<

Synchronization
and Spthreads

CIS 4480/5580 Recitation 6
October 29, 2025

»

Try out Problem 1First!

We'll go over it together in a bit!

Spthreads

Threads

- Single sequential execution path in a process
- Shares an address space and some resources
with other threads grouped under the same
process
- This makes them more lightweight compal
to forking a new process
- The OS kernel uses threads as schedulable unit
- In POSIX systems, you can use the pthread libr:
to manage threads

(i

What are Spthreads?

Modified version of pthreads that where
we can explicitly pause and resume
execution

Synchronization

Synchronization is the coordinating of multiple execution streams to ensure they work
together (to achieve some goal)

It guarantees the correctness of our work in a concurrent setting

Spthread Features

int spthread_create(
spthread_t* thread,
const pthread_attr_t* attr,
void* (*start_routine)(void*),
void* arg

)s

int spthread_cancel(spthread_t thread); int spthread_continue(spthread_t thread);

void spthread_exit(void* status);

int spthread_suspend(spthread_t thread);

int spthread_join(
spthread_t thread,
void** retval

int spthread_suspend_self();

);

bool spthread_equal(
spthread_t first,
spthread_t second

)s

bool spthread_self(spthread_t* thread);

Continue, Suspend,
Suspend Self

Create, Cancel, Exit,
Join, Equal, and Self

New functions to start and stop
spthreads on demand

Pthread equivalents for spthread

int spthread_disable_interrupts_self();

int spthread_enable_interrupts_self();

Disable and Enable
Interrupts

Can help us avoid corrupted state
(how?)

A Simple Scheduler

- For Milestone 0, we've provided
sched-demo.c as an example scheduler
- Apart from Milestone questions, please
note:
- How an spthread is “cancelled”
- How we control access to global
variables
- When spthreads are created, are they
running from the start?

schedular()

static void scheduler(void) {

int curr_thread_num = 0; . What iS pthread_SigmaSk VS SigprocmaSk?

// mask for while scheduler is waiting for
// alarm to go off

sigset_t suspend_set;
sigfillset(&suspend_set);

sigdelset(&suspend_set, SIGALRM); . What doeS Setitimer dO?

// just to make sure that
// sigalrm doesn't terminate the process
struct sigaction act = (struct sigaction){

.sa_handler = alarm_handler, . Why Can this thread Ca” Sigsuspend?

.sa_mask = suspend_set,

|| soactiass - s pesmeT, o How does this affect other threads?

sigaction(SIGALRM, &act, NULL);

// make sure SIGALRM is unblocked

sigsett alarset; e sp_cont and cp_sus don't return until the
sigaddset(&alarm_set, SIGALRM);

pthread_sigmask(SIG_UNBLOCK, &alarm_set, NULL); threads have truly been Continued Or
i:r:i;;::”::{ai (i;ruct timeval){.tv_usec = centisecond x 10}; Suspended

it.it_value = it.it_interval;

setitimer (KTINER_REAL, 84, ML) o Itis akin to an acknowledgement using
Cnite Cramay £ S e e pthread signals.

curr_thread_num = (curr_thread_num + 1) % NUM_THREADS;
spthread_t curr_thread = threads[curr_thread_num];

spthread_continue(curr_thread);
sigsuspend(&suspend_set) ;
spthread_suspend(curr_thread);
// lock

Ostrich Algorithm

- Deadlock detection and fixes can be
expensive
- In some contexts, it might be worth it to
not plan for deadlocks
- We can naively restart processes if
they hang, for example
- The Linux kernel has no in-built deadlock
detection/resolution mechanism
- If your code deadlocks, then it will
stay blocked until you restart some
processes, for example

Really, this covers anything that we might
think is highly unlikely and not worth fixing
until it costs us more money not to fix it...

Try Out Problem 2!

