Scheduling &

Threads

CIS 22480/5280 Fall 2025

Overview

Threads Scheduling
Background Background
pthreads FCFS

Concurrency Algorithms

Processes vs. Threads

Threads are sequential execution streams
within a process
Processes have:

o Address space

o 0Sresources (file descriptors)
Threads have unique:

o Stack

o Stack Pointer

o Program Counter

o Registers
Threads share:

o Address spaces

o Heap

o Globals

Why Threads?

Summary: lower overhead

Smaller memory footprint than
subprocesses

Faster to create and destroy

Can share memory with other threads
Faster context switching

Simpler synchronization primitives
available

Why Processes?

odulo@ubuntu32: ~
connection to org.freedesktop.compiz failed --> skipping compiz related tasks

Portability (Language Support): Just] e e
or.ServiceUnknown: The name org.freedesktop.compiz was n4t provided by any .se

call fork()

Lack of shared memory means it's

harder to run into concurrent

modification issues

One process crashing doesn't bring the

others down so easily

.05 /sbin/init
/bin/bash fusr/local/sbi
sleep 30
Jusr/local/maldetect/ino
Jusr/bin/python /fusr/lib
gnome-terminal
gnome-terminal
bash
gnome-pty-helper
gnome-terminal

nunmnununununmnunnounmn
[ololoNooNoNoNoNoNo)
[cllclcoloNoNoNoNoNoNol

[clloloNoNoNoNoNoRoNo)
WONOWOW®ONRFEOOWR
oo oNoNoNoNoNoNoNol

bash

htop
Jusr/bin/perl /usr
Jusr/bin/perl /
Jusr/bin/perl /
Jusr/bin/perl /
Jusr/lib/gnome-online-ac
Jusr/lib/gnome-online
Jusr/lib/telepathy/missi

F10

(%2}

OO0 WNO
[cllolcloNoNoNoNoNol
QOO NNNNOO
WhbuoumumomeEN
[clloloNoNoNoNo ool

pthread_create() vs fork()

Stackparent

1

Shared Libraries

t

pthread_create()

Stack . o

Stackarent

Stack 4

|
1

1

Shared Libraries

Shared Libraries

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

1

1

fork()

Stack ,, ene

Stack.q

}

!

1

Shared Libraries

Shared Libraries

Heap (malloc/free)

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Read-Only Segments
.text, .rodata

1

1

Heap (malloc/free)

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Read-Only Segments
.text, .rodata

Pthreads

Overview pthread_create() pthread_join()

e POSIX API for dealing with e Creates a new thread and e (Calling thread waits for a

threads runs a given start function specified thread to terminate
e #include <pthread.h> e Returns O on success, error Joins execution streams
num on error together

[int pthread create(

pthread_t* thread,

const pthread_attr_t* attr,
void* (*start)(void*),
void* arg);)

.

[int pthread join(pthread t thread, void** retval);]

Concurrency Intro

Doing multiple tasks in the same time
window
Different from parallelism (see lecture)
o Parallelism can help us achieve
concurrency well
Could require working together
o May need synchronization
(upcoming)
o Mutexes, semaphores, etc.

Scheduling

In operating systems, scheduling
assigns tasks to CPUs
0S-specific policies/algorithms decide
which tasks to schedule next
o Each have different
strengths/weaknesses
Linux has used a few schedulers
o Completely Fair Scheduler
o Earliest Eligible Virtual Deadline
First (latest)

Scheduling (cont.)

e We consider tasks to be threads
o To Linux, threads are just a
special process
e We care about
o Fairness
Wait Time
Latency
Overhead
Throughput
In real OSes, priorities

First Come First Serve (FCFS)

Schedule whichever job is ready first,
and run it to completion/blocking
Queue for ready tasks
o Add task when created or
unblocked
Drawbacks:
o Not sointeractive
o May be very unfair
m Long CPU-bound task
o No priority

Shortest Job First (SJF)

The next job is the shortest one in our
current pool
Queue for ready tasks
Disadvantages:
o Hard to estimate true job length
o We may starve longer tasks

Round Robin (RR)

Each job gets to run for at most a time
quantum, then the next job in the
ready queue is scheduled
Preemptive: will stop a running process
Disadvantages:

May be unfair to tasks that yield

the CPU

No priorities

Context switching

8§ 910

X323

14

151617

18 19

20 21 22

23 24 25 26 27

28 2!

