Recitation 3

Welcome, everybody!

Topics Covered

e FAT File System
e FATvsInode
e Hexdump Guide (PennOS preview!)

FAT File System

How can | edit a file on a FAT based File System?

1. Does the file exist? Am | allowed to access it? Where can | find the file?

2. Where is the n™" byte of the file? That's where | want to begin editing.

3. Access the file via some block math.

Root Directory

FAT Table

Data Region

File Allocation Table

FAT system splits to two parts:

FAT region & Data Region

Data Region has File Contents & Directory Contents

FAT region Data region
[. V[A
FAT |FAT |FAT |FAT |Root Root | EMP
Dir Dir TY
BO BlL B2 B3 B4 B5 B6 B7 B8

B9

B10

B11 ,

Does the file exist? Can | access it? Where is the file?

The Root Directory starts at a known spot within the Data Region
Root directory stores info about other files.

1. Search by name Root Directory Entry (PennFAT)

2. Verify permissions shiar” famg 2213
uint32_t size;

3. Return firstBlock uintl6_t firstBlock;

uint8_t type;

uint8_t perm;

time_t mtime;

// The remaining 16 bytes are reserved

Index Link

° °
N aVI g atl n g th e FAT 0 0x2004 <— MSB=0x20 (32 blocks in FAT), LSB=0x04 (4K-byte block size)
1 OxFFFF <— Block 1 is the only block in the root directory file
2 5 <— File A starts with Block 2 followed by Block 5
3 4 <— File B starts with Block 3 followed by Block 4
FAT[current] = next 4 OXFFFF <— last block of File B
5 6 <— File A continues to Block 6
6 OxFFFF <— last block of File A

Each entry is 2 bytes (OXABCD)

[0] # of FAT blocks (MSB) & Block Size (LSB)

[1] ROOT DIRECTORY. First data block is the root dir.

(FAT[2]......FAT[MSB]) are file (or extended root directory) block numbers.

0 BITMAP/SPECIAL
1 END
2 6
3 9
4 END
5 EMPTY / UNUSED
6 3
7 END
. . . 8 END
File: "Foo” has firstBlock at 2. | want to edit the 9,021 B () E
10 8
11 END

Finding the block address

e.g. Block Size = 4 KB; # of Blocks in FAT = 32

“Foo’s Block” = ceil (9,021 B/ 4 KB) = 3"
Block Address = (Blocks in Fat) (Block Size) + (“Foo’s Block” - 1) (Block Size)
Skip FAT Region 1-indexing

Block Offset = 9,021 % Block Size = 829
Desired Byte Location = Block Address + Block Offset

= 164,669 “Bytes” from the start of the file system This will be VERY helpful for PennFAT
s

Why use I-Nodes?

Recap: What is an Inode?
- AnlInode (Index Node) is a structure that stores metadata about a file (like permissions, size, and owner) and the locations of the
file's data blocks. Instead of requiring all blocks to be continuous, the inode points to wherever the blocks are scattered on the disk.

Feature Contiguous Allocation Inode-Based Allocation
Data Block All blocks for a file are stored sequentially in one Data blocks for a file can be scattered anywhere on the disk. The
Layout continuous chunk on the disk. inode links them together.
Sequential Read Very Fast. Minimal disk head movement is required Slower. The disk head may need to jump to different locations to
Speed since all data is physically next to each other. read all the blocks.
File Growth Hard. If a file grows, a larger contiguous block of free Easy. New blocks can be allocated from anywhere on the disk

space must be found, and the file must be copied over. and simply added to the inode's list of pointers.

Metadata Storage | Typically stored in the directory entry. Stored in the inode itself, separate from the directory entry.

Key Takeaways
1. Contiguous Allocation: Think performance and simplicity for files that don't change size. It excels at fast sequential reads but
struggles with file growth and disk fragmentation.
2. Inode-Based Allocation: Think flexibility and efficiency for dynamic files. It handles file size changes and fragmentation gracefully at
the cost of some performance overhead for sequential reads.

Comparison Question Pt 1)

Question: Which file allocation scheme is best for small, fixed-size files that are
frequently read but sometimes written to: contiguous or Inodes? Why?

Answer:

- Contiguous because the size of the files stays the same, so we do not need to
reallocate. In this case, we can specifically use caching to take advantage of spatial
locality since we will never have to move existing files around given that they have
constant size.

- Inodes would introduce unnecessary overhead for these specific use cases.