Synchronization Strategies

Atomics and
Memory Ordering

Hardware and compiler
level guarantees on the
behavior of reads and
writes

Backbone of other
methods

Synchronization
Primitives

Explicitly control access
to resources

Examples include
mutexes, semaphores,
condition variables

Lock-free
Programming

Uses atomics and
memory ordering to
bypass explicit
synchronization
primitives and reduce
overhead in multicore
settings

Atomicity

- Refers to operations that are not
interruptible by some other specified
operations (depends on the primitive)

- Guarantee provided by collaboration of
hardware, compiler, or the OS/libraries
(POSIX)

- Many modern instruction sets offer
atomic modifiers (LOCK in x86_64)

- Compiler ensures our declarations in our
(C) code are respected in assembly

- OS/libraries provide some higher level
abstractions of primitives that we can use
(mutex)

Memory Ordering

- Memory accesses (reads and writes)
don't always happen in the way we
explicitly write them in code

- QOut-of-order execution, compiler
optimizations, etc.

- Can enforce a deterministic order with
assembly instructions like fences and
ordering declarations in our code

- Notabig concernin this class

volatile sig_atomic_t

volatile: compilers don't optimize memory accesses via ideas like register storage or
reordering (important with mmap 1/O side effects) and we can safely assign values in
signal handlers

sig_atomic_t: (only) guarantees accesses occur without interruption by signals

Their effects stack, so we use them together in values modified by handlers (PID tracking
in penn-shell)

But we still need to gate access to this variable across parallel threads! C11 introduced
Atomic for truly atomic writes and reads across threads. <stdatomic.h>

atomic int x; //give you an atomic int! Extends to other types...

Learn more by checking out the gnu pages.

https://en.cppreference.com/w/c/language/atomic.html
https://www.gnu.org/software/c-intro-and-ref/manual/html_node/volatile.html

Synchronization Primitives

Mutexes Semaphores (Today's Lecture)
Only one thread can own a mutex lock at any Counter-based primitive, where there is a total
point in time capacity and each acquisition decreases

) capacity atomically (and releases increase it)
Great for gating access to a shared resource

Linux uses a file-like interface for semaphores
(why?)

Condition Variables (Today's Lecture)

Threads wait for a condition (shared variable
locked by mutex) to become true before
continuing

2 Lock Types

Test-Set Lock Note: the bool starts off as False

Atomically read the last boolean state value and
set it to True.

If the last read value was True, then we were not
the first, so we don't get the lock and keep trying
to acquire

Otherwise, we now have the lock

Thanks! Any questions?

Race Conditions

When behavior depends on ordering of
concurrent operations

Remember setpgid race condition in shell

We can also have race conditions in accesses
to shared memory (2+ threads modifying a
shared value without any synchronization)

Synchronization primitives and atomics can
help us mitigate race conditions

A —— SRR PR

Deadlock

New problem with locks, potentially we can
halt our program

If a worker is waiting on a resource that will
never be released, that worker can't continue

Antithesis of liveness

Formal requirements: mutual exclusion, hold
and wait, no preemption, circular wait

Fixing Deadlocks

Removing Mutual Exclusion Avoiding Hold and Wait
Lock-free programming Have thread acquire all required resources at
once

Single threaded async approach

Atomic operations at hardware level

Preemption Avoiding Circular Wait

Force a thread to release a resource if no Resource acquisition shouldn't have circular
progress is made (maybe with a timeout) dependencies

Can be tough to recover to a Enforcing an ordering in which we acquire

checkpoint/snapshot resources across threads can help

Deadlock Detection

Resource Acquisition Graph:

- Each thread and resource is a node

- If athread owns a resource, the resource
node has an edge to the thread node

- If a thread wants a resource, the thread
points to the resource node

Wait-For Graph:

- Eachthread is a node

- If thread 1 waits on a resource held by
another thread 2, there is a directed edge
from thread 1to thread 2

Cycles represent deadlocks

Livelock

Other Starvation
Issues Priority Inversion

Lock Contention