Priority Round Robin (PRR)

Round robin but tasks have priority

now

Runs lower priority tasks if the higher

priority queues are empty

In PennOS, you're asked to implement a

PRR variant with 3 priority levels

o We can schedule lower priority

jobs even if there are higher
priority jobs
We wait until the time quantum is
complete before checking the
thread status again

Multi-Level Feedback (MLF)

Priority levels each have queues and
associated time quanta

Threads enter at highest priority level
If a thread voluntarily gives up CPU, it
gets moved to the end of its queue

If it's pre-empted by the scheduler
(forced to give up CPU), it's moved to
lower-level queue

Higher queues must be empty for any
given queue to get scheduled

CFS

Completely Fair Scheduler

Another approach to fairness

Track cumulative CPU usage (vruntime)
for each task and try to even it out
Priorities can be handled by weighting
runtime adjustments differently
Minimum time quantum is set to avoid
excessive context switching

Manage state with Red-black tree

New tasks start with the minimum
vruntime in the system

0.00, 0.00, 0.00; up 0+00:13:17

c . : 16 sleeping, 1 on CPU
Feature Of Llnux SYStems to adJUSt ! 0.0% user, 0.0x nice, 0.0z system, 0.0z interrupt,

process importance 29M Act, 6028K Wired, 8336K Exec, 14M File, 184M Free

Used by the scheduler in priority ERNAME PRI NICE SIZE RES STATE WCPU

17M 1800K CPU

OK 2912K atath
22M 6128K pause
48M 3912K kqueue
48M 3856K kqueue
48M 3820K kqueue
59M 3736K wait
23M 1876K kqueue
13M 1740K wait
13M 1352K ttyraw
13M 1352K ttyraw
13M 1352K ttyraw
11M 1320K nanoslp
13M 1316K wait
15M 1104K kqueue
11M 1072K select
13M 1020K kqueue

.00~
.00x
.00~
.00%
.00
.00%
.00~
.00x
.00x
.00%
.00x
.00%
.00x
.00
.00x
.00~
.00x

calculations

The “nicer” a process is, the higherit's
nice value, and the lower its priority
Can be adjusted by users with the
“nice” command

lcliclololollololololollololololololol
leliclclolollolollolollolololololololol
leliclololoflololooololoololololol
lellclolofloflofoflofoflofofoofofofolol

EEVDF (Not Tested)

Earliest Eligible Virtual Deadline First

Current scheduler for Linux
Similar goal to CFS, but aims to also
consider latency
Tasks with shorter time slices are
prioritized in a virtual deadline
calculation

o Often latency-sensitive tasks
Task with earliest virtual deadline is
selected

Recitation

Check-In

Must submit by 7:00pm on Gradescope for credit.

#define NUM_PROCESSES N
#define LOOP_NUM M

Thread Execution

void loop_incr() {
for (int i = @; i < LOOP_NUM; i++) {

sum_total++;
+

printf("Process ID: %d with sum total of %d.\n", getpid(), sum_total);
+

int main(int argc, charkx argv) {

pid_t pids[NUM_PROCESSES]; // arra

/ cr to run Loop_incr() What is the maximum

for (int i = @; i < NUM_PROCESSES; i++) {
et S value of sum_total after

loop_incr();

T ey main executes?

~all child pr SS to finist

for (int i = @; i < NUM_PROCESSES; i++) {
waitpid(pids[i], NULL, 0);
¥

printf("The ultimate sum total is %d\n", sum_total);
return EXIT_SUCCESS;

Algorithm Selection

You're developing a Linux distribution with a
graphical user interface packaged in it and
recurring long-running background jobs on a
single-core CPU. Rank the following
scheduling algorithms from most to least
supportive of the interactivity requirements
of the system.

1. FCFS
. RR
3. CFS

Scheduling

Assume Job A (length 3) arrives at time 0, Job B (length 2)
arrives after A but also at time 0 (before scheduling), and Job C
(length 2) arrives some time strictly between time 1and 2.

Task lengths are multiples of 1time quantum, and 1 unit of time
is a time quantum. Assume switching has no overhead.

For round robin, assume a process is immediately added to the
end of the queue once it completes its time quantum.

Which task is scheduled at time 5 under each of the following
policies:

1. First Come First Serve

2. Shortest Job First

3. Classic Round Robin

!

&
S
Q
'
o
>,
i
o
(aV)
St
O
<
>
o)
-
9S
=
Q
-

