
Scheduling & 
Threads
CIS 4480/5480 Fall 2025



Overview

Threads

Background

pthreads

Concurrency

Scheduling

Background

FCFS

Algorithms



Processes vs. Threads

● Threads are sequential execution streams 
within a process

● Processes have:
○ Address space
○ OS resources (file descriptors)

● Threads have unique:
○ Stack
○ Stack Pointer
○ Program Counter
○ Registers

● Threads share:
○ Address spaces
○ Heap
○ Globals



Why Threads?

● Summary: lower overhead
● Smaller memory footprint than 

subprocesses
● Faster to create and destroy
● Can share memory with other threads
● Faster context switching
● Simpler synchronization primitives 

available



Why Processes?

● Portability (Language Support): Just 
call fork()

● Lack of shared memory means it’s 
harder to run into concurrent 
modification issues

● One process crashing doesn’t bring the 
others down so easily



pthread_create() vs fork()



Pthreads
Overview

● POSIX API for dealing with 
threads

● #include <pthread.h>

pthread_create()

● Creates a new thread and 
runs a given start function

● Returns 0 on success, error 
num on error

pthread_join()

● Calling thread waits for a 
specified thread to terminate

● Joins execution streams 
together



Concurrency Intro

● Doing multiple tasks in the same time 
window

● Different from parallelism (see lecture)
○ Parallelism can help us achieve 

concurrency well
● Could require working together

○ May need synchronization 
(upcoming)

○ Mutexes, semaphores, etc.



Scheduling

● In operating systems, scheduling 
assigns tasks to CPUs

● OS-specific policies/algorithms decide 
which tasks to schedule next
○ Each have different 

strengths/weaknesses
● Linux has used a few schedulers

○ Completely Fair Scheduler
○ Earliest Eligible Virtual Deadline 

First (latest)



Scheduling (cont.)

● We consider tasks to be threads
○ To Linux, threads are just a 

special process
● We care about

○ Fairness
○ Wait Time
○ Latency
○ Overhead
○ Throughput
○ In real OSes, priorities



First Come First Serve (FCFS)

● Schedule whichever job is ready first, 
and run it to completion/blocking

● Queue for ready tasks
○ Add task when created or 

unblocked
● Drawbacks:

○ Not so interactive
○ May be very unfair

■ Long CPU-bound task
○ No priority



Shortest Job First (SJF)

● The next job is the shortest one in our 
current pool

● Queue for ready tasks
● Disadvantages:

○ Hard to estimate true job length
○ We may starve longer tasks



Round Robin (RR)

● Each job gets to run for at most a time 
quantum, then the next job in the 
ready queue is scheduled

● Preemptive: will stop a running process
● Disadvantages:

○ May be unfair to tasks that yield 
the CPU

○ No priorities
○ Context switching



Priority Round Robin (PRR)

● Round robin but tasks have priority 
now

● Runs lower priority tasks if the higher 
priority queues are empty

● In PennOS, you’re asked to implement a 
PRR variant with 3 priority levels
○ We can schedule lower priority 

jobs even if there are higher 
priority jobs

○ We wait until the time quantum is 
complete before checking the 
thread status again



Multi-Level Feedback (MLF)

● Priority levels each have queues and 
associated time quanta

● Threads enter at highest priority level
● If a thread voluntarily gives up CPU, it 

gets moved to the end of its queue
● If it’s pre-empted by the scheduler 

(forced to give up CPU), it’s moved to 
lower-level queue

● Higher queues must be empty for any 
given queue to get scheduled



CFS
Completely Fair Scheduler

● Another approach to fairness
● Track cumulative CPU usage (vruntime) 

for each task and try to even it out
● Priorities can be handled by weighting 

runtime adjustments differently
● Minimum time quantum is set to avoid 

excessive context switching
● Manage state with Red-black tree
● New tasks start with the minimum 

vruntime in the system



Nice

● Feature of Linux systems to adjust 
process importance

● Used by the scheduler in priority 
calculations

● The “nicer” a process is, the higher it’s 
nice value, and the lower its priority

● Can be adjusted by users with the 
“nice” command



EEVDF (Not Tested)
Earliest Eligible Virtual Deadline First

● Current scheduler for Linux
● Similar goal to CFS, but aims to also 

consider latency
● Tasks with shorter time slices are 

prioritized in a virtual deadline 
calculation
○ Often latency-sensitive tasks

● Task with earliest virtual deadline is 
selected



Recitation 
Check-In

Must submit by 7:00pm on Gradescope for credit.



Thread Execution

What is the maximum 
value of sum_total after 

main executes?



Algorithm Selection

You’re developing a Linux distribution with a 
graphical user interface packaged in it and 
recurring long-running background jobs on a 
single-core CPU. Rank the following 
scheduling algorithms from most to least 
supportive of the interactivity requirements 
of the system.

1. FCFS
2. RR
3. CFS



Scheduling

Assume Job A (length 3) arrives at time 0, Job B (length 2) 
arrives after A but also at time 0 (before scheduling), and Job C 
(length 2) arrives some time strictly between time 1 and 2.

Task lengths are multiples of 1 time quantum, and 1 unit of time 
is a time quantum. Assume switching has no overhead.
For round robin, assume a process is immediately added to the 
end of the queue once it completes its time quantum.

Which task is scheduled at time 5 under each of the following 
policies: 

1. First Come First Serve
2. Shortest Job First
3. Classic Round Robin



Let’s Have A Great Midterm!