Comparison Question Pt. 2)

Question: If we need to store many very large files that stretch several blocks and are
frequently modified including file extending/shortening and rearrangement, which
allocation scheme is better: contiguous or Inodes? Why?

Answer:

- Inode-based allocation is better here because it is better at dealing with dynamic file
sizes and fragmentation. The file's data blocks can be scattered across the disk, which
allows efficient modification, extension, and truncation without needing to move the entire
file.

- Contiguous allocation would not work here because frequent length modifications would
require reallocation to find a large enough block of free space.

Hexdump Example

What is a HexDump?

What does a Hexdump look like?
- A hexdump is a representation

: : : vagrant@cis548Dev:~$ hd minfs
of bmary data in hexadecimal F 00000000 00 01 ff ff ff ff 00 00 00 00 00 00 00 00 00 00 |................ |
format. A | 20000010 00 00 00 00 00 00 00 0O 0O 0O 0O 00 00 00 00 00 |................ |
T *
- The hd command shows the 00000100 66 31 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |fl.............. |

: . 00000110 00 00 00 00 00 @0 @0 00 00 00 00 00 00 00 00 00 |................ |
raw contents of a file or disk, 00000120 00 01 00 00 62 @0 @1 06 b6 le 83 60 00 00 00 00 |........... o]

byte by byte. We will use this a 00000130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................ |
. . *
lot in Penn OS for the file 00000200 68 65 6¢ 6¢ 6 80 56 ed b8 e7 6d 3d c8 a6 cd 5 |hello........... |
system to check our progress 00000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................ |
*
and debug 00008000

- Ahexdump has three parts: the
offset, the hex data, and ASCII
representation. We will dive into the specifics next, but for
some context, this is a dump of a file system
that has 1 FAT block, a block size of 256B, and
1 file (f1) that just contains the word "hello".

Little Endian Explained

- Little-endian is a byte-ordering scheme where the least significant byte
comes first. This is a common point of confusion we see when students

read hexdumps.

- In the minfs FAT, 00 01 is read as 0x0100. The computer interprets the
bytes in reverse order to form the full value. Which in this case is # of

blocks in Fat, Block Size
- When we see the first block of f1 is 02 00, this means the first block is #2.

Diving into our Hexdump
Minfs Hexdump

- Let's look at the minfs hexdump which
vagrant@cis548Dev:~$ pennfat

we use in PennOS. pennfat# mkfs minfs 1 @
vagrant@cis548Dev:~$ 1s -1 minfs maxfs
- When we run mkfs minfs 1 0. it creates -rw-r--r-- 1 vagrant vagrant 268558336 Apr 23 19:21 maxfs
. ! vagrant@cis548Dev:~$ hd minfs
an empty file system that has 1 block 00000000 00 01 ff ff 00 00 00 00 00 00 00 00 00 00 00 00 |................
: : 00000010 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00 00 |................
in FAT and a block size of 256B. N
. . 00008000
- Our first block is the FAT and our other vagrant@cis548Dev:~$ cp minfs minfs.1
127 (256/2 - 1) blocks are reserved for
Data ,
- FAT[O] = 00 01, which represents 0x0100 (due to
_ The first two bytes of the FAT, FAT[O] little-endian byte order). This signifies a 1-block FAT and a
. " ! block size of 256 bytes.
are important because they give us
the block size and # of blocks, which is - FAT[1] = ff ff, which represents the File System ending at
block 1.

ntial for navigatin r fil tem.
essentialfo gating ou € syste - Note: The File System always starts at block 1

Hexdump with a File Added

- Let's follow the file f1 through our hexdump. When we File System With 1 File Added

