
Synchronization 
and Spthreads
CIS 4480/5580 Recitation 6
October 29, 2025



Try out Problem 1 First! 
Weʼll go over it together in a bit!

 



Spthreads



Threads
- Single sequential execution path in a process
- Shares an address space and some resources 

with other threads grouped under the same 
process

- This makes them more lightweight compared 
to forking a new process

- The OS kernel uses threads as schedulable units
- In POSIX systems, you can use the pthread library 

to manage threads



 

5

Modified version of pthreads that where 
we can explicitly pause and resume 
execution

What are Spthreads?



Synchronization
Synchronization is the coordinating of multiple execution streams to ensure they work 
together (to achieve some goal)

It guarantees the correctness of our work in a concurrent setting

6



Continue, Suspend, 
Suspend Self

Pthread equivalents for spthread New functions to start and stop 
spthreads on demand

Can help us avoid corrupted state 
(how?)

Spthread Features

Create, Cancel, Exit, 
Join, Equal, and Self

Disable and Enable 
Interrupts



- For Milestone 0, weʼve provided 
sched-demo.c as an example scheduler

- Apart from Milestone questions, please 
note:

- How an spthread is “cancelled”
- How we control access to global 

variables
- When spthreads are created, are they 

running from the start?

A Simple Scheduler



schedular()

● What is pthread_sigmask vs sigprocmask?

● What does setitimer do?

● Why can this thread call sigsuspend?
○ How does this affect other threads?

● sp_cont and cp_sus donʼt return until the 
threads have truly been continued or 
suspended
○ It is akin to an acknowledgement using 

pthread signals. 



Ostrich Algorithm
- Deadlock detection and fixes can be 

expensive
- In some contexts, it might be worth it to 

not plan for deadlocks
- We can naively restart processes if 

they hang, for example
- The Linux kernel has no in-built deadlock 

detection/resolution mechanism
- If your code deadlocks, then it will 

stay blocked until you restart some 
processes, for example

Really, this covers anything that we might 
think is highly unlikely and not worth fixing 
until it costs us more money not to fix it…



Try Out Problem 2!



Hardware and compiler 
level guarantees on the 
behavior of reads and 
writes

Backbone of other 
methods

Explicitly control access 
to resources

Examples include 
mutexes, semaphores, 
condition variables

Uses atomics and 
memory ordering to 
bypass explicit 
synchronization 
primitives and reduce 
overhead in multicore 
settings

Synchronization Strategies

Atomics and 
Memory Ordering

Synchronization 
Primitives

Lock-free 
Programming



- Refers to operations that are not 
interruptible by some other specified 
operations (depends on the primitive)

- Guarantee provided by collaboration of 
hardware, compiler, or the OS/libraries 
(POSIX)

- Many modern instruction sets offer 
atomic modifiers (LOCK in x86_64)

- Compiler ensures our declarations in our 
(C) code are respected in assembly

- OS/libraries provide some higher level 
abstractions of primitives that we can use 
(mutex)

Atomicity



Memory Ordering
- Memory accesses (reads and writes) 

donʼt always happen in the way we 
explicitly write them in code

- Out-of-order execution, compiler 
optimizations, etc.

- Can enforce a deterministic order with 
assembly instructions like fences and 
ordering declarations in our code

- Not a big concern in this class



volatile sig_atomic_t
volatile: compilers donʼt optimize memory accesses via ideas like register storage or 
reordering (important with mmap I/O side effects) and we can safely assign values in 
signal handlers

sig_atomic_t: (only) guarantees accesses occur without interruption by signals

Their effects stack, so we use them together in values modified by handlers (PID tracking 
in penn-shell)

But we still need to gate access to this variable across parallel threads! C11 introduced 
_Atomic for truly atomic writes and reads across threads. <stdatomic.h>

atomic int x; //give you an atomic int! Extends to other types…

Learn more by checking out the gnu pages.

https://en.cppreference.com/w/c/language/atomic.html
https://www.gnu.org/software/c-intro-and-ref/manual/html_node/volatile.html


Counter-based primitive, where there is a total 
capacity and each acquisition decreases 
capacity atomically (and releases increase it)

Linux uses a file-like interface for semaphores 
(why?)

Only one thread can own a mutex lock at any 
point in time

Great for gating access to a shared resource

Threads wait for a condition (shared variable 
locked by mutex) to become true before 
continuing

Synchronization Primitives

Mutexes Semaphores (Today s̓ Lecture)

Condition Variables (Today s̓ Lecture)



Atomically read the last boolean state value and 
set it to True.

If the last read value was True, then we were not 
the first, so we donʼt get the lock and keep trying 
to acquire

Otherwise, we now have the lock

Test-Set Lock

2 Lock Types

Note: the bool starts off as False



Questions?Thanks! Any questions?



Race Conditions
When behavior depends on ordering of 
concurrent operations

Remember setpgid race condition in shell

We can also have race conditions in accesses 
to shared memory (2+ threads modifying a 
shared value without any synchronization)

Synchronization primitives and atomics can 
help us mitigate race conditions



Deadlock
New problem with locks, potentially we can 
halt our program

If a worker is waiting on a resource that will 
never be released, that worker canʼt continue

Antithesis of liveness

Formal requirements: mutual exclusion, hold 
and wait, no preemption, circular wait



Lock-free programming

Single threaded async approach

Atomic operations at hardware level

Have thread acquire all required resources at 
once

Force a thread to release a resource if no 
progress is made (maybe with a timeout)

Can be tough to recover to a 
checkpoint/snapshot

Resource acquisition shouldnʼt have circular 
dependencies

Enforcing an ordering in which we acquire 
resources across threads can help

Fixing Deadlocks

Removing Mutual Exclusion Avoiding Hold and Wait

Avoiding Circular WaitPreemption



Resource Acquisition Graph:

- Each thread and resource is a node
- If a thread owns a resource, the resource 

node has an edge to the thread node
- If a thread wants a resource, the thread 

points to the resource node

Wait-For Graph:

- Each thread is a node
- If thread 1 waits on a resource held by 

another thread 2, there is a directed edge 
from thread 1 to thread 2

Cycles represent deadlocks

Deadlock Detection



Other
Issues

Starvation

Livelock

Priority Inversion

Lock Contention


