

e Consider the following pipelined command:
sleep 1 | sleep 20 | sleep 100

How long does it take to finish?
100 seconds

Why?
Pipelined processes run in parallel

