
Recitation 3
Welcome, everybody!

Topics Covered
● FAT File System
● FAT vs Inode
● Hexdump Guide (PennOS preview!)

FAT File System

How can I edit a file on a FAT based File System?
1. Does the file exist? Am I allowed to access it? Where can I find the file?

2. Where is the nth byte of the file? That’s where I want to begin editing.

3. Access the file via some block math.

Root Directory FAT Table Data Region

1. 2. 3.

File Allocation Table
FAT system splits to two parts:

FAT region & Data Region

Data Region has File Contents & Directory Contents

The Root Directory starts at a known spot within the Data Region

Root directory stores info about other files.

Does the file exist? Can I access it? Where is the file?

Root Directory Entry (PennFAT)1. Search by name

2. Verify permissions

3. Return firstBlock

Each entry is 2 bytes (0xABCD)

[0] # of FAT blocks (MSB) & Block Size (LSB)

[1] ROOT DIRECTORY. First data block is the root dir.

(FAT[2]......FAT[MSB]) are file (or extended root directory) block numbers.

Navigating the FAT

FAT[current] = next

Finding the block address
e.g. Block Size = 4 KB; # of Blocks in FAT = 32

File: “Foo” has firstBlock at 2. I want to edit the 9,021 B

Skip FAT Region 1-indexing

This will be VERY helpful for PennFAT

“Foo’s Block” = ceil (9,021 B / 4 KB) = 3rd

Block Address = (Blocks in Fat) (Block Size) + (“Foo’s Block” - 1) (Block Size)

Block Offset = 9,021 % Block Size = 829

Desired Byte Location = Block Address + Block Offset

 = 164,669 “Bytes” from the start of the file system

INodes

Why use I-Nodes?
Recap: What is an Inode?

- An Inode (Index Node) is a structure that stores metadata about a file (like permissions, size, and owner) and the locations of the
file's data blocks. Instead of requiring all blocks to be continuous, the inode points to wherever the blocks are scattered on the disk.

Feature Contiguous Allocation Inode-Based Allocation

Data Block
Layout

All blocks for a file are stored sequentially in one
continuous chunk on the disk.

Data blocks for a file can be scattered anywhere on the disk. The
inode links them together.

Sequential Read
Speed

Very Fast. Minimal disk head movement is required
since all data is physically next to each other.

Slower. The disk head may need to jump to different locations to
read all the blocks.

File Growth Hard. If a file grows, a larger contiguous block of free
space must be found, and the file must be copied over.

Easy. New blocks can be allocated from anywhere on the disk
and simply added to the inode's list of pointers.

Metadata Storage Typically stored in the directory entry. Stored in the inode itself, separate from the directory entry.

Key Takeaways
1. Contiguous Allocation: Think performance and simplicity for files that don't change size. It excels at fast sequential reads but

struggles with file growth and disk fragmentation.
2. Inode-Based Allocation: Think flexibility and efficiency for dynamic files. It handles file size changes and fragmentation gracefully at

the cost of some performance overhead for sequential reads.

Comparison Question Pt 1)
Question: Which file allocation scheme is best for small, fixed-size files that are
frequently read but sometimes written to: contiguous or Inodes? Why?

Answer:
- Contiguous because the size of the files stays the same, so we do not need to

reallocate. In this case, we can specifically use caching to take advantage of spatial
locality since we will never have to move existing files around given that they have
constant size.

- Inodes would introduce unnecessary overhead for these specific use cases.

Comparison Question Pt. 2)
Question: If we need to store many very large files that stretch several blocks and are
frequently modified including file extending/shortening and rearrangement, which
allocation scheme is better: contiguous or Inodes? Why?

Answer:
- Inode-based allocation is better here because it is better at dealing with dynamic file

sizes and fragmentation. The file's data blocks can be scattered across the disk, which
allows efficient modification, extension, and truncation without needing to move the entire
file.

- Contiguous allocation would not work here because frequent length modifications would
require reallocation to find a large enough block of free space.

Hexdump Example

What is a HexDump?
- A hexdump is a representation

of binary data in hexadecimal
format.

- The hd command shows the
raw contents of a file or disk,
byte by byte. We will use this a
lot in Penn OS for the file
system to check our progress
and debug

- A hexdump has three parts: the
offset, the hex data, and ASCII
representation.

What does a Hexdump look like?

We will dive into the specifics next, but for
some context, this is a dump of a file system
that has 1 FAT block, a block size of 256B, and
1 file (f1) that just contains the word "hello".

Offset Hex Data ASCI Rep.

F
A
T

D
A
T
A

Little Endian Explained
- Little-endian is a byte-ordering scheme where the least significant byte

comes first. This is a common point of confusion we see when students
read hexdumps.

- In the minfs FAT, 00 01 is read as 0x0100. The computer interprets the
bytes in reverse order to form the full value. Which in this case is # of
blocks in Fat, Block Size

- When we see the first block of f1 is 02 00, this means the first block is #2.

Diving into our Hexdump
- Let's look at the minfs hexdump which

we use in PennOS.

- When we run mkfs minfs 1 0, it creates
an empty file system that has 1 block
in FAT and a block size of 256B.

- Our first block is the FAT and our other
127 (256/2 - 1) blocks are reserved for
Data

- The first two bytes of the FAT, FAT[0],
are important because they give us
the block size and # of blocks, which is
essential for navigating our file system.

Minfs Hexdump

- FAT[0] = 00 01, which represents 0x0100 (due to
little-endian byte order). This signifies a 1-block FAT and a
block size of 256 bytes.

- FAT[1] = ff ff, which represents the File System ending at
block 1.
 - Note: The File System always starts at block 1

Hexdump with a File Added
- Let's follow the file f1 through our hexdump. When we

add f1, the file system updates the FAT and the
Directory Entry.

File System with 1 File Added

F
A
T
R
O
O
T
F
1

- The directory entry is located at offset 00000100, which
is the start of the root directory.

- 66 31 00...: This is the filename, "f1", padded with
null bytes.

- 00 01: These bytes represent the size of the file,
0x0100, which is 1 block.

- 02 00: These bytes indicate the first block address of
the file, 0x0002 which is block #2

- 00 01 06 b6 1e 83 60 00 00 00 00 00 00 00 00 00:
This is the remaining metadata, including a
timestamp and permissions.

- The FAT is updated to link the file's data blocks. Since
f1's first block is #2, we see that the FAT entry for
block #2 is ff ff, which means end of file.

- Finally, at offset 00000200 (block #1), we find the actual
file data.

- 68 65 6c 6c 6f 00: These are the ASCII codes for
"hello" followed by a null terminator. The ASCII
representation on the far right confirms this.

Root Directory Entry (PennFAT)

Hexdump Navigation
On Gradescope

1. What is the index of f1’s second block?

5

Hexdump Navigation
On Gradescope

2. What is the block size of the hexdump?

256

Hexdump Navigation
On Gradescope

3. What is the 404th byte of f2?

Block Size = 256 B, # Blocks in FAT = 1

Desired Block = ceil(404/256) = 2nd ⇒ Block 4

Block Offset = 404 % 256 = 148 B

Byte Location = (Blocks in Fat) (Block Size) + (Desired Block - 1) (Block Size) + Block Offset

= (1)(256)+(4-1)(256) + 148

0x00000494 ⇒ 23

Hexdump Navigation

3. What is the 404th byte of f2?

0x494 4x04x1 4x24x3 4x5 4x4