add f1, the file system updates the FAT and the

Directory Entry. vagrant@cis548Dev:~$ pennfat

pennfat# mount minfs

- The FAT is updated to link the file's data blocks. Since pennfat# touch f1
f1's first block is #2, we see that the FAT entry for pennfat# cat -a f1
block #2 is ff ff, which means end of file. hello
pennfat# 1s
- Thedirectory entry is located at offset 00000100, which 2 -rw- 6 Apr 23 19:23:34 2021 f1
is the start of the root directory. pennfat# cp f1 -h demo2copy
- 66 31 00...: This is the filename, "f1", padded with pennfat#
null bytes. vagrant@cis548Dev:~$ cmp demo2 demo2copy
- 0001: These bytes represent the size of the file, vagrant@ciss4sbev:~$ hd minfs
0x0100. which is 1 block. F |ecooee0e 00 o1 ff ff 00 00 00 00 00 00 00 00 00 00 |................ |
i : These bytes indicate the first block address of A |00000010 00 00 00 00 00 0O 00 00 00 00 00 00 00 00 00 00 |................ |
the file, 0x0002 which is block #2 T |~
000106 b6 1e 83 60 00 00 00 00 00 00 00 00 00 R |leecee1e0 [66 31 00 @e]ee 00 o0 @0 00 00 00 00 @0 @0 00 00 |fl.............. |
This is the remainine metadata. including a O |[peoo0110 00 00 00 00 00 00 00 60 00 00 00 00 00 00 00 00 |................ |
i : d g.) ' & o 00000120 |00 01 00 00| 02 00 @1 06 b6 le 83 60 00 00 00 00| |........... “iaasl
Imestamp and permissions. = 00000130 00 00 00 00 00 0O 0O 00 90 00 00 00 00 00 90 00 |................ |
*
00000200 68 65 6c 6c 6f @@ 56 ed b8 e7 6d 3d c8 a6 cd 5 |hello........... [
- Finally, at offset 00000200 (block #1), we find the actual gaeeena 00 00 00 00 90 00 PO G0 P0 00 0O 00 00 00 00 00 |................ |
- 68 65 6¢ 6¢ 6f 00: These are the ASCII codes for vagrant@cis548Dev:~$ cp minfs minfs.2

"hello" followed by a null terminator. The ASCII
representation on the far right confirms this.

On Gradescope

1. What is the index of f1's second block?

5

00000000
00000010
*

00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170

*
00000200
00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000280
00000290
00000220
000002b0
000002c0
000002d0
000002e0
00000210
00000300
00000310
00000320
00000330
00000340
00000350
00000360
00000370
00000380
00000390
00000320
000003b0
0000030
000003d0
000003e0
00000310
00000400
00000410
00000420
00000430
00000440
00000450
00000460
00000470
00000480
00000490
00000420
000004b0
000004c0
000004d0
0000040
0000040
00000500
00000510
00000520
00000530
00000540
00000550
00000560
00000570
00000580
00000590
00000520
000005b0
000005c0
000005d0
00000520
00000570
00000600

*
00008000

On Gradescope

2. What is the block size of the hexdump?

256

00000000
00000010
*

00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170

*
00000200
00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000280
00000290
00000220
000002b0
000002c0
000002d0
000002e0
00000210
00000300
00000310
00000320
00000330
00000340
00000350
00000360
00000370
00000380
00000390
00000320
000003b0
0000030
000003d0
000003e0
00000310
00000400
00000410
00000420
00000430
00000440
00000450
00000460
00000470
00000480
00000490
00000420
000004b0
000004c0
000004d0
0000040
0000040
00000500
00000510
00000520
00000530
00000540
00000550
00000560
00000570
00000580
00000590
00000520
000005b0
000005c0
000005d0
00000520
00000570
00000600

*
00008000

On Gradescope
00000010
|
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170

*
00000200
00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000280

3. What is the 404%™ byte of f2? -

000002c0
000002d0
000002e0
00000210
00000300
00000310

Block Size = 256 B, # Blocks in FAT =1 A=

00000350
00000360
00000370
00000380

Desired Block = ceil(404/256) = 2" = Block 4 -

000003c0

000003d0

00000320

0000030

— 0 — 45 00000400
O C S e —_ o —_ ;| ee00es10
7| eooees20

00000430

00000440

00000450

00000460

00000470

Byte Location = (Blocks in Fat) (Block Size) + (Desired Block - 1) (Block Size) + Block Offset 00006496

00000420
000004b0

= (1)(256)+(4-1)(256) + 148 S | ooasodad

0x00000494 = 23 e

00000560

00000570

00000580

00000590

00000520 "e9. T i
000005b0 «.a~BL.4c..w...f
000005c0 .B..QIzkB.
000005d0 «.P.
00000520

00000570

00000600

*
00008000

3. What is the 404" byte of 2?

0x494

00000400
00000410
00000420
00000430
00000440
00000450
00000460
00000470
00000480
00000490
00000420
000004b0
000004c0
000004d0
000004e0
00000410
00000500

4x1

4x0

4x2

4x5

4x4

p.$.uMn: |
e eaa2UjV

[m.m?..1lr=-.7..U<|
| .4..X%sd...e..}.|

